PRE2022 3 Group11: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
No edit summary
Line 30: Line 30:
|}
|}


==Problem statement and objectives==
==Problem Statement and Objectives==
<br />
<br />


Line 50: Line 50:
1.
1.


'''Paper''': http://27.109.7.66:8080/xmlui/handle/123456789/682  
'''Article''': http://27.109.7.66:8080/xmlui/handle/123456789/682


The article highlights the efforts being made to automate the labor-intensive agriculture industry through the use of robots and machines. A vision-based row guidance method is proposed for autonomous farming robots to navigate through row crops in a field, using machine vision to detect the offset and heading angle in real-time. The robot platform is designed with an open architecture and a control scheme for row guidance. The focus of the robot is to monitor the health of the plants by observing their leaf color and height, as well as the surrounding environmental conditions such as temperature, moisture, and humidity. The information collected is then used to determine the health of the plant, which is displayed on an LCD screen.
The article highlights the efforts being made to automate the labor-intensive agriculture industry through the use of robots and machines. A vision-based row guidance method is proposed for autonomous farming robots to navigate through row crops in a field, using machine vision to detect the offset and heading angle in real-time. The robot platform is designed with an open architecture and a control scheme for row guidance. The focus of the robot is to monitor the health of the plants by observing their leaf color and height, as well as the surrounding environmental conditions such as temperature, moisture, and humidity. The information collected is then used to determine the health of the plant, which is displayed on an LCD screen.


2.
2.


'''Paper:''' https://ieeexplore.ieee.org/abstract/document/9080736
'''Article:''' https://ieeexplore.ieee.org/abstract/document/9080736
 
This paper discusses the how wireless sensor network can be used to detect weeds. However, when a lot of static sensors are present the project becomes expensive and chaotic. Therefore the researches decided to make use of autonomous bots which are equipped with ultrasonic sensors and cameras that can detect weeds. The camera input is then processed using a neural network and image segmentation. Once weeds were detected, herbicides were sprayed on them using solenoid valves.


This paper discusses the how wireless sensor network can be used to detect weeds. However, when a lot of static sensors are present the project becomes expensive and chaotic. Therefore the researches decided to make use of autonomous bots which are equipped with ultrasonic sensors and cameras that can detect weeds. The camera input is then processed using a neural network and image segmentation. Once weeds were detected, herbicides were sprayed on them using solenoid valves.


3.
3.


'''Paper:''' https://link.springer.com/chapter/10.1007/978-90-481-9277-9_20#Abs1
'''Article:''' https://link.springer.com/chapter/10.1007/978-90-481-9277-9_20#Abs1


The text discusses the demand for advances in automation in agriculture, horticulture, and forestry due to high labor costs. The focus is on the potential of robotic outdoor systems to increase efficiency and make operations economically viable. The chapter provides examples of autonomous crop protection operations that are likely to be commercially available in the near future. These operations, such as scouting and monitoring, can be automated for increased efficiency, but current systems still have drawbacks, including a lack of robust and safe behaviors. The use of high-precision targeting based on individual weed plant detections holds the potential to greatly reduce the use of resources, such as herbicides.
The text discusses the demand for advances in automation in agriculture, horticulture, and forestry due to high labor costs. The focus is on the potential of robotic outdoor systems to increase efficiency and make operations economically viable. The chapter provides examples of autonomous crop protection operations that are likely to be commercially available in the near future. These operations, such as scouting and monitoring, can be automated for increased efficiency, but current systems still have drawbacks, including a lack of robust and safe behaviors. The use of high-precision targeting based on individual weed plant detections holds the potential to greatly reduce the use of resources, such as herbicides.


4.


4.
'''Article:'''https://www.mdpi.com/2073-4395/11/9/1818
 
'''Paper:''' https://pdfs.semanticscholar.org/e07e/6370462dd8695fd8586507963b6e70577f21.pdf
 
The article discusses the issue of increasing demand for water supplies due to population growth and the need for effective water resource use. A robot-based irrigation system has been proposed to improve the performance of the current automated irrigation system, which has limitations in precision and reliability. The new system features an automated irrigation system that irrigates fields in acres, a soil pH measurement feature, and is powered by the sun and managed wirelessly through a designated application. The robot is equipped with sensors and a high-resolution camera to test crop conditions and soil state, and the application provides real-time information about soil conditions such as temperature, humidity, water level, and nutrient level.


