PRE2024 1 Group1:: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
(Write out the idea of the final product)
m (reference)
(4 intermediate revisions by 2 users not shown)
Line 48: Line 48:
The educational system is the main stakeholder that decides if the product is suited for the current educational program.  Again, the project should be easily integrated into the exiting educational format. Also for this stakeholder, the product has to be properly tested on classes in an ethically correct environment.
The educational system is the main stakeholder that decides if the product is suited for the current educational program.  Again, the project should be easily integrated into the exiting educational format. Also for this stakeholder, the product has to be properly tested on classes in an ethically correct environment.


=== '''Final Product''' ===
== '''Overview of existing resources for early childhood robotics education''' ==
Our final product will consist of a teaching package designed as an introductory course consisting of 2 to 3 lessons that integrate an online coding environment, a physical robot, and a comprehensive teacher manual. The curriculum will use a simplified text-based programming language, rather than a block-based one, to offer a more authentic coding experience. To make the learning process approachable for beginners, the language will include predefined functions that will gradually become less predefined in each lesson, encouraging students to take on more coding responsibilities. Each lesson will focus on key skills such as debugging, completing existing code, and writing code independently.
 
=== Programming languages for kids ===
There are all different types of programming languages catered to children. In these programming languages we can make the distention between text based programming languages and block based programming languages.
 
===== Block based programming languages =====
A block based programming language is a of visual programming by using blocks. These coding blocks can be dragged and dropped after each other to create a program. The absence of written code eliminates any syntax errors from arising. The visual aspect of this teaching method makes it especially suitable for young children. Scratch<ref>https://scratch.mit.edu/</ref> and Blockly<ref><nowiki>https://blockly.games/</nowiki> </ref> are some of the most populair programming languages of this type, but there are also other such as Tynker<ref><nowiki>https://www.tynker.com/</nowiki> </ref> a website that contains games, blockbased programming and text based programming languages all in the same interface, trying to engage children by presenting it as a game.  
 
===== Text based programming languages =====
There are also a lot of text based programming languages for children. There are both text based languages specially made for children as well as normal programming languages with tutorials for children. With the latter, the main issue for educating children is the language barrier. Since nearly all programming languages are in English, there is a language barrier for children who do not master English to a sufficient level. In the Netherlands only in 1.6% of the households English is the primarily spoken language<ref>Schmeets, H., Cornips, L. (2021), Talen en dialecten in Nederland.''Centraal Bureau voor de Statestiek.'' <nowiki>https://www.cbs.nl/nl-nl/longread/statistische-trends/2021/talen-en-dialecten-in-nederland</nowiki> </ref>, therefor this is not a viable option for most preschool children. However, the programming languages for children such as Hedy<ref><nowiki>https://www.hedycode.com/</nowiki> </ref> are often translated in many different languages. This in combination with lessons catered specifically aimed at children, leads to a higher popularity amongst the texted based programming languages for children.  
 
=== Robots for children ===
 
===== Sequential robots =====
A type of robots made for children from ages 5-8 years are sequential robot. These robots do not need any code from the children, but make use of buttons. Once these buttons are pressed in a specific order, the robot will move according to the defined sequence. Some examples of these types of robot are BEE-bot<ref><nowiki>https://b-bot.nl/educatieve-robots/bee-bot</nowiki> </ref> and Code & Go Programmable Robot Mouse<ref><nowiki>https://www.learningresources.co.uk/stem-code-gotm-robot-mouse</nowiki> </ref>
 
===== '''Arduino based robots''' =====
There are multiple robots such as mBot<ref>https://www.makeblock.com/pages/mbot-robot-kit</ref>  which are Arduino based. These are easy to assemble and are often programmed using block based languages like Scratch. The usage of Arduino chips, allows the robots to be relatively cheap. These Arduino’s make them also more fragile for young kids than other alternatives on the market.
 
===== Robotic LEGO =====
The toycompany LEGO has developed 2 different lines of robotic LEGO, LEGO Spike<ref><nowiki>https://spike.legoeducation.com/</nowiki> </ref> and the Lego Mindstorms<ref>[[Lego Mindstorms|https://en.wikipedia.org/wiki/Lego_Mindstorms]] </ref>. The first one is created for educational use with builds for all different age groups, whereas the second is mainly for personal use. Both series allow you to build your robot and program it using block based programming. LEGO differentiates itself from other robots due to being easily build and reusable multiple times. These products allow the children to learn more about both the coding of the robots, as well as the building.
 
