
Traction Control for Omni-directional
Robots

A.W. van Zundert, Student nr.: 0650545

CST 2011.071

CST report

Eindhoven University of Technology
Department of Mechanical Engineering
Control Systems Technology

Eindhoven, September, 2011

Abstract

In this report a traction controller is developed for an omni-directional robot,
named Turtle. At first traction and slip are defined and the geometry of the Turtle is
discussed. Then the explanation of the relevant software for the motion of the Tur-
tles is spread over three chapters. The motion schemes of the Turtle in Simulink
are simplified and discussed. The trajectory planner that creates the driving path
for a Turtle is explained in detail and simulations are performed to show what kind
of signals the trajectory planner creates and how these signals are alternated as in-
puts to the motors. After this some research has been done into control systems of
other vehicles and some initial ideas are sketched for traction control in the Turtles.
Finally the actual traction controller is developed and explained using flowcharts,
the implementation (in C-code) of the traction controller and some simulations to
give a quick look for how it works. Afterwards a general conclusion is drawn and
some future work is suggested.

2

Contents

Introduction 9

1 Traction and slip 11

2 The Turtles 13
2.1 Number of Wheels . 13
2.2 Decoupling Robot- to Wheel Coordinates 14

3 Motion Scheme 17

4 Trajectory Planner 19
4.1 Outputs . 19
4.2 Calculate Time . 20

4.2.1 Overshootflag . 20
4.3 Check Case . 21
4.4 Simulations trajectory planner . 22

4.4.1 Movement in x direction 22
4.4.2 Movement in x direction and y direction 24
4.4.3 Attempt to simulate real world 26
4.4.4 Summary . 28

5 Global Signal Analysis 29
5.1 Setup experiment and expectations 29
5.2 Results Turtle- movement . 30

6 Possible control systems 35
6.1 Slip control in other vehicles . 35

6.1.1 ABS and ASR . 35
6.1.2 ESP . 35

6.2 Initial Ideas . 36

7 Traction controller 39
7.1 Basic idea . 39
7.2 Flowcharts . 39

7.2.1 Useful code in trajectory planner 40
7.2.2 Traction_Controller . 41

7.3 Implementation . 43
7.3.1 Struct traction . 44
7.3.2 Detecting slip . 44

3

7.3.3 Converged directions . 45
7.3.4 Controlling slip . 46

7.4 Simulations traction controller . 47
7.4.1 Simulation with no error 48
7.4.2 Simulation with a small error 49
7.4.3 Simulation with an error and x- and y direction movement . 51
7.4.4 Simulation for slip at maximal velocity 52

7.5 Improvements of the traction controller 53

Concluding Remarks 55

Future Work 58

A Decoupling local- to wheel coordinates 61

B Simulations 63

C C file trajectory planner 65

D Acceleration x direction Chapter 5 73

E Set up for simulations traction controller 75

4

List of Figures

1.1 Free body diagram of a wheel . 11
1.2 Slip (λ) versus coefficient of friction (µ) 12

2.1 Omniwheel; wheel with small wheels on the perimeter 13
2.2 Turtles’ wheel configuration and movement in y-direction 13
2.3 Wheelbases with positive speed directions 14

3.1 Simplified motion scheme of Turtles 17
3.2 Global and local coordinate systems 18

4.1 Theoretical position, velocity and acceleration 22
4.2 Results for acceleration simulation 1 23
4.3 Results for cases simulation 1 . 24
4.4 Results for accelerations, velocities and movements simulation 2 . 25
4.5 A path with a deviation. 26
4.6 The overshootflags of simulation 3 26
4.7 The accelerations, velocities and positions of simulation 3 27

