Technische Universiteit
e Eindhoven
University of Technology
Department of Mechanical Engineering

Embedded Motion Control

Initial Design Report
Group 1

Authors: Responsible teacher:

A. Aggarwal (1279491) dr.ir. M.J.G. van de Molengraft
a.aggarwal@student.tue.nl M.J.G.v.d.Molengraft@tue.nl

AH. Ahmed Ajmal (1279602)
a.h.ahmed.ajmal@student.tue.nl

J.J. van Steen (0914013)
j.j.v.steen@student.tue.nl

N. Rozkvas (0924842)
n.rozkvas@student.tue.nl

W. Verhoeven (1031018)
w.verhoeven@student.tue.nl

Eindhoven
May 11, 2018

mailto:a.aggarwal@student.tue.nl
mailto:a.h.ahmed.ajmal@student.tue.nl
mailto:j.j.v.steen@student.tue.nl
mailto:n.rozkvas@student.tue.nl
mailto:w.b.verhoeven@student.tue.nl
mailto:M.J.G.v.d.Molengraft@tue.nl

1 Introduction

In this document, the initial design of the software will be given that describes the steps in how to make PICO
complete the escape room challenge. In this challenge, PICO is placed in a rectangular room with one exit,
which contains a corridor of over 3 meters to the finish line. PICO should autonomously find the exit and drive
past the finish line.

To start off, the requirements and specifications for the escape room challenge and for the hospital room
challenge have been described. The requirements for the hospital room challenge have been included so that it
is easier to design software that is also still useful for this final challenge. After that, the interfaces of the initial
design will be discussed, which gives an explanation of the model of the software that has been chosen, including
the plan how to escape. After that, the components are described, which includes both the physical components
and the software components, where the latter is a description of the software architecture obtained from the
interfaces. Finally, the functions that are going to be used in this software architecture have been described.

2 Requirements and specifications

The first step to come up with the design of the software is building a list of requirements and attach some
specifications that describe how to implement the requirements in the software. A general list of requirements
and specifications has been made that should be adhered to for both challenges, as well as a list of requirements
that should hold specifically for the escape room challenge or the hospital room challenge. This can be seen in

the table below:

Requirements

Specifications

General:

PICO has to avoid all walls at any time

PICO should complete its task well independent
of the initial conditions.

PICO should operate fully autonomously.

PICO cannot translate or rotate faster than pre-
scribed.

PICO has to deal with small imperfections in the
real world it operates in.

The software should be easy to set up.

PICO should always stay always stay away from
walls at least 15 centimeters.

PICO has to scan its surroundings with a fre-
quency of at least 5 Hz while moving to prevent
bumping into a wall.

The software should be set up according to the
information on the wiki page.

An uncertainty margin should be present when
building a world model to deal with imperfections
in the real world

The maximum translational velocity of PICO is
0.5 m/s and the maximum rotational velocity of
PICO is 1.2 rad/s.

The final software should not make use of tele-
operation.

Escape room challenge:

PICO has to cross the finish line as fast as possible
with a maximum of 5 minutes.

PICO needs to stop when it crosses the finish line.

PICO has to identify the exit of the escape room.

PICO should drive through the center of the cor-
ridor to avoid the wall.

PICO needs an algorithm to identify the exit in-
dependent of its starting position.

Hospital room challenge:

PICO has to map all different rooms in the hos-
pital.

PICO should identify an object in a room that
was not there previously.

PICO has to be able to drive and park backwards
without hitting the walls.

PICO will need to interpret a high level hint.

The challenge should be finished in 5 minutes.

An algorithm should be created to identify all dif-
ferent rooms in the hospital and store all corner
points.

There should be an algorithm that interprets data
from the world model to understand ans use the
high level hint.

3 Interfaces

A high-level overview of the system architecture is created as shown below in the figure and text.

g1 8 §
3y 3y = Task
|capabilities

plan
world (discrete control) worlféorrr?odel
model control to
(continuous) desired worid
(past, -
actual, monitoring from
desnrgId. (discrete perception) || actual world
possible, to
perception
| (continuous) world model

|I'ESOU I'CESI

]
)
]
°

[Task Overview (plan)] Escape Room Challenge

Initialize the sensors and actuators.
Scan surroundings from given position and orientation.

Check for exit

= L o

IF exit is found: Move to exit and skip to step 7.
ELSE: Turn 180 degrees and perform step 2 and 3 once again.

ot

Check for exit

6. IF exit is found: Move to exit and skip to step 7.
ELSE: Move into the direction of the farmost point (averaged over multiple points) for a quarter of this
distance.

7. Return to step 2.

8. Option 1: Identify the wall of the exit and follow the wall at a given distance.
Option 2: Identify the wall and orient the robot to face the exit, then drive forward while remaining in
the center.

9. Stop once the finish line has been crossed.

Table 1: Description of Interfaces

Capabilities Omni-directional drive
Turn

LRF scans

‘World Model Store all data.

