Matlabscript Botsingsdetectie: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 10: Line 10:
  <br>
  <br>
     tracks = initializeTracks(); % Create an empty array of tracks.
     tracks = initializeTracks(); % Create an empty array of tracks.
  .
  <br>
     nextId = 1; % ID of the next track
     nextId = 1; % ID of the next track
  .
  <br>
     % Detect moving objects, and track them across video frames.
     % Detect moving objects, and track them across video frames.
     fr=0;
     fr=0;
     disp('Starting...');
     disp('Starting...');
  .
  <br>
     f = step(obj.reader);
     f = step(obj.reader);
     obj.videoPlayer.step(f); release(obj.videoPlayer);
     obj.videoPlayer.step(f); release(obj.videoPlayer);
  .
  <br>
     Lastpos = [0 0];
     Lastpos = [0 0];
     Currentpos = [0 0];
     Currentpos = [0 0];
     colvar = 1;
     colvar = 1;
     SHOW = 1;  %turn on/off message box
     SHOW = 1;  %turn on/off message box
  .
  <br>
     while fr < 41 && isOpen(obj.videoPlayer)
     while fr < 41 && isOpen(obj.videoPlayer)
         fr;
         fr;
Line 37: Line 37:
         fr=fr+1;
         fr=fr+1;
     end
     end
  .
  <br>
     release(obj.videoPlayer);
     release(obj.videoPlayer);
     obj.videoPlayer.hide();
     obj.videoPlayer.hide();
     close all;
     close all;
  .
  <br>
     %% Create System Objects
     %% Create System Objects
     % Create System objects used for reading the video frames, detecting
     % Create System objects used for reading the video frames, detecting
     % colored objects, and displaying results.
     % colored objects, and displaying results.
  .
  <br>
     function obj = setupSystemObjects()
     function obj = setupSystemObjects()
         % Initialize Video
         % Initialize Video
Line 52: Line 52:
         % can be analyzed yet
         % can be analyzed yet
         obj.reader = vision.VideoFileReader('botsing1.mp4');
         obj.reader = vision.VideoFileReader('botsing1.mp4');
  .       
  <br>     
         % Create a video player
         % Create a video player
         obj.videoPlayer = vision.VideoPlayer('Position', [200, 400, 700, 400]);
         obj.videoPlayer = vision.VideoPlayer('Position', [200, 400, 700, 400]);
  .
  <br>
         % Create System objects based on movement and blob analysis
         % Create System objects based on movement and blob analysis
         obj.detector = vision.ForegroundDetector('NumGaussians', 3, ...
         obj.detector = vision.ForegroundDetector('NumGaussians', 3, ...
             'NumTrainingFrames', 5, 'MinimumBackgroundRatio', 0.8);
             'NumTrainingFrames', 5, 'MinimumBackgroundRatio', 0.8);
  .
  <br>
         blob = vision.BlobAnalysis('BoundingBoxOutputPort', true, 'ExcludeBorderBlobs',true, ...
         blob = vision.BlobAnalysis('BoundingBoxOutputPort', true, 'ExcludeBorderBlobs',true, ...
             'MajorAxisLengthOutputPort',true,'EccentricityOutputPort', true, 'CentroidOutputPort', true, ...
             'MajorAxisLengthOutputPort',true,'EccentricityOutputPort', true, 'CentroidOutputPort', true, ...
             'MinimumBlobArea', 2100, 'MaximumBlobArea',50000);
             'MinimumBlobArea', 2100, 'MaximumBlobArea',50000);
     end
     end
  .
  <br>
     %% Initialize Tracks
     %% Initialize Tracks
     % The structure contains the following fields:
     % The structure contains the following fields:
Line 81: Line 81:
     %                                This results in deleting the track if the
     %                                This results in deleting the track if the
     %                                threshold is reached
     %                                threshold is reached
  .
  <br>
     function tracks = initializeTracks()
     function tracks = initializeTracks()
         % create an empty array of tracks
         % create an empty array of tracks
Line 92: Line 92:
             'consecutiveInvisibleCount', {});
             'consecutiveInvisibleCount', {});
     end
     end
  .