5.1 The acceleration after the parking brake for 1 movement in y direction 30
5.2 A zoom of the strange peeks in Figure 5.1 and the cases on time

frame[2.14 - 2.5] . 31
5.3 A zoom of the strange peeks in Figure 5.1 and the cases on time

frame[2.5 - 3.8]. 32
5.4 Comparison between acceleration after parking brake and accelera-

tion after "Drift Control" . 33

6.1 Simplified scheme of an electromotor 37

7.1 Flowchart of a piece of the trajectory planner with the traction con-
troller . 40

7.2 Flowchart of the actual traction controller 41
7.3 Acceleration in x direction, safety factor and roundmax in x direction 48
7.4 The piece where the error+1 is introduced, the safety factor in that

same time frame and the acceleration value in x direction 49
7.5 The error+1, the acceleration and the x- and y velocity 50
7.6 The error, acceleration in x- and y direction respectively velocity for

movement in x- and y direction . 51
7.7 The error, velocity in x (driving) direction and the cases in the x

direction . 52

5

B.1 Set up for simulation 1 . 64
B.2 Signal builder for simulation 3 . 64

D.1 Acceleration after the parking brake in x direction 73
D.2 A zoom of the x- and y acceleration and the case for the y direction

on time frame[2.5 - 6]. 74

E.1 The set up for the simulation of the traction controller. 75

6

Listings

4.1 Two lines to limit accelerations . 24
7.1 Struct traction . 44
7.2 Detecting slip . 44
7.3 Ouputs trajectory planner . 45
7.4 x- and y direction converged . 45
7.5 Only x direction converged . 46
7.6 Only y direction converged . 46
7.7 No direction converged . 46
7.8 Subroutine traction_control . 47
C.1 C implementation trajectory planner 65

7

8

Introduction

A significant aspect in playing soccer is making sure your team captures the ball
before the opponents do. This means that the players of your team should be as
fast as possible. For this a Turtle is required to reach maximal acceleration values.

As in other vehicles, a major problem in achieving this is slip. Slip can be
interpreted as a loss of traction or grip. While slipping a vehicle is not in control
of its movement and it can cause a difference between the desired acceleration and
the actual acceleration. It should be clear that slip is highly unwanted.

There are moments that a Turtle is pushing against an opponent. In such case
the main purpose is to push as hard as a Turtle is capable of. The maximal pushing
force can only be achieved when the wheels are almost slipping but not quite yet.
Slip makes the pushing force drop so slip should be prevented.

Previously (before September 2011), the Turtles did not reckon with slip at all.
Only a difference in position would be taken into account. However, to achieve a
maximal acceleration without slip, traction control is desired while or before slip-
ping.

Before a traction controller can be made it should be clear what traction and
slip are. This is investigated in Chapter 1 "Traction and slip". Secondly, research
has been done into the configuration and kinematics of a Turtle in Chapter 2 "The
Turtles". After that the Motion scheme is simplified and examined. This exami-
nation is spread over three chapters, Chapter 3 "Motion Scheme", Chapter 4 "Tra-
jectory Planner" and Chapter 5 "Global Signal Analysis". After this is all clear a
short search is done to see what other vehicles use for traction control and some
initial ideas for traction control systems are sketched (Chapter 6 "Possible control
systems"). In Chapter 7 "Traction controller" the final traction controller is devel-
oped and explained. Finally a general conclusion is drawn and some future work is
suggested.

9

10

Chapter 1

Traction and slip

Any movement of a wheel-based vehicle depends on the traction of the wheels.
Traction can be defined as the force wheels exert on a riding surface. If this force
is not equal to the motor forces, the vehicle will slip. Slip can be defined like in
Equation 1.1, with λ the slip. For λ 6= 0 slip occurs. When the vehicle speed is larger
than the wheel speed (λ > 0), the vehicle is slipping while decelerating. When the
vehicle speed is lower than the wheel speed (λ < 0), the vehicle is slipping while
accelerating.

λ =
vehiclespeed− wheelspeed

vehiclespeed
(1.1)

The maximal traction of a wheel depends on the weight that the vehicle exerts
on the wheel (Fnormal) and on the coefficient of friction µ (see Equation 1.2). The
coefficient of friction relates the amount of friction force (traction) between a wheel
and the riding surface to the weight resting on the wheel. In Figure 1.1 a free body
diagram of one wheel is given.

