

Team 3 27/04/2016

1

Design Document - 1

Overview
This document presents a summary of the software design to solve the following challenges with the
Pico robot.

• Corridor competition: To follow a corridor and take the first exit.
• Maze competition: To solve and exit an unknown maze.

This document describes the brainstorming phase of the design process and provides an overview of
the following aspects:

• Requirements
• Specifications
• Functions
• Components
• Interfaces

Requirements/Specifications
For the brainstorming phase, the requirements and specifications are described in one section as
the specifications cannot be determined without an introduction to the robot hardware. The
requirements of the robot are as follows:

• The robot should not stand still for more than 30 seconds
• The robot should not collide with the walls
• The robot should solve the undisclosed maze and exit within 5 minutes
• The software should store the maze as a map and the robot should be able to revert back to

the last known state/position in case of any error.
• The robot should be able to distinguish between the door and dead ends and send out a

request to open the determined door
• The robot should determine if the maze is solved and should stop accordingly
• The optimal exit angle should be calculated (how much wheel actuation is necessary for the

turn)

Functions
Functions are divided into low, mid and high level. High level functions are not required for corridor
challenge.

Low level

initialization Initialization of sensors, actuators
read_inputs Read laser (LRF) and encoders (walls as ref.)
drive_forward accelerate, decelerate can be separate sub-

functions
drive_sideways Motor control for sideways motion
left_turn Turn 90o left(doesn’t necessarily need to be at

standstill)
right_turn Turn 90o right
U_turn: Turn 180o left
standstill Stay at the same position with zero speed, for

instance when it waits for the door to open

Team 3 27/04/2016

2

Middle level

get_distance Measure the distance to an obstacle (wall, door,
anything)

avoid_collision Keep a safety distance from walls (possible sub-
functions: slow down when you’re close,
completely stop when you’re ready to crash)

kill_switch Polling for the manual switch to shut the robot,
when needed by us

finishing_line A function to identify the finishing line and shut
down the robot (possible options: use kill-switch
or detection of being far away from any wall i.e.
no walls in front or to the right/left)

find_gaps Identify all possible passages, corridors (straight,
right, left), identify crossings

dead_end Recognize you are at a dead end and make a U-
turn or return_to_last_crossing

return_to_last_crossing If you meet a dead end (this may be integrated
into the decision routine)

door_check Check If there is a door at a dead end (possibly
just check for height is enough, because the
doors are shorter than the walls OR just ask for
door to open and wait to see if it gets a
response)

High level

opt_decision The robot decides what its next move (move
forward, turn, stand still) will be, based on the
chosen algorithm for the optimal decision for
the maze (algorithm will be decided later on,
possible algorithms: A*, Tremaux), on the
mapping and on the current position (recognize
scenario e.g. Dead end)

reference_path Create the desired path for the robot, from one
point to another (especially for cases that we
know exactly where the robot must go, already
mapped paths)

random_decision Take a random decision the first time the robot
is at a junction

mapping Build a map according to the obstacles(walls) or
empty spaces (passages, corridors) identified by
the laser

check_position Check if it has already been in this position,
otherwise store position (starting
point=reference point)

store_position Store the current location in the map (if not
already stored), to create a path and to avoid
visiting same places twice

Team 3 27/04/2016

3

Components
PICO includes multiple components that can be classified in three groups as: Sensors, Actuators and
Computer.

• Sensors:
o Laser Range Finder (LRF): The LRF situated on PICO can determine the distance to

an object. The technique consists of shooting a light pulse towards an object,
receiving it, and measuring the time it takes. This sensor will be useful to locate
walls, corners and doors.

o Wheel encoders (odometry): The encoders will provide us with the speed of the
wheels which can be used to control PICO based on the provided data.

• Actuators:
o Holonomic base with omni-wheels
o Pan-tilt unit for head

• Computer
o Intel I7
o Ubuntu14.04

Interfaces
This section describes the interfaces between the following abstractions:

• Challenge context: Describes the goal of the challenge
• Environment context: Describes the environment sensed by the robot
• Robot context: Describes the robot hardware and sensor readings
• Skill context: Describes the robot’s skill-set
• Task context: Describes the decision-making abstraction

The interfaces between the above abstractions can be seen in the diagram below:

	Design Document - 1
	Overview
	Requirements/Specifications
	Functions
	Components
	Interfaces

