
Localisation assignment 2
Towards Accurate Localisation with a Particle Filter

The code for this assignment can be found at:

https://gitlab.tue.nl/mobile-robot-control/mrc_localization_students

In the previous assignment you have developed an algorithm commonly described as
a dead-reckoning approach. The main strategy was to process the odometry
information you received to update the best estimate of the current robot pose. In the
assignment you showed that, under certain conditions, this is indeed possible.
However, the method breaks down once the assumption on perfect odometry is
dropped. Wheel slip and noisy data lead to an ever increasing difference between the
actual and estimated pose.

Within the lecture and this assignment we continue on our path towards robot
localisation. The main insight from the lecture was that only given the imperfect
information provided by the odometry sensor we do not have enough information to
infer our current location and orientation. By including information from multiple
sources, i.e. sensor fusion, we can get a better estimate than by using the information
of a single sensor.

Within this assignment we will explore the inner workings of the particle filter. You will
develop the core functionality of the particle filter framework we have developed for
you. After completing the assignment you will not only understand the core concepts,
but also be able to locate your robot within a known occupancy grid map of the
environment in which you deploy your robot.

Before you start the assignment, please note the following:

Note

Make sure you are running the mrc-sim when doing the assignments

Note

Throughout this assignment we will use tests to make sure that your intermediate
results are implemented correctly. A correct result indicates that your
implementation is likely correct, but does not guarantee it. There is a possibility
that you've introduced unforeseen bugs into your implementation.

https://gitlab.tue.nl/mobile-robot-control/mrc_localization_students


Getting Familiar with the Framework

We, the tutors and organizers of this course, understand that the code-base in front
of you might seem daunting, or even scary. Don't be! We will use this zero-th
assignment to make you comfortable with working with the code.

We do assume, however, that you have completed the C++ tutorials. Furthermore, we
assume that you have a basic understanding of the underlying concepts of the
particle filter, i.e. if you have followed and understood the lecture you're good to go.

To run the tests we've written for you, such that you can efficiently verify the correct
implementation of your methods follow these instructions

In VScode

1. Bring up your command palette with ctrl-shift-p

2. Select Cmake: Build Target

3. In the menu that pops up select all.
4. Bring up your command palette with ctrl-shift-p

5. Select Cmake: Run tests

6. The output tab of the terminal window will show the results of your tests
Using Cmake in terminal

1. Build your project

2. Run the binary (located in ./bin) of the test you want to run

(i.e. ./assignment1 for the first assignment)

We've furthermore provided simplified versions of the main file, such that you can test
the relevant parts of the software piece by piece. These files can be recognized by
main_ex1.cpp through *main_ex3.cpp. Their respective executables are named main1
through main3. To visualize the working of your code use the demo executables.

Assignment 0: Explore the code-base

The Assignment

Preparation

Download the code-base and make sure it is opened correctly in vscode
 Without changing anything, compile the code, make sure there are no errors.
 Make sure you can run the tests above, do not worry when all of them return
a fail or a segfault.

Exploration



Having obtained a bit of insight into the core working of the code-base, let's start with
the implementation of the core functionality of the particle filter. As you know, the
particle filter estimates the pose of the robot through a set of weighted particles,
each particle represents an hypothesis of the current robot pose. The set of all
particles approximates the probability distribution over all possible robot poses.

Within assignment 1 we will implement the methods which construct this set of
particles.

As you might have discovered, the ParticleFilter classes contain vectors storing all their
particles. These vectors are initialized when either one of their constructors are
called:

more specifically the particles itself are initialized by calling

 Explain in a few concise sentences per item how the code is structured.
What is the difference between the ParticleFilter and ParticleFilterBase classes,

and how are they related to each other?
How are the ParticleFilter and Particle class related to eachother.
Both the ParticleFilter and Particle classes implement a propagation method.
What is the difference between the methods?