The paper provides an overview of the field of agricultural robotics, which has become a popular topic of research and development in recent years. It highlights the critical challenges faced by the agriculture industry, such as labor shortages and the need for environmentally friendly practices, and how agricultural robotics can address these issues. The paper also presents an overview of the current state-of-the-art in agricultural robotics, including individual robots for specific tasks and cooperative teams of robots for farming tasks. The paper concludes by discussing the challenges that still need to be addressed in order to fully automate agricultural production, which is seen as a promising solution for sustaining the growing human population


5.
5.


'''Paper''':
'''Article:''' https://www.mdpi.com/2073-4395/11/9/1818
 
 
 


This paper discusses how agricultural sustainability can be enhanced by integrating technology. Improving of irrigation systems is of importance and IoT and sensory systems could habilitate this. Automated irrigation systems are important for conserving water. IoT and automation are linked to agriculture and farming techniques for making processes more effective and efficient. Moreover, sensory systems improve farmers' understanding of crops and reduce environmental impact and conserve resources.


<br />
<br />

Revision as of 15:50, 10 February 2023

Group Members:
Name Student number Study
Vietlinh Pham 1616420 Industrial Engineering
Lars Nobbe
Wilbur van Lierop
Paul van Geest
Aloysia Prakso Industrial Design
Maurtiius van Maurik 1600426 Automotive Technology

Problem Statement and Objectives


Who are the users


What do they require


Approach, milestones and deliverables


Task Division


SotA: Literature study

Mau:

1.

Article: http://27.109.7.66:8080/xmlui/handle/123456789/682

The article highlights the efforts being made to automate the labor-intensive agriculture industry through the use of robots and machines. A vision-based row guidance method is proposed for autonomous farming robots to navigate through row crops in a field, using machine vision to detect the offset and heading angle in real-time. The robot platform is designed with an open architecture and a control scheme for row guidance. The focus of the robot is to monitor the health of the plants by observing their leaf color and height, as well as the surrounding environmental conditions such as temperature, moisture, and humidity. The information collected is then used to determine the health of the plant, which is displayed on an LCD screen.

2.

Article: https://ieeexplore.ieee.org/abstract/document/9080736

This paper discusses the how wireless sensor network can be used to detect weeds. However, when a lot of static sensors are present the project becomes expensive and chaotic. Therefore the researches decided to make use of autonomous bots which are equipped with ultrasonic sensors and cameras that can detect weeds. The camera input is then processed using a neural network and image segmentation. Once weeds were detected, herbicides were sprayed on them using solenoid valves.

3.

Article: https://link.springer.com/chapter/10.1007/978-90-481-9277-9_20#Abs1

The text discusses the demand for advances in automation in agriculture, horticulture, and forestry due to high labor costs. The focus is on the potential of robotic outdoor systems to increase efficiency and make operations economically viable. The chapter provides examples of autonomous crop protection operations that are likely to be commercially available in the near future. These operations, such as scouting and monitoring, can be automated for increased efficiency, but current systems still have drawbacks, including a lack of robust and safe behaviors. The use of high-precision targeting based on individual weed plant detections holds the potential to greatly reduce the use of resources, such as herbicides.

4.

Article:https://www.mdpi.com/2073-4395/11/9/1818

The paper provides an overview of the field of agricultural robotics, which has become a popular topic of research and development in recent years. It highlights the critical challenges faced by the agriculture industry, such as labor shortages and the need for environmentally friendly practices, and how agricultural robotics can address these issues. The paper also presents an overview of the current state-of-the-art in agricultural robotics, including individual robots for specific tasks and cooperative teams of robots for farming tasks. The paper concludes by discussing the challenges that still need to be addressed in order to fully automate agricultural production, which is seen as a promising solution for sustaining the growing human population

5.

Article: https://www.mdpi.com/2073-4395/11/9/1818

This paper discusses how agricultural sustainability can be enhanced by integrating technology. Improving of irrigation systems is of importance and IoT and sensory systems could habilitate this. Automated irrigation systems are important for conserving water. IoT and automation are linked to agriculture and farming techniques for making processes more effective and efficient. Moreover, sensory systems improve farmers' understanding of crops and reduce environmental impact and conserve resources.