Fmotor + Fforward + Ffriction =
T

Rw
−m · a+ µ ·m · g = 0 (1.2)

Figure 1.1: Free body diagram of a wheel

Figure 1.2[1] illustrates the relation between wheel slip and the coefficient of
friction. It is desired to stay in the stable area of Figure 1.2, so have a slip lower
than 20 percent. Material properties, weather circumstances and other external
influences are an important factor for the coefficient of friction. In general the
coefficient of friction is not constant, so neither for the Turtles.

11

Figure 1.2: Slip (λ) versus coefficient of friction (µ)

12

Chapter 2

The Turtles

The Turtles are holonomic robots, what means that they can move in every direc-
tion (360 degrees). They are capable of this because of their wheelbases. A Turtle
consists of three omniwheels, positioned at an angle of 120 degrees (Figure 2.2).
Why Turtles have three wheels is explained in section 2.1 "Number of Wheels".

Omniwheels are wheels with other small wheels on the perimeter (Figure 2.1).
The small secondary wheels have a degree of freedom perpendicular to the roll di-
rection of the primary wheel. Compared to the primary wheels they have a relatively
small coefficient of friction in their free rolling direction.

In section 2.2 "Decoupling Robot- to Wheel Coordinates" a decoupling is given
between the local robot coordinate system and the coordinate system of the wheels.

Figure 2.1: Omniwheel; wheel with
small wheels on the perimeter

Figure 2.2: Turtles’ wheel configuration
and movement in y-direction

2.1 Number of Wheels

The advantage of three wheels with respect to four wheels lies in the fact that four
wheels make the robot overdetermined. With four wheels always one wheel is
from the ground. The mass of the Turtle will not be spread evenly over the three

13

wheels which can cause loss of traction. Prestressing springs are not a solution for
overdetermination because this does not bring the center of mass back.

However, an object on four wheels moves more effectively than three wheels in
executed configuration (See Figure 2.2). With three wheels in this configuration the
direction of movement is never equal to the rotating direction of the wheels. This
means that wheels always slip. The wheels have a combined friction coefficient of
the primary and secondary wheels dependent on the rolling angle of the wheel.

Any movement of the Turtle is achieved by combining certain motor speeds.
These motor speeds depend on the angle of each wheel relative to the movement
direction. In Figure 2.2 an example is illustrated for a movement in y-direction.
The first wheel has traction force T1, the second wheel T2 and the third wheel T3.
If both traction forces, T1 and T2, are equal and T3 is equal to zero the resulting
net force is purely in y-direction. Because of the property of omniwheels, wheel 3
has negligible friction. If both traction forces are NOT the same the Turtle will also
have a movement in x-direction.

2.2 Decoupling Robot- to Wheel Coordinates

In Figure 2.3 the wheelbases is given once again. However, here the radial distance
of each wheel to the center of the Turtle and the positive wheel directions are given.
The wheel speeds w1,w2 and w3 are defined in Equation 2.1 and the local Turtle
speed Vx, Vy and Tφ are derived to Equation 2.2. The intermediate steps of this
derivation can be found in Appendix ??.

Figure 2.3: Wheelbases with positive speed directions

w1

w2

w3

 =

−|Vr| · sin(30 + φ) +R1 · φ̇
|Vr| · cos(φ) +R2 · φ̇

|Vr| · sin(−30 + φ) +R3 · φ̇

 (2.1)

VxVy
φ̇

 =
1

R1 +R2 +R3
·A ·

w1

w2

w3

 (2.2)

14

A =

 −R2 R3 +R2 −R2

− 1√
3
(2R3 +R2) 1√

3
(−R3 +R1) 1√

3
(R2 + 2R1)

1 1 1

 (2.3)

15

16

Chapter 3

Motion Scheme

The motion scheme of the Turtles is very comprehensive and difficult to under-
stand. Because of that a simplified scheme (see Figure 3.1) will be discussed. The
global and local coordinate systems are shown in Figure 3.2.