== '''Our research''' ==
A lot of research and products are already available for teaching robotics. There are both a lot of programming languages and robot types for many different age groups. We noticed however that there are no robots for preschoolers that can be programmed using text based programming languages. All programmable robots we have found are programmed using block based code, such as the Robitic Lego, or not programmable by code at al, such as the sequential robots.<ref name=":0">Kaplancali, U. T. (2017). Teaching Coding to Children: A Methodology for Kids 5+. ''International Journal of Elementary Education'', ''6''(4), 32. <nowiki>https://doi.org/10.11648/j.ijeedu.20170604.11</nowiki></ref>
 
=== Research question ===
How does the use of physical robots in text based coding instruction impact preschool students’ engagement, understanding, and problem-solving skills compared to virtual coding environments?
 
=== Final Product ===
Our final product will consist of a teaching package designed as an introductory course consisting of 2 to 3 lessons that integrate an online coding environment, a physical robot, and a comprehensive teacher manual. The curriculum will use a simplified text-based programming language, rather than a block-based one, to offer a more authentic coding experience. To make the learning process approachable for beginners, the language will include predefined functions that will gradually become less predefined in each lesson, encouraging students to take on more coding responsibilities. Each lesson will focus on key skills such as debugging, completing existing code, and writing code independently.
 
The inclusion of a physical robot is a deliberate choice, as it provides a tangible way to visualize the code's impact, making abstract concepts more accessible. This hands-on approach also serves as an effective method for students to learn debugging by observing the robot’s actions and correcting their code accordingly. Additionally, we will develop a coding manual tailored to the needs of teachers, particularly those who may not be familiar with coding. The manual will include clear, step-by-step instructions and explanations to ensure that teachers can confidently guide their students through the lessons.
 
===== '''Design''' =====
The curriculum is designed according to the following MoSCoW criteria:
 
(TODO: NETJES VERWOORDEN!!!!)
 
'''Must Have'''  
 
* A physical robot to keep kid’s attention  
 
* A Hedy like language as introductory programming language  
 
* Teacher manual about the languages used, the basics of programming  
 
* The teaching package must be affordable for schools, since not all schools have large budgets for this  
 
* Learning steps from Physical debugging, to filling in pre-defined functions, to writing own  
 
'''Should Have'''  
 
* A classical part to the lessons where the coding and robotics principles are explained, and group-based challenges where the groups work on challenges to make the robot do stuff.  
 
* Adaptive challenges based on the level of the students, if a group does well it should get harder challenges do not rush through the existing challenges  
 
* An interactive digital learning environment where the explanations are given, and the programs are written  
 
* The teaching package should emphasize how the robot running the program is being used in the real world, and thus show the importance of it. So, linking some challenges in the teaching program to a real-world problem that could be solved with the robot.  
 
'''Could Have'''  
 
* Integration with other subjects (like spelling and math)  
 
* Translation courses for Dutch programming to English programming as a good transition to real programming languages.  
 
* Teachers can create their own functions to diversify their class  
 
* Play/playground functions(?)  
 
* Wireless communications with the robot  
 
'''Wont have'''  
 
* Block based  
 
* Too much preparation time for the teacher  
 
=== Research methods ===
 
=== Project Planning ===
During the first week the focus has been preliminary research into robotics education on preschools.  
 
In the second week we delved deeper into similar existing resources for early childhood robotics education and formulated our research question, defined the requirements for the design of our teaching package, and created a schedule for our research and finalized the ERB and consent forms.  
 
In the third week of our research we are going to decide on our test group, program several predefined functions and start on the frontend the preschool students are going to use. Aside from that we are also going to send out surveils to students of the PABO in Tilburg, such that we can incorporate any feedback they have.
 
In the fourth week the implementation of the link between the GUI and the robot shall be established.
 
In the 6<sup>th</sup> week of our research we will finalize the teaching environment and finish the questionnaires for the participants of the study and their caregiverst/parents.
 
In the beginning of the 7<sup>th</sup> week we will carry out our lessons for our target group and proccess all the data.  