  <br>
     %% Read a Video Frame
     %% Read a Video Frame
     % Read the next video frame from the video file.
     % Read the next video frame from the video file.
Line 99: Line 99:
         %frame = snapshot(cam);
         %frame = snapshot(cam);
     end
     end
  .
  <br>
     %% Detect Objects
     %% Detect Objects
     % The |detectObjects| function returns the centroids and the bounding boxes
     % The |detectObjects| function returns the centroids and the bounding boxes
Line 105: Line 105:
     % same size as the input frame. Pixels with a value of 1 correspond to the
     % same size as the input frame. Pixels with a value of 1 correspond to the
     % foreground, and pixels with a value of 0 correspond to the background.  
     % foreground, and pixels with a value of 0 correspond to the background.  
  .
  <br>
     function [centroids, bboxes, mask] = detectObjects(frame, blob)
     function [centroids, bboxes, mask] = detectObjects(frame, blob)
  .      
  <br>      
     % Use color to identify turtles from each team. Only these colors will
     % Use color to identify turtles from each team. Only these colors will
     % be taken into account. A distinctive top color results in more  
     % be taken into account. A distinctive top color results in more  
Line 113: Line 113:
     Red = frame*255;
     Red = frame*255;
     Red = Red(:,:,1)>Red(:,:,2)*2 & Red(:,:,1)>Red(:,:,2)*2;
     Red = Red(:,:,1)>Red(:,:,2)*2 & Red(:,:,1)>Red(:,:,2)*2;
  .
  <br>
     mask = obj.detector.step(frame);
     mask = obj.detector.step(frame);
   % Apply morphological operations to remove noise and fill in holes.
   % Apply morphological operations to remove noise and fill in holes.
Line 119: Line 119:
     mask = imclose(mask, strel('rectangle', [15, 15]));  
     mask = imclose(mask, strel('rectangle', [15, 15]));  
     mask = imfill(mask, 'holes');
     mask = imfill(mask, 'holes');
  .
  <br>
   % detect blobs, return centroids, bounding boxes, eccentricity and diameter
   % detect blobs, return centroids, bounding boxes, eccentricity and diameter
   [~,centroids,bboxes,diam,ecc] = step(blob,Red);               
   [~,centroids,bboxes,diam,ecc] = step(blob,Red);               
  .
  <br>
   % maximize for most round object
   % maximize for most round object
   if ~isempty(centroids)     
   if ~isempty(centroids)     
Line 137: Line 137:
         diam = [];
         diam = [];
   end
   end
  .
  <br>
     end
     end
     %% Predict New Locations of Existing Tracks
     %% Predict New Locations of Existing Tracks
     % Use the Kalman filter to predict the centroid of each track in the
     % Use the Kalman filter to predict the centroid of each track in the
     % current frame, and update its bounding box accordingly.
     % current frame, and update its bounding box accordingly.
  .
  <br>
     function predictNewLocationsOfTracks()
     function predictNewLocationsOfTracks()
       for i = 1:length(tracks)
       for i = 1:length(tracks)
             bbox = tracks(i).bbox;
             bbox = tracks(i).bbox;
  .
  <br>
             % Predict the current location of the track.
             % Predict the current location of the track.
             predictedCentroid = predict(tracks(i).kalmanFilter);
             predictedCentroid = predict(tracks(i).kalmanFilter);
Line 155: Line 155:
       end
       end
     end
     end
  .
  <br>
     %% Assign Detections to Tracks
     %% Assign Detections to Tracks
     % Assigning object detections in the current frame to existing tracks is
     % Assigning object detections in the current frame to existing tracks is
     % done by minimizing cost. The cost is defined as the negative
     % done by minimizing cost. The cost is defined as the negative
     % log-likelihood of a detection corresponding to a track.   
     % log-likelihood of a detection corresponding to a track.   
  .
  <br>
     function [assignments, unassignedTracks, unassignedDetections] = ...
     function [assignments, unassignedTracks, unassignedDetections] = ...
             detectionToTrackAssignment()
             detectionToTrackAssignment()
  .