Figure 3.1: Simplified motion scheme of Turtles

• The "Trajectory Preprocessor" determines the values of the maximal acceler-
ation amax or the maximal velocity vmax. For dribbling other maximal values
are used than for driving.

• The "Trajectory planner" creates a smooth path the Turtle will follow. This
will be explained in Chapter 4 "Trajectory Planner". In this block also a park-
ing brake is added. This parking brake takes the overshootflag explained in
section 4.2.1 "Overshootflag".

• The "phimaker" creates the path for the φ-coordinate and works on the same
principle as the trajectory planner.

• The "Drift control" controls the global position of the Turtle on the field using
position from encodercounts.

• "C" is the controller that controls the local position of the Turtle using posi-
tion from the encoders.

17

• "Global to Local" and "Local to Global" are each others’ reciprocal. These
blocks contain the decoupling of the coordinate systems shown in Figure 3.2.

• "Tin" and "Tout" are also each others’ reciprocal. These blocks contain the
decoupling derived in section 2.2 "Decoupling Robot- to Wheel Coordinates".

• P is the Turtle and has voltages as input since the Turtle have 150 Watt Maxon
electric motors. These voltages represent the torque that should be intro-
duced to the wheels. For the outputs, the Turtle has encoders on its wheels
that have a sample frequency of 1000 Hertz and can vision be used that has
a sample frequency of 30 Hertz.

Figure 3.2: Global and local coordinate systems

Because of the operations in "Drift Control" and in the "controllers" the actual
input-acceleration is different from the calculated accelerations in the trajectory
planner. This is shown in subsection 5 "Global Signal Analysis".

Recently an accelerometer is attached on one Turtle. This accelerometer has
another coordinate system than the Turtle does. For example the x axis of the
accelerometer is equal to the z axis of the Turtle and the y and z axis of the ac-
celerometer are rotated with respect to the Turtle. Also the accelerometer does not
find itself in the middle of the Turtle. For these reasons the values obtained from
this accelerometer are nonsense. To correct this error a direction- cosine matrix[2]
should be used to correct the rotation of the coordinate system. Because the φ
of a Turtle is also an important parameter, this should also be obtained from the
accelerometer. For this reason the translation of the coordinatesystem of the ac-
celerometer should be corrected too. For example if the Turtle is rotating only in
phi direction the accelerometer would constantly detect a movement in x direction.
This is not a desired behavior.

18

Chapter 4

Trajectory Planner

The Turtles receive a certain point on the field where they need to be as fast as possi-
ble. The trajectory planner calculates a smooth trajectory by evaluating the acceler-
ation values. The trajectory planner is programmed in C and consists of three rele-
vant subroutines (4.1 "Outputs", 4.3 "Check Case" and 4.2 "Calculate Time") which
will be explained in following sections. Usually "Outputs" calls "Calculate Time"
and "Check Case" always get called by "Calculate time". "Calculate Time" also uses
an overshootflag, this will be explained in subsection 4.2.1. "Overshootflag". Finally
in section 4.4 "Simulations trajectory planner" some simulations are performed to
give an example of how the trajectory planner works. The complete trajectory plan-
ner is added to Appendix C.

4.1 Outputs

The trajectory planner has many inputs:

• Referential global x and y position the Turtle wants to reach.

• Referential x and y velocity the Turtle wants to have at the referential global
x- and y coordinates.

• Instantaneous x- and y position of the Turtle.

• Instantaneous x- and y velocity of the Turtle.

• Maximal velocity and maximal acceleration

• RobotID, the trajectory planning of the keeper is different from the trajectory
planning of a Turtle on the field.

The outputs of the trajectory planner are:

• Acceleration values in x- and y direction.