The inclusion of a physical robot is a deliberate choice, as it provides a tangible way to visualize the code's impact, making abstract concepts more accessible. This hands-on approach also serves as an effective method for students to learn debugging by observing the robot’s actions and correcting their code accordingly. Additionally, we will develop a coding manual tailored to the needs of teachers, particularly those who may not be familiar with coding. The manual will include clear, step-by-step instructions and explanations to ensure that teachers can confidently guide their students through the lessons.
In the last week of our research we will present our findings.  


=== '''Summary of papers week 1''' ===
== '''Research papers''' ==
'''An Evaluation Framework and Comparative Analysis of the Widely Used First Programming Languages'''<ref>Farooq, M. S., Khan, S. A., Ahmad, F., Islam, S., & Abid, A. (2014). An evaluation framework and comparative analysis of the widely used first programming languages. ''PLoS ONE'', ''9''(2), e88941. <nowiki>https://doi.org/10.1371/journal.pone.0088941</nowiki></ref>
'''An Evaluation Framework and Comparative Analysis of the Widely Used First Programming Languages'''<ref>Farooq, M. S., Khan, S. A., Ahmad, F., Islam, S., & Abid, A. (2014). An evaluation framework and comparative analysis of the widely used first programming languages. ''PLoS ONE'', ''9''(2), e88941. <nowiki>https://doi.org/10.1371/journal.pone.0088941</nowiki></ref>


Line 62: Line 152:
In this paper, the challenges of non-native English speakers in learning computer programming are described. They found that non-native English speakers struggle with reading and writing code, understanding technical materials, and simultaneously learning both English and programming. The paper recommends that a learner-centred approach be taken for these non-native speakers. This should incorporate bilingual programming tools, more visual aids, culturally neutral examples and simplified English.
In this paper, the challenges of non-native English speakers in learning computer programming are described. They found that non-native English speakers struggle with reading and writing code, understanding technical materials, and simultaneously learning both English and programming. The paper recommends that a learner-centred approach be taken for these non-native speakers. This should incorporate bilingual programming tools, more visual aids, culturally neutral examples and simplified English.


'''Teaching Coding to Children: A Methodology for Kids 5+'''<ref>Kaplancali, U. T. (2017). Teaching Coding to Children: A Methodology for Kids 5+. ''International Journal of Elementary Education'', ''6''(4), 32. <nowiki>https://doi.org/10.11648/j.ijeedu.20170604.11</nowiki></ref>
'''Teaching Coding to Children: A Methodology for Kids 5+'''<ref name=":0" />


This paper talks about teaching kids how to code and which parts of coding are essential to learn first. There are already methods for learning kids programming like Scratch and Tynkers but these would lack comprehensive methodologies for effectively teaching fundamental coding concepts. The paper suggest to start the learning process with algorithms, loops and if-conditionals.  
This paper talks about teaching kids how to code and which parts of coding are essential to learn first. There are already methods for learning kids programming like Scratch and Tynkers but these would lack comprehensive methodologies for effectively teaching fundamental coding concepts. The paper suggest to start the learning process with algorithms, loops and if-conditionals.  
Line 81: Line 171:


This study investigated how different gender depictions of a scientist in digital learning games affect STEM-based learning motivations among various age groups. It found that younger children were more affected by the traditional view of scientists, very masculine men and less feminine women. Older children were influenced more by the sex of the scientist. According to the study, personalising characters in these games might help lessen the impact of these stereotypes while also increasing interest in STEM disciplines among kids from diverse backgrounds.
This study investigated how different gender depictions of a scientist in digital learning games affect STEM-based learning motivations among various age groups. It found that younger children were more affected by the traditional view of scientists, very masculine men and less feminine women. Older children were influenced more by the sex of the scientist. According to the study, personalising characters in these games might help lessen the impact of these stereotypes while also increasing interest in STEM disciplines among kids from diverse backgrounds.
'''Debugging behaviors of early childhood teacher candidates with or without scaffolding'''<ref>Kim, C., Vasconcelos, L., Belland, B.R. et al. Debugging behaviors of early childhood teacher candidates with or without scaffolding. Int J Educ Technol High Educ 19, 26 (2022). <nowiki>https://doi.org/10.1186/s41239-022-00319-9</nowiki></ref>
This study has looked at the how preschool teachers learn how to code with and without the scaffolding method. The scaffolding method is a teaching strategy where support is provide and slowly decreased the further in education goes. In this research the group taught via scaffolding, were using a hypothesis based approach in the debugging, where when stuck, the participants of the study had to form 3 possible hypotheses of why the code was not running. Besides having to try to answer these questions, the instructors were less quick to help out these participants. In the second test group without scaffolding, the participants where not asked to formulate hypotheses for why the code was not running and where given more direct solutions from the instructors while stuck. The research showed that the first group with scaffolding methods, tried for longer to fix their code and gave up less quickly. Even though the research was quite interesting and a good possibility to use going forward, it is important to note that the entire test group was rather small and did also have 2/18 participants with prior knowledge of coding.
'''The Effects of Gender Role Stereotypes in Digital Learning Games on Motivation for STEM Achievement DOUBLE???????????????'''
In this paper, the researchers used aa BEE-Bot to test different teaching strategies in robotic teachings. They looked at the impact of two different scaffolding methods on both field dependent (FD) and field independent (FI) students.<ref>Zhang, L. (2004). Field-dependence/independence: cognitive style or perceptual ability?––validating against thinking styles and academic achievement. <nowiki>https://doi.org/10.1016/j.paid.2003.12.015</nowiki> </ref> The participants where divided amongst 3 groups. Two of the groups where using scaffolding methods and a third control group. Each group had a equal distribution of both FI and FD students. While there was not much difference noted between the two different scaffolding groups, both groups performed better than the control groups while using the scaffolding aids. When these aids where removed, there was not much difference between the FI students of the scaffolding groups or the control group. The FD students of the scaffolding groups did much worse than the FD students after the aid was removed.
=== '''Final Product (Needs a new place in doc?)''' ===
Our final product will consist of a teaching package designed as an introductory course consisting of 2 to 3 lessons that integrate an online coding environment, a physical robot, and a comprehensive teacher manual. The curriculum will use a simplified text-based programming language, rather than a block-based one, to offer a more authentic coding experience. To make the learning process approachable for beginners, the language will include predefined functions that will gradually become less predefined in each lesson, encouraging students to take on more coding responsibilities. Each lesson will focus on key skills such as debugging, completing existing code, and writing code independently.
The inclusion of a physical robot is a deliberate choice, as it provides a tangible way to visualize the code's impact, making abstract concepts more accessible. This hands-on approach also serves as an effective method for students to learn debugging by observing the robot’s actions and correcting their code accordingly. Additionally, we will develop a coding manual tailored to the needs of teachers, particularly those who may not be familiar with coding. The manual will include clear, step-by-step instructions and explanations to ensure that teachers can confidently guide their students through the lessons.
== '''Hours log''' ==
Week 1
{| class="wikitable"
|Who
|What
|Hours
|-
|Gijs
|Research (2h), Meetings&Lecture(2+2h)
|6
|-
|Morgan
|Research (9h), Meetings&Lecture(2+2h)
|13
|-
|Naomi
|Research (7h), Meetings&Lecture(2+2h), Administrative(0.5h)
|11.5
|-
|Tom
|Research (7h), Meetings&Lecture(2+2h)
|11
|}
Week 2
{| class="wikitable"
|Who
|What
|Hours
|-
|Gijs
|Research (3h), Writing out final product (1h), Testplan (1h) , Research on software systems (2h) Meetings(1+4h)
|12
|-
|Morgan
|Research (4), Meetings(1+4h), talking to teachers(1h), final product(1h), Arranging Robots(1h)  
|12
|-
|Naomi
|Research (5.5h), Meetings(0.5+4h), Consent forms + ERB (3h), Wiki (3h), Working out research plan (2h)
|18
|-
|Tom
|Research (4h), Meetings(1+4h), wiki (1.5h), planning (2h)  
|12.5
|}


=== Reference list ===
=== Reference list ===
<references />
<references />

Revision as of 22:21, 15 September 2024

Group members
Name Student Number Study
Naomi Han 0986672 CS
Gijs Kruize 1656882 CS
Tom de Leeuw 1893904 PT
Morgan van Tilburg 1557947 EE

Problem statement (needs edits) 

With the rapid growth in all kinds of technological fields, such as AI and engineering in cars, there is a large shortage of people with a career in technology[1]. A lot of young people do not choose for a career in technology[2]. This is partially because there is no proper introduction to technology in the education of young children.