  <br>
         nTracks = length(tracks);
         nTracks = length(tracks);
         nDetections = size(centroids, 1);
         nDetections = size(centroids, 1);
  .
  <br>
         % Compute the cost of assigning each detection to each track.
         % Compute the cost of assigning each detection to each track.
         cost = zeros(nTracks, nDetections);
         cost = zeros(nTracks, nDetections);
Line 172: Line 172:
             cost(1, :) = distance(tracks(1).kalmanFilter, centroids);
             cost(1, :) = distance(tracks(1).kalmanFilter, centroids);
         end
         end
  .
  <br>
         % Solve the assignment problem.
         % Solve the assignment problem.
         costOfNonAssignment = 20;
         costOfNonAssignment = 20;
Line 178: Line 178:
             assignDetectionsToTracks(cost, costOfNonAssignment);
             assignDetectionsToTracks(cost, costOfNonAssignment);
     end
     end
  .
  <br>
     %% Update Assigned Tracks
     %% Update Assigned Tracks
     % The |updateAssignedTracks| function updates each assigned track with the
     % The |updateAssignedTracks| function updates each assigned track with the
Line 185: Line 185:
     % the new bounding box, and increases the age of the track and the total
     % the new bounding box, and increases the age of the track and the total
     % visible count by 1. Finally, the function sets the invisible count to 0.
     % visible count by 1. Finally, the function sets the invisible count to 0.
  .
  <br>
     function updateAssignedTracks()
     function updateAssignedTracks()
         numAssignedTracks = size(assignments, 1);
         numAssignedTracks = size(assignments, 1);
Line 193: Line 193:
             centroid = centroids(detectionIdx, :);
             centroid = centroids(detectionIdx, :);
             bbox = bboxes(detectionIdx, :);
             bbox = bboxes(detectionIdx, :);
  .
  <br>
             % Correct the estimate of the object's location
             % Correct the estimate of the object's location
             % using the new detection. This will give the current position
             % using the new detection. This will give the current position
Line 203: Line 203:
             % Update track's age.
             % Update track's age.
             tracks(trackIdx).age = tracks(trackIdx).age + 1;
             tracks(trackIdx).age = tracks(trackIdx).age + 1;
  .
  <br>
             % Update visibility.
             % Update visibility.
             tracks(trackIdx).totalVisibleCount = ...
             tracks(trackIdx).totalVisibleCount = ...
Line 212: Line 212:
         end
         end
     end
     end
  .
  <br>
     %% Create New Tracks
     %% Create New Tracks
     % Create new tracks from unassigned detections. Assume that any unassigned
     % Create new tracks from unassigned detections. Assume that any unassigned
     % detection is a start of a new track. In practice, you can use other cues
     % detection is a start of a new track. In practice, you can use other cues
     % to eliminate noisy detections, such as size, location, or appearance.
     % to eliminate noisy detections, such as size, location, or appearance.
  .
  <br>
     function createNewTracks()
     function createNewTracks()
         centroids = centroids(unassignedDetections, :);
         centroids = centroids(unassignedDetections, :);
         bboxes = bboxes(unassignedDetections, :);
         bboxes = bboxes(unassignedDetections, :);
  .
  <br>
         for i = 1:size(centroids, 1)
         for i = 1:size(centroids, 1)
  .
  <br>
             centroid = centroids(i,:);
             centroid = centroids(i,:);
             bbox = bboxes(i, :);
             bbox = bboxes(i, :);
  .
  <br>
             % Create a Kalman filter object.
             % Create a Kalman filter object.
             kalmanFilter = configureKalmanFilter('ConstantVelocity', ...
             kalmanFilter = configureKalmanFilter('ConstantVelocity', ...
                 centroid, [200, 50], [100, 25], 200);
                 centroid, [200, 50], [100, 25], 200);
  .
  <br>
             % Create a new track.
             % Create a new track.
             newTrack = struct(...
             newTrack = struct(...