Communicate and mediate between tasks.

Resources [RF sensor data

Odometry data

Planning Generate robot trajectory based on information from Perception & Moni-
toring interface.

Control Generate motor input from reference coordinates

Perception and Monitoring Identify lines
Identify exit
Identify furthest point

Check movement errors

4 Components

4.1 Physical Components

This section details the physical components present on-board the PICO robot.

e Sensors

— Laser Ranger Finder (LRF): The LRF is a sensor used to determine the distance of objects from
the robot. This is accomplished by sending sending laser pulses to nearby objects and measuring the
time taken for the laser pulses to be reflected back from the objects.

— Wheel Encoders (Odometry): The wheel encoders are used to determine the position and velocity

of each wheel of the robot.

e Actuators

— Holonomic Wheels (Omni-wheels): The PICO robot has three wheels that give it omni-directional

movement capabilities.

e Computation Hardware

— Intel Core i7 Processor (Running Ubuntu 16.04)

4.2 Software Components

The software of PICO can be split into different components in which the incoming data is converted into the
outcoming data. The software components of PICO can be found in the figure below. The block-diagram starts
with the incoming raw sensor data. This data needs to be filtered to because of sensor noise, this in done in
the filter-block. The filtered data of the LRF sensor can be used for four different purposes, these blocks are:

o Wall detection: Uses the filtered LRF data to detect walls on the left and right side of PICO. Output is
the minimum distance to the wall on the left and right side.

e Furthest point detection: LRF data is used to find the exit, in case the exit is not found from the current
position of PICO, PICO has to change his position and look again for the exit. Output is a new position
from where pico should start looking for the exit.

e Exit detection: LRF data is used to find the exit, in this situation the exit is found. Outputs of the
component are the coordinates of the two corners of the exit.

e Finish identification: When PICO is positioned inside the corridor the finishline has to be determined,

from the LRF data. Outputs are the coordinates of the finish line.

Perception block
Wall
detected i
gl [

[Wall dBtection e

Furthest
point

LRF data

Raw sensor datal——{ Filter

Exit
detected 2 exit
flag comers

At the
finish flag

Furthest point
Fifered || ' Getecton

‘{ identification }7 e —

"

s

H Bt delelion et e

A

Planning
Algorithm

Relative
Destination
xy)

Relative angle

Control block

Commands

toROS

p 3
Motor input ——————=

| y

Reference

Figure 1: Software Components of PICO.

The planning algoritm uses the output of the perception block to determine the extual location where pico
has to navigate to. The planning algorithm uses the coordinates of the exit, finishline or furtest point and tries
to avoid the walls. The output of the planning algoritm are coordinates of the position and the turning angle
which PICO has to make before navigating in a staight line to that position.

The Control Block is used to translate the destination coordinates and turning angle to in command to sent

so PICO.

5 Functions

The table below gives a list of all functions (Low-level is not complete yet) which will be used to let PICO drive
to the exit and through the corridor. The functions are sorted in a hierarchy, a description of the hierarchy is

given below:

1. High-Level: The high-level functions are the fases in which PICO can be in. When all high-level functions
are completed it means PICO has accomplished the task to find the exit and drive through the corridor.

2. Mid-Level: The high-level functions consists of mid-level functions. Depending what high-level function
PICO is in a sequence of mid-level functions are looped, until the ’check’ function is completed. When the
"check’ function has a positive result PICO can move to the next high-level function, which corresponds
to an other mid-level function sequence.

3. Low-Level: The mid-level function uses the low-level functions to let PICO use the sensors, actuators and
do calculations. The low-level functions can be used in different mid-level functions.

Table 2: Description of Functions

Function Hierarchy

Function

Description

High-level

initialize
phase_toExit

phase_throughCorridor

Initialize all sensors (and actuators).
Find and drive to the exit.

Drive though the corridor.

terminateProgram Stop and exit the program.
Mid-level exit_localization Localize the exit.

exit_localizationFurthestPoint Define a point from which the exit can
be localized.

exit_determineTrajectory Determine the trajectory to come to the
localized point.

exit_driveTo Control input to drive according to the
trajectory.

exit_check Check if PICO is at the location where
the exit is.

corridor_localization Localize the end of the corridor (finish
line).

corridor_driveThrough Drive through the corridor, while scan-
ning both walls.

corrodor_check Check if PICO is at the location where
the finish line is defined.

Low-level drive Drive at a certain speed.

turn Turn for a certain angle.

lineFit Algorithm which uses LRF data to de-
termine walls.

scanLRF Get data from LRF data.

scanOdometry Get position from odemetry data (not
necessary yet).

driveForward Drive at a pre defined speed.

turnAround Turn for a pre defined angle of 180 de-

grees.

	Introduction
	Requirements and specifications
	Interfaces
	Components
	Physical Components
	Software Components

	Functions