Users/Stakeholders (needs editing and revisions)

There are several stakeholders for the end product of this project. The children that will interact with the simplified programming language are the first major stakeholder. Further, there are the parents of the children, as well as the teachers. Another important stakeholder are technical universities and large tech companies. Lastly there is the education system.  

The children

The primary user of this technology are the children that use the product. They will need a safe and challenging learning environment for them to engage in. The product has to be interesting and fun for them, so they will pay attention to the subjects that are taught. On top of that, the product should be at a level that they can understand. The primary goal of the product is to give the children a gentile introduction to the world of programming and robotics.  

The parents

The most important aspect of the product for the parents is that their children are safe. The children should not be exposed to dangerous elements in the product, such as small parts, lose wires and fast spinning motors they can get stuck in. Further, when there is an online environment in the product, their children's data should be stored in a safe space, so their data is not all over the internet. The second most important thing for the parents is that their children are actually learning something, and they get their money’s worth.

Teachers

The product should be easily integrated into the existing educational program, in order to reduce the amount of work for the teachers. Further, the product should be engaging for the student and have different difficulty levels to fulfill the individual needs of every student. On top of that, the product should be intuitive to understand for the teachers so they can answer possible questions that the students may have. This can be achieved by making a teacher’s guide that explains the program in detail.  

Technical universities and large tech companies

The program is meant to encourage young children to pick a technological career path. This is done by introducing them to technology and its many different aspects at an early age. Technical universities and large tech companies have a major interest in the possible outcome of this project, since they are the ones who benefit the most.  

Educational system

The educational system is the main stakeholder that decides if the product is suited for the current educational program.  Again, the project should be easily integrated into the exiting educational format. Also for this stakeholder, the product has to be properly tested on classes in an ethically correct environment.

Overview of existing resources for early childhood robotics education

Programming languages for kids

There are all different types of programming languages catered to children. In these programming languages we can make the distention between text based programming languages and block based programming languages.

Block based programming languages

A block based programming language is a of visual programming by using blocks. These coding blocks can be dragged and dropped after each other to create a program. The absence of written code eliminates any syntax errors from arising. The visual aspect of this teaching method makes it especially suitable for young children. Scratch[3] and Blockly[4] are some of the most populair programming languages of this type, but there are also other such as Tynker[5] a website that contains games, blockbased programming and text based programming languages all in the same interface, trying to engage children by presenting it as a game.  

Text based programming languages

There are also a lot of text based programming languages for children. There are both text based languages specially made for children as well as normal programming languages with tutorials for children. With the latter, the main issue for educating children is the language barrier. Since nearly all programming languages are in English, there is a language barrier for children who do not master English to a sufficient level. In the Netherlands only in 1.6% of the households English is the primarily spoken language[6], therefor this is not a viable option for most preschool children. However, the programming languages for children such as Hedy[7] are often translated in many different languages. This in combination with lessons catered specifically aimed at children, leads to a higher popularity amongst the texted based programming languages for children.  

Robots for children

Sequential robots

A type of robots made for children from ages 5-8 years are sequential robot. These robots do not need any code from the children, but make use of buttons. Once these buttons are pressed in a specific order, the robot will move according to the defined sequence. Some examples of these types of robot are BEE-bot[8] and Code & Go Programmable Robot Mouse[9]

Arduino based robots

There are multiple robots such as mBot[10]  which are Arduino based. These are easy to assemble and are often programmed using block based languages like Scratch. The usage of Arduino chips, allows the robots to be relatively cheap. These Arduino’s make them also more fragile for young kids than other alternatives on the market.

Robotic LEGO

The toycompany LEGO has developed 2 different lines of robotic LEGO, LEGO Spike[11] and the Lego Mindstorms[12]. The first one is created for educational use with builds for all different age groups, whereas the second is mainly for personal use. Both series allow you to build your robot and program it using block based programming. LEGO differentiates itself from other robots due to being easily build and reusable multiple times. These products allow the children to learn more about both the coding of the robots, as well as the building.

Our research

A lot of research and products are already available for teaching robotics. There are both a lot of programming languages and robot types for many different age groups. We noticed however that there are no robots for preschoolers that can be programmed using text based programming languages. All programmable robots we have found are programmed using block based code, such as the Robitic Lego, or not programmable by code at al, such as the sequential robots.[13]

Research question

How does the use of physical robots in text based coding instruction impact preschool students’ engagement, understanding, and problem-solving skills compared to virtual coding environments?

