
BLOCK : TASK MANAGER

 ESCAPE ROOM CHALLENGE

The task manager functions as a finite state machine which switches between different

tasks/states. It focuses mainly on the behavior of the whole program rather than the

execution. It determines the next operation phase and case based on the current phase,

current case, current block statuses and counters in which the corresponding block modes of

the perceptor, path planner and drive controller are set for the upcoming execution. It

communicates with the other blocks via the World model. Since the "Escape room

challenge" and the "Hospital competition" require a complete different approach in terms of

cooperation between the blocks, the task planner is completely rewritten for both challenges.

INITIALIZATION:

The path planner is given a command “Drive_to_door” while the drive controller and the

preceptor are given a command “Execute” as a part of the initialization process.

EXECUTION:

The high-level tasks “Drive_to_door”, “Drive_to_exit”, “Execute”, “Idle” and “Disable” were

given to appropriate blocks as shown in figure 9. If the status of the Path planner is driving to

a possible door or is searching for a door, the task manager sets the mode of path planner to

drive to door. If the status of the path planner is driving to a found door and the Drive

controller is done driving, then the path planner is set to drive to exit. If the status of the Path

planner is driving to a possible exit or is searching for a exit or if the drive controller is busy

driving, the task manager sets the mode of all the blocks to Idle.

INPUTS Drive Controller status, Perceptor status, Path Planner status.

OUTPUTS Drive Controller modes, Perceptor modes, Path Planner modes.

TASK MANAGER FUNCTIONALITY :

FUNCTION FUNCTION DESCRIPTION

Init() To initialize the Drive controller to ‘Execute’, Path planner to ‘Drive_to_door’

and Perceptor to ‘Execute’

Execute() 1) If (PathPlanner_Drving_to_PossibleDoor) or

(PathPlanner_Searching_for_door) then, the blocks are set to

(PathPlanner_Drive_to_Door) and (DriveController_Execute) and

(Perceptor_Execute).

2) If (PathPlanner_Driving_to_FoundDoor) and (Drivecontroller_Done)

then, the blocks are set to (PathPlanner_Drive_to_Finish) and

(DriveController_Execute) and (Perceptor_Execute).

3) If ((PathPlanner_Driving_to_Finish) and (DriveController_Busy)) or

(PathPlanner_Searching_finish) then the blocks are set to

(PathPlanner_Drive_to_Finish) and (DriveController_Execute) and

(Perceptor_Execute).

4) If (PathPlanner_Driving_to_Finish) and (DriveController_Done) then

the blocks are set to (PathPlanner_Idle) and

(DriveController_Disable) and (Perceptor_Disable).

HOSPITAL ROOM CHALLENGE

The task manager is completely revamped for the hospital challenge. It functions as a state

machine and handles the behavior of the program in a well structured manner considering

various fall back scenarios which can be edited when ever needed. The list of cabinets to

visit are initially read by the task manager and sent to the world model. It works primarily on

setting appropriate block modes, setting counter variables and changing from a particular

phase and case of the program to another in order to perform a required task based on the

block statuses it receives. The various phases and cases are discussed below :

PHASES AND CASES :

1. INITIALIZE :

The software always starts in this phase. During this phase all the inputs and outputs of

the robot are initialised and checked. Also all the required variables in the software are

set to their correct values. At the end of the initialisation phase the software is set and

ready to perform the desired tasks, the software switches to the fitting phase.

 Case 1 :

- Init blockmodes of init values for all blocks

- Set blockstatusses to init values for all blocks

- Read and store high level tasks

- Read taskplanner behavior from file and store

2. FITTING

During the fitting phase PICO tries to determine its initial position relative to the given

map. It determines the location with the help of the laser range finder data and tries to fit

the environment around the robot to the given map. In the case that the obtained laser

data is insufficient to get a good, unique fit, it first starts to rotate the robot. If after the

rotation still no unique fit is obtained, the robot will try to drive towards a different location

and rotates again at that location. The full details on how the fitting algorithm works are

described in the perceptor section of this wiki. As soon as there is an unique and good

fit, the location of PICO is known and the software switched to the relocate phase.

 Case 1 :

- Fit map at current position.

 Case 2 :

- Set desired position of robot to rotate robot for fixed (configurable) angle.

 Case 3 :

- Drive to location

 Case 4 :

- Set desired position to middle of the room (optional, lower priority)

3. RELOCATE

During the relocate phase the goal is to move the PICO robot to the desired cabinet. To

do this, a path is calculated from the current location towards the desired cabinet in

the path planner. The drive controller follows this path and avoids obstacles on its way.

When it is found that the path as a whole is blocked, a new path is calculated around the

blockage. As soon as the PICO robot has arrived at the desired cabinet the software

switched to the cabinet action phase.

 Case 1 :

- Calculate path to goal

 Case 2 :

- Proceed along path, set new desired position

 Case 3 :

- Drive to next node

 Case 4 :

- Brake link between nodes

4. ACTION

During the cabinet action phase the PICO robot executes the required actions at the

cabinet. This includes saying 'I arrived at cabinet ...' and taking a snapshot of the current

laser data to proof that the robot has arrived at the correct location. After performing the

required actions the software determined if the PICO robot should visit another cabinet,

http://cstwiki.wtb.tue.nl/index.php?title=Embedded_Motion_Control_2019_Group_2#Perceptor
http://cstwiki.wtb.tue.nl/index.php?title=Embedded_Motion_Control_2019_Group_2#Path_planner
http://cstwiki.wtb.tue.nl/index.php?title=Embedded_Motion_Control_2019_Group_2#Drive_controller

and if so, it switched back to the relocate phase. If all the cabinets are visited the

software is stopped and the challenge is successful completed.

 Case 1 :

- Store laser data

 Case 2 :

- Play sound

5. ERROR

The error phase is different from the other phases in the sense that it is never the

desired to end up in this phase. The only situation when the software switched to the

error phase is when something is different from expected. This can for example happen

when a required file is missing during the initialisation phase, the fitting phase has went

through all the fallback mechanisms and still hasn't succeed in finding a unique fit. In all

cases something unforeseen has happened and the software is out of options to recover

itself. If that happens, the PICO robot is switched to a safe state e.g. all motors are

disabled, and then all potential useful information for debugging is displayed to the

operator. Finally the software is terminated and the possible cause can be found and

fixed.

STATE MACHINE :

The flow chart below explains the setting of modes, counters and transition phases & cases

based on status of the blocks received.

TASK MANAGER FLOW CHART :