• Overshootflag which will be further explained in section 4.2.1 "Overshootflag".

19

The trajectory planner is an S-function implemented in C. Basically the trajectory
planner makes sure the Turtle drives via the shortest path.

At first the trajectory planner checks if the Turtle is converged. This means it
checks if the Turtle is arrived at the desired x- or y position and if it has the desired
final velocities. In this step there are four possibilities:

1. Both x- and y position respectively velocities are converged. Because a thresh-
old is used, it can be that the desired velocity is not entirely achieved. So the
output accelerations are only dependent on the difference between the de-
sired velocity and the instantaneous velocity.

2. Only x position respectively velocity are converged. In this occasion for the
acceleration in x direction the same operation will be done as in point one.
For the y position respectively velocity other calculations will be done which
will be further explained in section 4.2 "Calculate Time".

3. Only y position respectively velocity are converged. In this occasion the same
operations are done as in step 2, but then the opposite operation belongs to
x and y.

4. The x nor the y position respectively velocity is converged. In this case it is
necessary that a straight path will be planned. Otherwise the Turtle would
for example first drive in x direction and then in y direction. The ideal angle
will be calculated, so that desired x- and y position respectively velocity will
be met on the same time.

4.2 Calculate Time

Subroutine Calculate Time calculates the time it will take to reach a converged state.
To do that it contains a loop that runs several times, until it knows the estimated
time of arrival(ETA) of the Turtle. ETA is calculated by predicting possible future
operations and is only an estimation.

Each run subroutine Check Case (See section 4.3) is called. This returns if the
estimation is converged or not. If the estimation is converged, Calculate Time can
be aborted and returns the estimation (ETA).

The other loops are for possible future operations, so the in the first loop calcu-
lated acceleration from Check Case will be returned.

In Calculate Time also the overshootflag is set but this will be further explained
in subsection 4.2.1 "Overshootflag".

4.2.1 Overshootflag

In some cases Calculate Time sets an overshootflag. The trajectory planner outputs
this overshootflag for x- and for y direction but does not perform further actions
with it. From the trajectory planner it goes straight on to a so called parking brake.
This overshootflag can have four values:

• 0: default value, nothing happens.

• 1: only in the first loop of Calculate Time this value can be introduced. Also
can this value occur only if the calculated acceleration is negative, but the

20

distance the Turtle need to pass is still positive. This can be the case if the
Turtle is decelerating to stop in time, but also when the Turtle is driving too
fast.

• 2: just like for value 1, this value can only be introduced in the first loop of
Calculate Time. This value has almost the same condition as for value 1. The
difference is that for this value the robot was driving in negative direction.
So this value can only occur if the calculated acceleration is positive, but the
distance the Turtle need to pass is still negative.

• 3: this value can only occur in the second loop and if in the first loop the
overshootflag is set to 1 or 2. For value 1 it was unknown if the Turtle was
decelerating to stop in time or driving too fast. If in this second loop the
estimation is still not converged the overshootflag gets set to 3. If the Turtle
was decelerating to stop in time the estimations would be converged and the
overshootflag stays 1 or 2.

The parking brake takes the overshootflag into account. If the overshootflag
has value 3 the parking brake amplifies the acceleration values with 3. If the over-
shootflag is 1 or 2 the parking brake passes the acceleration values through without
changing.

4.3 Check Case

Check Case calculates which acceleration values are desired. Calculate Time also
calls Check Case for possible future operations which does not relate to instanta-
neous action. For that reason in the following list of important cases there will be
spoken of incoming values and not of the Turtle’s instantaneous behavior.

• Case -1: default value.

• Case 1: driving in wrong direction, so the Turtle should accelerate in the other
direction.

• Case 2: wanting to accelerate to a certain velocity. Mostly this will be maximal
velocity (called Case 21) but when the distance is not big enough this could
be another velocity (called Case 22). In both cases maximal acceleration is
desired.