Final Product

Our final product will consist of a teaching package designed as an introductory course consisting of 2 to 3 lessons that integrate an online coding environment, a physical robot, and a comprehensive teacher manual. The curriculum will use a simplified text-based programming language, rather than a block-based one, to offer a more authentic coding experience. To make the learning process approachable for beginners, the language will include predefined functions that will gradually become less predefined in each lesson, encouraging students to take on more coding responsibilities. Each lesson will focus on key skills such as debugging, completing existing code, and writing code independently.

The inclusion of a physical robot is a deliberate choice, as it provides a tangible way to visualize the code's impact, making abstract concepts more accessible. This hands-on approach also serves as an effective method for students to learn debugging by observing the robot’s actions and correcting their code accordingly. Additionally, we will develop a coding manual tailored to the needs of teachers, particularly those who may not be familiar with coding. The manual will include clear, step-by-step instructions and explanations to ensure that teachers can confidently guide their students through the lessons.

Design

The curriculum is designed according to the following MoSCoW criteria:

(TODO: NETJES VERWOORDEN!!!!)

Must Have  

  • A physical robot to keep kid’s attention  
  • A Hedy like language as introductory programming language  
  • Teacher manual about the languages used, the basics of programming  
  • The teaching package must be affordable for schools, since not all schools have large budgets for this  
  • Learning steps from Physical debugging, to filling in pre-defined functions, to writing own  

Should Have  

  • A classical part to the lessons where the coding and robotics principles are explained, and group-based challenges where the groups work on challenges to make the robot do stuff.  
  • Adaptive challenges based on the level of the students, if a group does well it should get harder challenges do not rush through the existing challenges  
  • An interactive digital learning environment where the explanations are given, and the programs are written  
  • The teaching package should emphasize how the robot running the program is being used in the real world, and thus show the importance of it. So, linking some challenges in the teaching program to a real-world problem that could be solved with the robot.  

Could Have  

  • Integration with other subjects (like spelling and math)  
  • Translation courses for Dutch programming to English programming as a good transition to real programming languages.  
  • Teachers can create their own functions to diversify their class  
  • Play/playground functions(?)  
  • Wireless communications with the robot  

Wont have  

  • Block based  
  • Too much preparation time for the teacher  

Research methods

Project Planning

During the first week the focus has been preliminary research into robotics education on preschools.  

In the second week we delved deeper into similar existing resources for early childhood robotics education and formulated our research question, defined the requirements for the design of our teaching package, and created a schedule for our research and finalized the ERB and consent forms.  

In the third week of our research we are going to decide on our test group, program several predefined functions and start on the frontend the preschool students are going to use. Aside from that we are also going to send out surveils to students of the PABO in Tilburg, such that we can incorporate any feedback they have.

In the fourth week the implementation of the link between the GUI and the robot shall be established.

In the 6th week of our research we will finalize the teaching environment and finish the questionnaires for the participants of the study and their caregiverst/parents.

In the beginning of the 7th week we will carry out our lessons for our target group and proccess all the data.

In the last week of our research we will present our findings.

Research papers

An Evaluation Framework and Comparative Analysis of the Widely Used First Programming Languages[14]

This paper looks at a framework to assess the suitability of widely used first programming languages (FPLs), where they consider both technical and environmental factors. This study doesn’t find a perfect language that meets all their criteria. Their framework, however, can guide educators in making an informed decision about which FPL to pick.

Non-Native English Speakers Learning Computer Programming: Barriers, Desires, and Design Opportunities[15]

In this paper, the challenges of non-native English speakers in learning computer programming are described. They found that non-native English speakers struggle with reading and writing code, understanding technical materials, and simultaneously learning both English and programming. The paper recommends that a learner-centred approach be taken for these non-native speakers. This should incorporate bilingual programming tools, more visual aids, culturally neutral examples and simplified English.

Teaching Coding to Children: A Methodology for Kids 5+[13]

This paper talks about teaching kids how to code and which parts of coding are essential to learn first. There are already methods for learning kids programming like Scratch and Tynkers but these would lack comprehensive methodologies for effectively teaching fundamental coding concepts. The paper suggest to start the learning process with algorithms, loops and if-conditionals.