Tip: The comments in the header files are often a great way to help your
understanding of what each method implements

Assignment 1: Initialize the Particle Filter

ParticleFilterBase::ParticleFilterBase(const World &world, const int &N)


ParticleFilterBase::ParticleFilterBase(const World &world,

	 	 	 	 	 	 	 	 	   
const double mean[3],

	 	 	 	 	 	 	 	 	   
const double sigma[3],

	 	 	 	 	 	 	 	 	   
const int &N)


Particle::Particle(const World &world,

	 	 	 	    const double &weight,

                   std::default_random_engine *generatorPtr)


Particle::Particle(const World &world,

	 	 	 	    const double mean[3],

	 	 	 	    const double sigma[3],

	 	 	 	    const double &weight,




Having initialized the filter, we are interested in extracting the pose prediction from
the filter. As stated in the lectures, the filter approximates the probability distribution
of the robot pose by a cloud of particles. The filter prediction is then the expected
value of this distribution.

Within our code-base, the expected value (or the average pose), is calculated in the
following method.

	 	 	 	    std::default_random_engine 
*generatorPtr)


The Assignment

Implementation

What is the difference between the two constructors?
Complete both constructors
Run the tests to validate that your methods function correctly.

Tip: Do not forget to implement the ParticleFilterBase Constructor

Explanation

 Explain in a few concise sentences per item
What are the advantages/disadvantages of using the first constructor, what
are the advantages/disadvantages of the second one?
In which cases would we use either of them?

Assignment 2: Calculate the filter prediction

Pose ParticleFilterBase::get_average_state();


The Assignment

Implementation

Complete the get_average_state method
Run your code, and examine the output of the method.
Run the test to verify your implementation

Explanation

 Explain in a few concise sentences per item:



The Prediction Step

The particles in our filter represent hypothesis of our current robot pose. So far we've
initialized these particles given some prior knowledge of our robot pose, either
uniformly across our map or spread around our initial estimate. However, as you may
know, robots are not meant to be stationary objects in our world, most robots tend to
move around. In the prediction step we incorporate the sensor information that
corresponds to this movement in our filter estimates.

Our odometry information consists of three values, two translational  and 
components and a rotational component . These values represent the distance
driven or angle rotated since the robot was started. And are thus defined with respect
to the odometry reference frame. These measurements are corrupted by noise, wheel
slip, and other phenomena which were not modeled however. The actual distance and
angle driven is thus the sum of the received sensor information and an unknown noise
component.

To update the poses of our set of particles, we run the following method:

in which dPose, is the distance and angle traveled since the last propagation step,
proc_noise is the magnitude of the noise we inject during the propagation, and
offset_angle is the current rotation between the odometry frame and the robot frame.

Interpret the resulting filter average. What does it resemble? Is the estimated
robot pose correct? Why?
Imagine a case in which the filter average is inadequate for determining the
robot position.

Tip: The averaging of one of the three state-variables may be a non-trivial
exercise

Assignment 3: Propagation of Particles

x y

θ

ParticleFilterBase::propagateSamples(Pose dPose,

	 	 	 	 	 	 	 	 	  
const double offset_angle);


void Particle::propagateSample(const Pose &dPose,

	 	 	 	 	 	 	    const double 
proc_noise[2],

	 	 	 	 	 	 	    const double 
&offset_angle);


The Assignment



The Correction Step

In the previous assignments we have implemented the initialization, estimation and
propagation of the particle filter. An observant programmer would however have
noticed that we, so far, have not improved over the methods implemented in
localisation assignment 1. One could even argue that we have implemented an inferior
approach, due to the higher computational complexity and the inclusion of an even
larger amount of uncertainty due to the injection noise in the propagation step.

The power of the particle filter approach starts to become apparent once we include
multiple types of sensor information. As we have seen, odometry information is a
valuable source of localisation information, but as we will see in this assignment the
inclusion of visual information, in the form of LRF scan, makes the prediction more
reliable over the longer term.

In order to incorporate these LRF measurements ( ) we will assign a weight to each
particle given a prediction of the measurement for that particle. Each measurement (

) is treated independently. In this assignment it is your task to generate the
prediction, given the build in methods of the world model, and to compute the
likelihood of each measurement given this prediction, and the parameters in the
provided config file. To implement the last step consult the following description here,
and find the following empty methods in your code:

Implementation

Complete the propagateSample method
Run your code, and examine the output of the method.
Run the test to verify your implementation

Tip: In order to perform an accurate propagation, first transform dPose into
robot frame, afterwards transform dPose_robotFrame into the map frame.