• Case 3: driving at maximal velocity. Because of the threshold it could be that
the actual velocity is not equal to the maximal velocity. In this case the accel-
eration will be evaluated to make sure the maximal velocity will be reached
entirely.

• Case 4: needs to decelerate to stop in time. In this case the acceleration value
should be such that maximal braking is attained.

• Case 5: driving at a velocity that is higher than the maximal velocity. In this
case maximal deceleration is desired.

• Case 6: distance is too small to reach desired final velocity. In this case
maximal acceleration or deceleration is wanted, dependent on the desired
velocity.

21

When the final position and velocity are converged the acceleration value will
be dependent on the difference between the instantaneous and the desired position
and velocity.

4.4 Simulations trajectory planner

The simulations are run in Simulink. This is to show what the trajectory planner
does to the position, velocity and acceleration of the Turtle. In these simulations no
external effects affect the results.

At first in subsection 4.4.1 a simple movement in purely x direction is simu-
lated. After that a movement in x- and y direction is simulated in subsection 4.4.2.
Finally in subsection 4.4.3 it is attempted to simulate a small piece of the real world.
After all in subsection 4.4.4 a summary will be given over the three simulations.
In appendix ?? the setup for the simulations is given and further explained.

4.4.1 Movement in x direction

In this simulation just one point in x direction is given to the trajectory planner. The
final velocities and y-position are set to zero. The case determined in subroutine
Check Case is logged, so as the overshootflag.

What should be expected for position, velocity and acceleration is shown in
Figure 4.1.

Figure 4.1: Theoretical position, velocity and acceleration

22

Firstly the Turtle should want to accelerate at maximal acceleration until maxi-
mal velocity is achieved (Case 21). After the Turtle drives at maximal velocity for a
while (Case 3) the Turtle would see it must decelerate to stop in time (Case 4). When
the Turtle is in Case 4 the overshootflag should become 1, because the acceleration
is negative and the Turtle should still pass a distance.

Results

The results for position, velocity and the case are as expected, but the results for
the acceleration have a small abnormality like shown in Figure 4.2.

Figure 4.2: Results for acceleration simulation 1

Since the maximal acceleration is set to 1 the value of 2 on 1 second is not
allowed. If one looks at the cases in Figure 4.3 this value can be explained.

On 1 second the case becomes three. Equation 4.1 shows the calculation for the
acceleration in case 3.

a =
vmax − vinstantaneous
SAMPLE_TIME

(4.1)

When the numerator in this equation is lower than the denominator this value
becomes higher than 1. Because the amax in this case is 1, the calculated acceler-
ation is higher than amax. Since it does not get checked if the calculated accelera-
tion is higher than amax the peek in Figure 4.2 is possible. This is easily solved by
adding following two lines.

23

Figure 4.3: Results for cases simulation 1

Listing 4.1: Two lines to limit accelerations
y [0] = dmin (dmax (y [0] ,− a_max) , a_max) ;
y [1] = dmin (dmax (y [1] ,− a_max) , a_max) ;

Y is the output acceleration vector and dmin respectively dmax takes the min-
imal respectively maximal value. If these two lines are included in the trajectory
planner right at the end the acceleration never exceeds the amax.

4.4.2 Movement in x direction and y direction

For this simulation the same set up is used, but the value for the desired y direction
is set to 1 meter. Now the distance in x- and y direction is different and both are not
converged. The trajectory planner will try to calculate the ideal angle to drive what
means that the acceleration in x- and y direction will not be the same.

The Case for the x- and y direction and the overshootflag should be the same
since the Estimated Time of Arrival (ETA) is desired to be the same. The case will
be a bit different from the previous simulation because different accelerations and
velocities will be calculated. At first while accelerating, the case will be 21 and after
a while the case will be 3. This might look strange because amax is not reached.
In calculating the ideal driving angle the vmax in x- and y direction are changed
so the subroutine Check Case has different amax and vmax. This is because now
the Turtle probably wants a lower velocity to make sure x- and y direction will be
converged at approximately the same time.