Transitioning from Block-Based to Text-Based Programming Languages[16]

This paper looks at what happens at the switch from block-based programming to text-based programming languages. It describes how block-based languages lower the barrier to learning programming since they eliminate syntax complexities. Transitioning from a block-based language to a text-based language comes with challenges like reduced confidence and incorrect programming habits. Which in return might discourage students from using syntax-heavy languages.  They would recommend letting block-based programming languages have a form of automatic syntax placement so it would automatically teach syntax.

Visual programming languages integrated across the curriculum in elementary school: A two year case study using “Scratch” in five schools[17]

This study follows 107 primary school students using a programming language called Scratch for 2 years. This research demonstrates that the implementation of creative computing showed that using a visual programming language (VPL) actively improves a student’s grasp of programming concepts, logic, and computational practices. It highlights that students effectively learned about sequences, loops, parallelism, and events in programming.

Programming experience promotes higher STEM motivation among first-grade girls [18]

In this paper demonstrates that early exposure to programming can significantly boost girls interest in tecnology-related fields like computer science and engineering. The study found that only a brief experience with programming robots reduced the gender gap in technology motivation. It however didn't alter existing gender stereotypes about programming and robotics.  

The Effects of Gender Role Stereotypes in Digital Learning Games on Motivation for STEM Achievement[19]

This study investigated how different gender depictions of a scientist in digital learning games affect STEM-based learning motivations among various age groups. It found that younger children were more affected by the traditional view of scientists, very masculine men and less feminine women. Older children were influenced more by the sex of the scientist. According to the study, personalising characters in these games might help lessen the impact of these stereotypes while also increasing interest in STEM disciplines among kids from diverse backgrounds.

Debugging behaviors of early childhood teacher candidates with or without scaffolding[20]

This study has looked at the how preschool teachers learn how to code with and without the scaffolding method. The scaffolding method is a teaching strategy where support is provide and slowly decreased the further in education goes. In this research the group taught via scaffolding, were using a hypothesis based approach in the debugging, where when stuck, the participants of the study had to form 3 possible hypotheses of why the code was not running. Besides having to try to answer these questions, the instructors were less quick to help out these participants. In the second test group without scaffolding, the participants where not asked to formulate hypotheses for why the code was not running and where given more direct solutions from the instructors while stuck. The research showed that the first group with scaffolding methods, tried for longer to fix their code and gave up less quickly. Even though the research was quite interesting and a good possibility to use going forward, it is important to note that the entire test group was rather small and did also have 2/18 participants with prior knowledge of coding.

The Effects of Gender Role Stereotypes in Digital Learning Games on Motivation for STEM Achievement DOUBLE???????????????

In this paper, the researchers used aa BEE-Bot to test different teaching strategies in robotic teachings. They looked at the impact of two different scaffolding methods on both field dependent (FD) and field independent (FI) students.[21] The participants where divided amongst 3 groups. Two of the groups where using scaffolding methods and a third control group. Each group had a equal distribution of both FI and FD students. While there was not much difference noted between the two different scaffolding groups, both groups performed better than the control groups while using the scaffolding aids. When these aids where removed, there was not much difference between the FI students of the scaffolding groups or the control group. The FD students of the scaffolding groups did much worse than the FD students after the aid was removed.

Final Product (Needs a new place in doc?)

Our final product will consist of a teaching package designed as an introductory course consisting of 2 to 3 lessons that integrate an online coding environment, a physical robot, and a comprehensive teacher manual. The curriculum will use a simplified text-based programming language, rather than a block-based one, to offer a more authentic coding experience. To make the learning process approachable for beginners, the language will include predefined functions that will gradually become less predefined in each lesson, encouraging students to take on more coding responsibilities. Each lesson will focus on key skills such as debugging, completing existing code, and writing code independently.

The inclusion of a physical robot is a deliberate choice, as it provides a tangible way to visualize the code's impact, making abstract concepts more accessible. This hands-on approach also serves as an effective method for students to learn debugging by observing the robot’s actions and correcting their code accordingly. Additionally, we will develop a coding manual tailored to the needs of teachers, particularly those who may not be familiar with coding. The manual will include clear, step-by-step instructions and explanations to ensure that teachers can confidently guide their students through the lessons.

