PRE2015 4 Groep2: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
No edit summary
Line 26: Line 26:
Primary users are farmers and their workers, who directly use the robot. The following aspects hold:
Primary users are farmers and their workers, who directly use the robot. The following aspects hold:


* Less seasonal costs for farmers as they do not need to hire harvesting workers. New costs arise for the robot: purchase and maintenance costs. To make the robot economically feasible for farmers, the purchase cost should be lower than
* Their work becomes far less intensive and heavy. Instead of directly harvesting, farmers can let the robot do the work. They would now only occasionally need to check the harvest and possibly adjust some parameters. This work is less heavy than harvesting and therefore less health problems due to heavy work can be expected.
* Higher efficiency. Speed of harvesting is not necessarily faster than workers, however the autonomous robot can be left running overnight.
* More free time for other things. This is because the new work takes far less time. Also there is no need anymore for training seasonal workers.
* Farm harvesting workers lose their job.
* Farm harvesting workers lose their job.
Farmers and their workers: higher efficiency
-Farmers:
-Higher efficiency
-More harvest
-Lower costs due to less employees
-They will have more time
-Less physical work / Health benefits
-Don’t have to train seasonal workers
Secondary users are distributors that pick up the fruits from the farms. They use the robot occasionally when they need to get the fruits that are picked by the robot. The following aspects hold:
Secondary users are distributors that pick up the fruits from the farms. They use the robot occasionally when they need to get the fruits that are picked by the robot. The following aspects hold:
Line 47: Line 38:


A tertiary user is the company that is developing and maintaining this robot. It indirectly uses the robot during development.
A tertiary user is the company that is developing and maintaining this robot. It indirectly uses the robot during development.
(I assume that this is a societal aspect:) Another tertiary user is the harvesting worker. A worker that is harvesting fruit manually does not directly come in contact with the robot. The robot does however influence these workers, as it takes away their jobs. This aspect should be researched more. These harvesting workers are likely people with a low education and students wanting to earn a little more. The people with low education can be expected to have a hard time finding a new job.


===Society===
===Society===

Revision as of 06:52, 2 May 2016

(Wiki markup cheatsheet)

We are developing an autonomous harvesting robot. The robot will be initially developed for harvesting strawberries. As creating a complete prototype is probably not feasible to do in nine weeks, we start with focusing on the detecting and sensing part. For that we will develop a system which scans fruits and determines their ripeness. It can also consider other factors like for example if the fruit looks appealing.

Group 2 members

  • Cameron Weibel (0883114)
  • Maarten Visscher (0888263)
  • Raomi van Rozendaal (0842742)
  • Birgit van der Stigchel (0855323)
  • Mark de Jong (0896731)
  • Yannick Augustijn (0856560)

Requirements

The requirements to add should relate to the detection system? Or do we choose the full robot?

Functional requirements

Non-functional requirements

USE aspects

User

Primary users are farmers and their workers, who directly use the robot. The following aspects hold:

  • Their work becomes far less intensive and heavy. Instead of directly harvesting, farmers can let the robot do the work. They would now only occasionally need to check the harvest and possibly adjust some parameters. This work is less heavy than harvesting and therefore less health problems due to heavy work can be expected.
  • More free time for other things. This is because the new work takes far less time. Also there is no need anymore for training seasonal workers.
  • Farm harvesting workers lose their job.

Secondary users are distributors that pick up the fruits from the farms. They use the robot occasionally when they need to get the fruits that are picked by the robot. The following aspects hold:

-Lower cost for food -There will be more fresh food available(maybe?) -More efficient supply chain -The supermarkets might also be able to give feedback.

A tertiary user is the company that is developing and maintaining this robot. It indirectly uses the robot during development.

(I assume that this is a societal aspect:) Another tertiary user is the harvesting worker. A worker that is harvesting fruit manually does not directly come in contact with the robot. The robot does however influence these workers, as it takes away their jobs. This aspect should be researched more. These harvesting workers are likely people with a low education and students wanting to earn a little more. The people with low education can be expected to have a hard time finding a new job.

Society

See https://drive.google.com/file/d/0BxKlXUVjSWzHV0Y0RWh3UUpGYzg/view?usp=sharing .

Enterprise

See https://drive.google.com/file/d/0Bz2y3nYcBovfX1FBTmdHSzZ1N1k/view?usp=sharing .


Literature

Harvesting robots

Sensing technology

(Older)

  • Yamamoto, S., et al. "Development of a stationary robotic strawberry harvester with picking mechanism that approaches target fruit from below (Part 1)-Development of the end-effector." Journal of the Japanese Society of Agricultural Machinery 71.6 (2009): 71-78. Link
  • Sam Corbett-Davies , Tom Botterill , Richard Green , Valerie Saxton, An expert system for automatically pruning vines, Proceedings of the 27th Conference on Image and Vision Computing New Zealand, November 26-28, 2012, Dunedin, New Zealand Link
  • Hayashi, Shigehiko, Katsunobu Ganno, Yukitsugu Ishii, and Itsuo Tanaka. "Robotic Harvesting System for Eggplants." JARQ Japan Agricultural Research Quarterly: JARQ 36.3 (2002): 163-68. Web. Link
  • Blasco, J., N. Aleixos, and E. Moltó. "Machine Vision System for Automatic Quality Grading of Fruit." Biosystems Engineering 85.4 (2003): 415-23. Web. Link
  • Cubero, Sergio, Nuria Aleixos, Enrique Moltó, Juan Gómez-Sanchis, and Jose Blasco. "Advances in Machine Vision Applications for Automatic Inspection and Quality Evaluation of Fruits and Vegetables." Food Bioprocess Technol Food and Bioprocess Technology 4.4 (2010): 487-504. Web. Link
  • Tanigaki, Kanae, et al. "Cherry-harvesting robot." Computers and Electronics in Agriculture 63.1 (2008): 65-72. Direct Dianus
    • Evaluation of a cherry-harvesting robot. It picks by grabbing the peduncle and lifting it upwards.
  • Hayashi, Shigehiko, et al. "Evaluation of a strawberry-harvesting robot in a field test." Biosystems Engineering 105.2 (2010): 160-171. Direct Dianus
    • Evaluation of a strawberry-harvesting robot.

State of the art

A small number of tests have been done with machines for harvesting strawberries. These are large, bulky and expensive machines like Agrobot. Cost prices are in the order of 50,000 dollar. Todo: add citations.

A lot of research is done towards inspection by means of machine vision. Todo: add citations and continue.

Further reading

Manual strawberry harvesting process

Source (move to citation)

Notes

Moved to Talk:PRE2015_4_Groep2.