Line 239: Line 239:
                 'totalVisibleCount', 4, ...
                 'totalVisibleCount', 4, ...
                 'consecutiveInvisibleCount', 0);
                 'consecutiveInvisibleCount', 0);
  .
  <br>
             % Add it to the array of tracks.
             % Add it to the array of tracks.
             tracks(end + 1) = newTrack;
             tracks(end + 1) = newTrack;
  .
  <br>
             % Increment the next id.
             % Increment the next id.
             nextId = nextId + 1;
             nextId = nextId + 1;
         end
         end
     end
     end
  .
  <br>
     %% Display Tracking Results
     %% Display Tracking Results
     % The |displayTrackingResults| function draws a bounding box and label ID  
     % The |displayTrackingResults| function draws a bounding box and label ID  
     % for each track on the video frame and the foreground mask. It then  
     % for each track on the video frame and the foreground mask. It then  
     % displays the frame and the mask in their respective video players.  
     % displays the frame and the mask in their respective video players.  
  .
  <br>
     function displayTrackingResults()
     function displayTrackingResults()
         % Convert the frame and the mask to uint8 RGB.
         % Convert the frame and the mask to uint8 RGB.
         frame = im2uint8(frame);
         frame = im2uint8(frame);
         mask = uint8(repmat(mask, [1, 1, 3])) .* 255;
         mask = uint8(repmat(mask, [1, 1, 3])) .* 255;
  .
  <br>
         minVisibleCount = 8;
         minVisibleCount = 8;
         if ~isempty(tracks)
         if ~isempty(tracks)
  .
  <br>
             % Noisy detections tend to result in short-lived tracks.
             % Noisy detections tend to result in short-lived tracks.
             % Only display tracks that have been visible for more than  
             % Only display tracks that have been visible for more than  
Line 267: Line 267:
                 [tracks(:).totalVisibleCount] > minVisibleCount;
                 [tracks(:).totalVisibleCount] > minVisibleCount;
             reliableTracks = tracks(reliableTrackInds);
             reliableTracks = tracks(reliableTrackInds);
  .
  <br>
             % Display the objects. If an object has not been detected
             % Display the objects. If an object has not been detected
             % in this frame, display its predicted bounding box.
             % in this frame, display its predicted bounding box.
Line 273: Line 273:
                 % Get bounding boxes.
                 % Get bounding boxes.
                 bboxes = cat(1, reliableTracks.bbox);
                 bboxes = cat(1, reliableTracks.bbox);
  .
  <br>
                 % Get ids.
                 % Get ids.
                 ids = int32([reliableTracks(:).id]);
                 ids = int32([reliableTracks(:).id]);
  .
  <br>
                 % Create labels for objects indicating the ones for  
                 % Create labels for objects indicating the ones for  
                 % which we display the predicted rather than the actual  
                 % which we display the predicted rather than the actual  
Line 286: Line 286:
                 isPredicted(predictedTrackInds) = {' predicted'};
                 isPredicted(predictedTrackInds) = {' predicted'};
                 labels = strcat(labels, isPredicted);
                 labels = strcat(labels, isPredicted);
  .
  <br>
                 labels = 'Red Ball';
                 labels = 'Red Ball';
                 % Draw the objects on the frame.
                 % Draw the objects on the frame.
                 frame = insertObjectAnnotation(frame, 'rectangle', ...
                 frame = insertObjectAnnotation(frame, 'rectangle', ...
                     bboxes, labels);
                     bboxes, labels);
  .
  <br>
                 % Draw the objects on the mask.
                 % Draw the objects on the mask.
                 mask = insertObjectAnnotation(mask, 'rectangle', ...
                 mask = insertObjectAnnotation(mask, 'rectangle', ...
Line 297: Line 297:
             end
             end
         end
         end
  .
  <br>
         % Display the mask and the frame.       
         % Display the mask and the frame.       
         obj.videoPlayer.step(frame);
         obj.videoPlayer.step(frame);
     end
     end
  .
