
4SC020 Mobile Robot Control
Design Document

Quartile 4 Year 2020-2021

B.H.T. Bindels 1246348
S.B.M. van den Broek 1252011

T.S. Ickenroth 1232296
L.T.M. Verstegen 1252488
L.M.J. van Dooren 1249169

Course coordinator
Dr. ir. M.J.G. van de Molengraft

Tutor
Ir. H.L. Chen

Eindhoven, May 4, 2021



Requirements
The requirements are defined as aspects what the system should do. The assignment consist of two tasks,
which are the Escape Room and Hospital challenge. The design document focuses mainly on the Escape
Room. In the list below, several requirements are listed which the PICO should cover. On top of that,
additional requirements are added to the list in order to complete the Hospital challenge.

• The robot should cross the finish line as fast as possible.

• The robot is able to operate autonomously.

• PICO must not touch the wall, the minimum distance between the wall and the robot should not be smaller
than 100 mm.

• The system should not remain in idle position for more than 30 seconds.

• The task must be completed within 5 minutes, having two attempts.

• The robot must drive in the direction of the corridor once it detects a hole in the wall −→ once it detects
nothing in front AND left/right it must turn left/right corresponding to which direction is empty.

• In case a collision does occur, the robot must drive in the direction opposite to the side of the robot where
the collision occurred.

Additional requirements for the hospital challenge;
• The robot must distinguish between static objects and dynamic objects and the way in which it avoids the

object.

• The robot can find target cabinets in order to deliver packages.

In the Figure 1, a requirements tree is visualized where the connections between them are identified.

Figure 1: Schematic overview of the requirements and purposes in a tree diagram.

Components
The PICO robot that is used is a telepresence robot from Aldebaran it consists of the following hardware:

• Laser Range Finder (LRF)

• Wheel encoders (odometry)

• Holonomic base (omni-wheels)

• Intel i7

• Running Ubuntu 16.04 (simulator runs on Ubuntu 18.04)

1



Specifications
System

• Maximum speed of PICO is: 0.5 [m/s] in translational direction, and 1.2 [rad/s] in rotational direction.

• The robot has a holonomic base, meaning that it can move forwards, backwards, sideways, and rotate
around its own axis.

• LRF has a field of view of 4 radians and is capable of measuring distances reaching from 0.1 to 10 meters.
With this information the robot is capable of detecting and avoiding objects and walls.

• Wheel encoders are used for odometry data, location of the robot with respect to the initial position can be
retrieved from this data.

Environment
• Shape of the environment is rectangular, exact dimensions will not be given.

• PICO starts at a random position in the room, not necessarily facing the exit, nor a straight wall.

• Orientation of the corridor will be perpendicular to the wall.

• The wall of the corridor will be open on the far end.

• The walls might not be perfectly straight, the corners might not be perfectly perpendicular, and the walls
of the corridor might not be perfectly parallel.

• The width of the corridor will be somewhere between 0.5 [m] and 1.5 [m].

• At the exit, the finish line will be located more than 3 meters into the corridor. The walls of the corridor
will be a bit longer.

Software
• Software can be updated with one easy command, e.g. ‘git pull ’.

• Software can be compiled using ‘cmake’ and ‘make’.

• To start the software only one executable has to be called.

• Software will be updated on the robot before the challenge starts.

Functions
This section provides a visualization of the Finite State Machine (FSM) together with a description of all
states included in the escape room challenge. Please note that the FSM of the hospital challenge will
have a different setup

• Localizing: This is the initial state. The robot tries to find the corridor by rotating max 90 degrees to
identify all walls of the escape room. If it succeeds, state Aim2corridor is entered. If it does not find the
corridor, state go2wall is entered.

• Aim2corridor: Here the robot rotates such that it faces towards the entrance of the corridor. When its
aligned, state Travel2corridor is entered.

• Travel2corridor: The robot starts travelling towards the entrance of the corridor by moving in x and
y-directions. When a wall is closer than 300 mm to the robot, it moves back to the Localizing state
to re-identify to location of the corridor. When everything goes right, the robot will find its way to the
entrance of the corridor after which state Align_corridor is entered.

• Align_corridor: Here the robot is positioning itself such that it can drive in the corridor by a straight
line. When its positioned parallel to the corridor walls, state Travel_corridor is entered.

• Travel_corridor: The robot drives towards the finish line keeping track of the distance between itself
and the walls. When a wall comes closer than 200 mm to the robot it will stop and re-align itself with the
walls in state Align_corridor. When the rear wheels have crossed the finish line the final state is entered.
Here the robot will simply stop and celebrate its victory.

• go2wall: Here, the robot start driving towards the nearest wall. When the distance between the wall and
the robot is less than 500 mm, the next state becomes active.

• Align_wall: The robot stops, so that is does not bump into the wall, and starts rotating until the base of
the robot is parallel with the nearest wall such that the robot can drive in forward direction parallel to the
wall.

2



• Move: The robot starts driving along the wall trying to keep the same distance perpendicular to the wall.
If for some reason the distance between robot and wall becomes smaller than 200 mm, the Reposition
state becomes active. While driving, the robot scans the environment and checks if it can find the corridor.
When the corridor is identified, the state Aim2corridor becomes active again. If the robot comes close to
a corner (within 500 mm) the state Corner becomes active.

• Reposition: The robot will reposition itself parallel to the wall with a distance of 500 mm and switch
then back to state Move.

• Corner: The robot stops, rotates 90 degrees, and will then align itself with the wall in state Align_wall.

Figure 2: Schematic overview of the Finite State Machine displaying the states and the booleans.

Interface
PICO receives information of the real world by sensing the world with its sensors. In Figure 3, the
real world is indicated with the block ’world’. The finite state machine only works properly if it re-
ceives and sends out the correct information from/to PICO. This is taken care of by the interface.
The reconstruction part of the interface ensures that sensor data is translated into data which can be
used by the finite state machine, and the actuation part of the interface ensures that decisions taken by
the finite state machine translate into function calls understandable by PICO. This is visualized in Figure 3.

The main functions in the interface will be:
• From the LRF data determine where the walls are and what the smallest distance to each wall is.

– In case a gap is sensed between two parallel oriented walls, e.g. both vertical, PICO should know
that the gap corresponds to the corridor and therefore the corridor bool is set to TRUE. Then PICO
should rotate such that he is facing towards the location of the corridor, after which the aim_corridor
bool is set to TRUE.

– From the orientation of the walls and the current orientation of PICO he should be able to determine
how he is oriented with respect to the walls and correspondingly make the align_wall bool TRUE
when he is aligned to the wall that he is closest to.

• Keep track of the traveled path, i.e. monitor the wheel encoder data such that PICO can remember where
he has already driven.

– When PICO has entered the corridor, he should orientate himself parallel to the walls of the corridor
and monitor the distance traveled such that he drives parallel to the walls for at least 3 m in order to
reach the finish line.

• The actions which are specified in the finite state machine should be translated into function calls which
can be directly used by PICO.

3



– If PICO needs to rotate, the two main wheels should turn in opposite direction.

– If PICO needs to move in x or y direction, either the main wheels or sub wheels need to move. If
PICO needs to move diagonally, so both in x and y direction, the main wheels and sub wheels need to
move simultaneously.

– If PICO needs to stop, all wheels should gradually slow down until zero velocity.

Figure 3: Interface scheme

4