Explanation

 Explain in a few concise sentences per item:
Why do we need to inject noise into the propagation when the received
odometry infromation already has an unkown noise component.
What happens when we stop here, and do not incorporate a correction
step?

Assignment 4: Computation of the likelihood of a Particle

R, Θ

ri, θi

https://calvinfeng.gitbook.io/probabilistic-robotics/basics/robot-perception/01-beam-models-of-range-finders


Resampling

So far we've implemented the main parts of the particle filter. We are able to generate
particles, take their average, propagate the samples and compute their likelihoods.

LikelihoodVector ParticleFilterBase::computeLikelihoods(

	 	 	 	 	 	 	 	 	   
const measurementList &measurement, 

	 	 	 	 	 	 	 	 	   
World &world)


Likelihood Particle::computeLikelihood(const measurementList &data,

	 	 	 	 	 	 	 	 	   
World &world,

	 	 	 	 	 	 	 	 	   
const MeasModelParams &lm)


double Particle::measurementmodel(const measurement &prediction,

	 	 	 	 	 	 	 	   const 
measurement &data,

	 	 	 	 	 	 	 	   const 
MeasModelParams &lm) const


The Assignment

Implementation

Complete the measurementmodel method
Complete the computelikelihood method
Run your code, and examine the output of the method.
Run the test to verify your implementation

Explanation

 Explain in a few concise sentences per item:
What does each of the component of the measurement model represent,
and why is each necessary.
With each particle having  rays, and each likelihood being ,
where could you see an issue given our current implementation of the
likelihood computation.

N >> 1 ∈ [0, 1]

Assignment 5: Resampling our Particles



However, as you might have guessed from the section title, a last step is to resample
the particles periodically, to quote Probabilistic Robotics:

"The resampling step has the important function to force particles back to the posterior

. In fact, an alternative (and usually inferior) version of the particle filter would


never resample, but instead would maintain for each particle an importance that is initialized by
1 and updated multiplicatively (...) Such a particle filter algorithm would still approximate the
posterior, but many of its particles would end up in regions of low posterior probability. As a
result, it would require many more particles; how many depends on the shape of the posterior."

In other words, if we do not resample, a lot of particles will end up in regions of the
environment which are very unlikely to be the accurate robot pose. When we
resample, we redraw our samples randomly but make sure that regions with high
likelihood are represented heavily in the new particle set, regions with low likelihood
are represented less.

Or as Probabilistic Robotics puts it:

" The resampling step is a probabilistic implementation of the Darwinian idea of survival

of the fittest: It refocuses the particle set to regions in state space with high posterior

probability. By doing so, it focuses the computational resources of the filter algorithm

to regions in the state space where they matter the most"

A wide variety of resampling algorithms exist, however many of them rely on largely
the same insights. In the assignment you will be implementing the stratified and
multinomial resampling schemes as they are outlined in the pseudo code below (based
on here and here).

bel(xt)

STRATIFIED RESAMPLING


GIVEN: Particles x and size N


-------------------------------


n = 0


m = 1


Q_0:N = cummulative_sum(particle_weights)


while n <= N:


	 u_0 ~ U(0,1/N]


	 u = u0 + n/N


	 while Q_m < u


	 	 m = m + 1


	 n = n + 1


	 y_n = x_m


https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7079001
https://www.mdpi.com/1424-8220/21/2/438


The methods you need to implement are

and

Testing the result

-------------------------------


RETURN Particles y 


MULTINOMIAL RESAMPLING


GIVEN: Particles x and size N


-------------------------------


n = 0


Q_0:N = cummulative_sum(particle_weights)


while n <= N:


	 m = 1


	 u ~ U(0,1]


	 while Q_m < u


	 	 m = m + 1


	 n = n + 1


	 y_n = x_m


-------------------------------


RETURN Particles y 


void Resampler::_multinomial(ParticleList &Particles, const int N)


void Resampler::_stratified(ParticleList &Particles, const int N)


The Assignment

Implementation

Complete the _multinomial method
Complete the _stratified method.

The Assignment



Test the developed particle filter framework in simulation. How accurate is the
implemented algorithm? What are strengths and weaknesses? Write down your
observations.