  <br>
     %% Store previous location
     %% Store previous location
     % The |saveposition| function stores the location of the previous frame to
     % The |saveposition| function stores the location of the previous frame to
     % allow for the calculation of a direction vector created from consecutive
     % allow for the calculation of a direction vector created from consecutive
     % frames
     % frames
  .
  <br>
     function saveposition()
     function saveposition()
         if fr <2
         if fr <2
Line 314: Line 314:
         end
         end
     end
     end
  .
  <br>
     %% Check for a collision
     %% Check for a collision
     % The |checkcollision| function checks every frame if there is a sudden
     % The |checkcollision| function checks every frame if there is a sudden
     % change in the direction compared to its previous. If more elaborate  
     % change in the direction compared to its previous. If more elaborate  
     % collision rules apply, one can look to find the acceleration
     % collision rules apply, one can look to find the acceleration
  .
  <br>
     function checkcollision()
     function checkcollision()
         if ~isempty(Lastpos) && fr >17  %% Bounding box drawn
         if ~isempty(Lastpos) && fr >17  %% Bounding box drawn
Line 332: Line 332:
         end
         end
     end
     end
  .
  <br>
  end
  end


</code>
</code>


A link to the matlab code can be found here: [http://www.example.com link title]
Een link naar de matlab code staat hier: [https://www.dropbox.com/sh/gbh5m6odnoqne99/AABFMLRutZ_o2IONJv1cpYDWa?dl=0 All-Project Matlab Files]


----
----


Terug naar: [[Botsingsdetectie]]
Terug naar: [[Botsingsdetectie]]

Latest revision as of 00:14, 14 January 2016

Hieronder staat de Matlab-code voor de botsingsdetectie. Comments over gebruikte code staan in het script erbij vermeldt.

function Collision_detection()
   clc
   % Create System objects used for reading video, detecting moving objects,
   % and displaying the results.
   obj = setupSystemObjects();

tracks = initializeTracks(); % Create an empty array of tracks.
nextId = 1; % ID of the next track
 % Detect moving objects, and track them across video frames. fr=0; disp('Starting...');
f = step(obj.reader); obj.videoPlayer.step(f); release(obj.videoPlayer);
Lastpos = [0 0]; Currentpos = [0 0]; colvar = 1; SHOW = 1; %turn on/off message box
while fr < 41 && isOpen(obj.videoPlayer) fr; frame = readFrame(); [centroids, bboxes, mask] = detectObjects(frame, blob); predictNewLocationsOfTracks(); [assignments, ~ , unassignedDetections] = ... detectionToTrackAssignment(); updateAssignedTracks(); %position createNewTracks(); displayTrackingResults(); fr=fr+1; end
release(obj.videoPlayer); obj.videoPlayer.hide(); close all;
 %% Create System Objects  % Create System objects used for reading the video frames, detecting  % colored objects, and displaying results.
function obj = setupSystemObjects()  % Initialize Video  % Create objects for reading a video from a file, drawing the tracked  % objects in each frame, and playing the video. No live camera data  % can be analyzed yet obj.reader = vision.VideoFileReader('botsing1.mp4');
 % Create a video player obj.videoPlayer = vision.VideoPlayer('Position', [200, 400, 700, 400]);
 % Create System objects based on movement and blob analysis obj.detector = vision.ForegroundDetector('NumGaussians', 3, ... 'NumTrainingFrames', 5, 'MinimumBackgroundRatio', 0.8);
blob = vision.BlobAnalysis('BoundingBoxOutputPort', true, 'ExcludeBorderBlobs',true, ... 'MajorAxisLengthOutputPort',true,'EccentricityOutputPort', true, 'CentroidOutputPort', true, ... 'MinimumBlobArea', 2100, 'MaximumBlobArea',50000); end
 %% Initialize Tracks  % The structure contains the following fields:  %  % * |id| : the integer ID of the track  % * |bbox| : the current bounding box of the object; used  % for display  % * |kalmanFilter| : a Kalman filter object used for motion-based  % tracking  % * |age| : the number of frames since the track was first  % detected  % * |totalVisibleCount| : the total number of frames in which the track  % was detected (visible)  % * |consecutiveInvisibleCount| : the number of consecutive frames for  % which the track was not detected (invisible).  % This results in deleting the track if the  % threshold is reached
function tracks = initializeTracks()  % create an empty array of tracks tracks = struct(... 'id', {}, ... 'bbox', {}, ... 'kalmanFilter', {}, ... 'age', {}, ... 'totalVisibleCount', {}, ... 'consecutiveInvisibleCount', {}); end
 %% Read a Video Frame  % Read the next video frame from the video file. function frame = readFrame() frame = obj.reader.step(); %frame = snapshot(cam); end
 %% Detect Objects  % The |detectObjects| function returns the centroids and the bounding boxes  % of the detected objects. It also returns the binary mask, which has the  % same size as the input frame. Pixels with a value of 1 correspond to the  % foreground, and pixels with a value of 0 correspond to the background.