Hours log

Week 1

Who What Hours
Gijs Research (2h), Meetings&Lecture(2+2h) 6
Morgan Research (9h), Meetings&Lecture(2+2h) 13
Naomi Research (7h), Meetings&Lecture(2+2h), Administrative(0.5h) 11.5
Tom Research (7h), Meetings&Lecture(2+2h) 11


Week 2

Who What Hours
Gijs Research (3h), Writing out final product (1h), Testplan (1h) , Research on software systems (2h) Meetings(1+4h) 12
Morgan Research (4), Meetings(1+4h), talking to teachers(1h), final product(1h), Arranging Robots(1h)   12
Naomi Research (5.5h), Meetings(0.5+4h), Consent forms + ERB (3h), Wiki (3h), Working out research plan (2h) 18
Tom Research (4h), Meetings(1+4h), wiki (1.5h), planning (2h)   12.5

Reference list

  1. Engelhardt, A. (2023, July 21). Shortage of skilled workers in mechanical engineering. Encoway. https://www.encoway.de/en/blog/skilled-worker-shortage-in-machine-building/
  2. Edgar, G. (2022, March 8). Why young people are being put off a career in tech - Diversity in Tech. Diversity in Tech. https://www.diversityintech.co.uk/why-young-people-are-being-put-off-a-career-in-tech/
  3. https://scratch.mit.edu/
  4. https://blockly.games/
  5. https://www.tynker.com/
  6. Schmeets, H., Cornips, L. (2021), Talen en dialecten in Nederland.Centraal Bureau voor de Statestiek. https://www.cbs.nl/nl-nl/longread/statistische-trends/2021/talen-en-dialecten-in-nederland
  7. https://www.hedycode.com/
  8. https://b-bot.nl/educatieve-robots/bee-bot
  9. https://www.learningresources.co.uk/stem-code-gotm-robot-mouse
  10. https://www.makeblock.com/pages/mbot-robot-kit
  11. https://spike.legoeducation.com/
  12. https://en.wikipedia.org/wiki/Lego_Mindstorms
  13. 13.0 13.1 Kaplancali, U. T. (2017). Teaching Coding to Children: A Methodology for Kids 5+. International Journal of Elementary Education, 6(4), 32. https://doi.org/10.11648/j.ijeedu.20170604.11
  14. Farooq, M. S., Khan, S. A., Ahmad, F., Islam, S., & Abid, A. (2014). An evaluation framework and comparative analysis of the widely used first programming languages. PLoS ONE, 9(2), e88941. https://doi.org/10.1371/journal.pone.0088941
  15. Guo, P. J. (2018). Non-Native English speakers learning computer programming. CHI ’18: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3173574.3173970
  16. Moors, L., Luxton-Reilly, A., & Denny, P. (2018). Transitioning from Block-Based to Text-Based Programming Languages. 2018 International Conference on Learning and Teaching in Computing and Engineering (LaTICE). https://doi.org/10.1109/latice.2018.000-5
  17. Sáez-López, J., Román-González, M., & Vázquez-Cano, E. (2016). Visual programming languages integrated across the curriculum in elementary school: A two year case study using “Scratch” in five schools. Computers & Education, 97, 129–141. https://doi.org/10.1016/j.compedu.2016.03.003
  18. Master, A., Cheryan, S., Moscatelli, A., & Meltzoff, A. N. (2017). Programming experience promotes higher STEM motivation among first-grade girls. Journal of Experimental Child Psychology, 160, 92–106. https://doi.org/10.1016/j.jecp.2017.03.013
  19. Hawkins, I., Ratan, R., Blair, D., & Fordham, J. (2019). The effects of gender role stereotypes in digital learning games on motivation for STEM achievement. Journal of Science Education and Technology, 28(6), 628–637. https://doi.org/10.1007/s10956-019-09792-w
  20. Kim, C., Vasconcelos, L., Belland, B.R. et al. Debugging behaviors of early childhood teacher candidates with or without scaffolding. Int J Educ Technol High Educ 19, 26 (2022). https://doi.org/10.1186/s41239-022-00319-9
  21. Zhang, L. (2004). Field-dependence/independence: cognitive style or perceptual ability?––validating against thinking styles and academic achievement. https://doi.org/10.1016/j.paid.2003.12.015