function [centroids, bboxes, mask] = detectObjects(frame, blob)
 % Use color to identify turtles from each team. Only these colors will  % be taken into account. A distinctive top color results in more  % accurate tracking. Red = frame*255; Red = Red(:,:,1)>Red(:,:,2)*2 & Red(:,:,1)>Red(:,:,2)*2;
mask = obj.detector.step(frame);  % Apply morphological operations to remove noise and fill in holes. mask = imopen(mask, strel('rectangle', [9,9])); mask = imclose(mask, strel('rectangle', [15, 15])); mask = imfill(mask, 'holes');
 % detect blobs, return centroids, bounding boxes, eccentricity and diameter [~,centroids,bboxes,diam,ecc] = step(blob,Red);
 % maximize for most round object if ~isempty(centroids) [~,I] = max(ecc,[],1); bboxes = bboxes(I,:); centroids = centroids(I,:); diam = diam(I); end %check if max is indeed round (i.e. if anything useful detected) if ecc > 1 ecc = []; centroids = []; bboxes = []; diam = []; end
end  %% Predict New Locations of Existing Tracks  % Use the Kalman filter to predict the centroid of each track in the  % current frame, and update its bounding box accordingly.
function predictNewLocationsOfTracks() for i = 1:length(tracks) bbox = tracks(i).bbox;
 % Predict the current location of the track. predictedCentroid = predict(tracks(i).kalmanFilter);  % Shift the bounding box so that its center is at  % the predicted location. predictedCentroid = int32(predictedCentroid) - bbox(3:4) / 2; tracks(i).bbox = [predictedCentroid, bbox(3:4)]; end end
 %% Assign Detections to Tracks  % Assigning object detections in the current frame to existing tracks is  % done by minimizing cost. The cost is defined as the negative  % log-likelihood of a detection corresponding to a track.
function [assignments, unassignedTracks, unassignedDetections] = ... detectionToTrackAssignment()
nTracks = length(tracks); nDetections = size(centroids, 1);
 % Compute the cost of assigning each detection to each track. cost = zeros(nTracks, nDetections); if nTracks>0 cost(1, :) = distance(tracks(1).kalmanFilter, centroids); end
 % Solve the assignment problem. costOfNonAssignment = 20; [assignments, unassignedTracks, unassignedDetections] = ... assignDetectionsToTracks(cost, costOfNonAssignment); end
 %% Update Assigned Tracks  % The |updateAssignedTracks| function updates each assigned track with the  % corresponding detection. It calls the |correct| method of  % |vision.KalmanFilter| to correct the location estimate. Next, it stores  % the new bounding box, and increases the age of the track and the total  % visible count by 1. Finally, the function sets the invisible count to 0.
function updateAssignedTracks() numAssignedTracks = size(assignments, 1); for i = 1:numAssignedTracks trackIdx = assignments(i, 1); detectionIdx = assignments(i, 2); centroid = centroids(detectionIdx, :); bbox = bboxes(detectionIdx, :);
 % Correct the estimate of the object's location  % using the new detection. This will give the current position Currentpos = correct(tracks(trackIdx).kalmanFilter, centroid);  % Replace predicted bounding box with detected  % bounding box. tracks(trackIdx).bbox = bbox;  % Update track's age. tracks(trackIdx).age = tracks(trackIdx).age + 1;
 % Update visibility. tracks(trackIdx).totalVisibleCount = ... tracks(trackIdx).totalVisibleCount + 1; tracks(trackIdx).consecutiveInvisibleCount = 0; checkcollision(); saveposition(); end end
 %% Create New Tracks  % Create new tracks from unassigned detections. Assume that any unassigned  % detection is a start of a new track. In practice, you can use other cues  % to eliminate noisy detections, such as size, location, or appearance.
function createNewTracks() centroids = centroids(unassignedDetections, :); bboxes = bboxes(unassignedDetections, :);
for i = 1:size(centroids, 1)
centroid = centroids(i,:); bbox = bboxes(i, :);
 % Create a Kalman filter object. kalmanFilter = configureKalmanFilter('ConstantVelocity', ... centroid, [200, 50], [100, 25], 200);
 % Create a new track. newTrack = struct(... 'id', nextId, ... 'bbox', bbox, ... 'kalmanFilter', kalmanFilter, ... 'age', 1, ... 'totalVisibleCount', 4, ... 'consecutiveInvisibleCount', 0);
 % Add it to the array of tracks. tracks(end + 1) = newTrack;
 % Increment the next id. nextId = nextId + 1; end end
 %% Display Tracking Results  % The |displayTrackingResults| function draws a bounding box and label ID  % for each track on the video frame and the foreground mask. It then  % displays the frame and the mask in their respective video players.
function displayTrackingResults()  % Convert the frame and the mask to uint8 RGB. frame = im2uint8(frame); mask = uint8(repmat(mask, [1, 1, 3])) .* 255;
minVisibleCount = 8; if ~isempty(tracks)
 % Noisy detections tend to result in short-lived tracks.  % Only display tracks that have been visible for more than  % a minimum number of frames. reliableTrackInds = ... [tracks(:).totalVisibleCount] > minVisibleCount; reliableTracks = tracks(reliableTrackInds);
 % Display the objects. If an object has not been detected  % in this frame, display its predicted bounding box. if ~isempty(reliableTracks)  % Get bounding boxes. bboxes = cat(1, reliableTracks.bbox);
 % Get ids. ids = int32([reliableTracks(:).id]);
 % Create labels for objects indicating the ones for  % which we display the predicted rather than the actual  % location. labels = cellstr(int2str(ids')); predictedTrackInds = ... [reliableTracks(:).consecutiveInvisibleCount] > 0; isPredicted = cell(size(labels)); isPredicted(predictedTrackInds) = {' predicted'}; labels = strcat(labels, isPredicted);
labels = 'Red Ball';  % Draw the objects on the frame. frame = insertObjectAnnotation(frame, 'rectangle', ... bboxes, labels);
 % Draw the objects on the mask. mask = insertObjectAnnotation(mask, 'rectangle', ... bboxes, labels); end end
 % Display the mask and the frame. obj.videoPlayer.step(frame); end
 %% Store previous location  % The |saveposition| function stores the location of the previous frame to  % allow for the calculation of a direction vector created from consecutive  % frames
function saveposition() if fr <2 Lastpos = [0 0]; elseif fr >= 2 Lastpos = Currentpos; end end
 %% Check for a collision  % The |checkcollision| function checks every frame if there is a sudden  % change in the direction compared to its previous. If more elaborate  % collision rules apply, one can look to find the acceleration
function checkcollision() if ~isempty(Lastpos) && fr >17  %% Bounding box drawn if (Currentpos(1) > Lastpos(1))&&(Currentpos(2) > Lastpos(2)) ... && colvar == 1 fprintf('BOTSING in frame %u \n', fr); if SHOW == 1 h =msgbox('Collision occured!'); end colvar = colvar + 1; end end end
end

Een link naar de matlab code staat hier: All-Project Matlab Files


Terug naar: Botsingsdetectie