24

Results

In Figure 4.4 are the accelerations, velocities and movements in x- and y direction
illustrated. As can be seen is the error, mentioned in previous subsection, for this
simulation not entirely solved by adding the two mentioned lines. The calculated
acceleration does not exceed amax but there is still a peek. This is still a problem
what should be investigated.

As expected the accelerations and velocities will not reach amax and vmax. Also
are the desired movements on approximately the same time converged. The over-
shootflag and cases are just like expected.

Figure 4.4: Results for accelerations, velocities and movements simulation 2

25

4.4.3 Attempt to simulate real world

In the real world a Turtle cannot drive in exactly a straight line. There will be devia-
tions where its position differs from any position on the line. When this deviation
is too big the Turtle will notice it. However the Turtle does not want to get back on
the line, but calculates a new line with a movement in another direction. This in-
fluences its x- and y velocity respectively acceleration. This is shown in Figure 4.5.
The red line was the first path in purely x direction and the blue line is the new
path the Turtle will follow. On the spot of the red cross the Turtle notices that it has
a deviation.

Figure 4.5: A path with a deviation.

In this subsection the just mentioned aspect is tried to simulate. This is realized
by having a x movement just like in subsection 4.4.1. Then is with a signal builder
shown in appendix ?? in Figure B.2 a certain y movement applied after a certain
time.

With knowledge of previous simulations one should expect that when the y
movement is introduced the velocity in x direction will decrease. This happens
because the driving angle gets calculated so that the Estimated Time of Arrival
(ETA) of the x direction is approximately the same as the ETA of the y direction.

Figure 4.6: The overshootflags of simulation 3

26

Results

In Figure 4.7 the accelerations, velocities and positions are given. Like expected the
velocity has a dip on the moment the y movement is introduced. The accelerations
show some strange behavior. The acceleration exceeds the amax. The only situation
when this is possible is when the overshootflag is set to 3 and the parking brake
amplifies the accelerations with 3. Like shown in Figure 4.6 on the previous page
the overshootflag is indeed set to 1 when the case was 4. When the y movement was
introduced the overshootflag was set to 3. This makes sure the x- and y positions
converge on the same time.

Figure 4.7: The accelerations, velocities and positions of simulation 3

27

4.4.4 Summary

Since the three simulations do not deal with external influences, these simulations
only work to see what the trajectory planner really does. It should be clear that for
all three simulations the positions all have the expected behavior. However for the
velocities and accelerations there are not always smooth trajectories.

In simulation 1 and 2 there was an unwanted peek in the acceleration. A solu-
tion was given to prevent the acceleration to exceed the amax. However no solution
is available yet for the peek itself.

28

Chapter 5

Global Signal Analysis

In this Chapter an experiment will be done with a Turtle. The main purpose is to
see how the signals in the motion scheme of a Turtle look like. In section 5.1 "Setup
experiment and expectations" the setup of the experiment and the expectations will
be explained and the results follow in section 5.2 "Results Turtle- movement".

5.1 Setup experiment and expectations

One should expect that the accelerations that go in the Turtle are different from the
accelerations calculated in the trajectory planner. In Chapter 3 "Motion Scheme" it
can be seen that the phi is not taken into account in the trajectory planner. The phi
(φ) has its own trajectory planner, the "phimaker". This φ will have an influence on
the accelerations.

For this experiment the original motion scheme is uploaded to the Turtle. There
are some changes made in the scheme though. The role handler is overwritten with
only the referential position, otherwise this is not possible. This block creates nor-
mally the referential position, but does this automatically and takes for example
dribbling into account. Since for this experiment only driving is desired two con-
stant points are initiated. These two points are in a straight line for the Turtle in
y direction. After the Turtle reaches the first point it will wait a moment and then
drive further to the second point. Here is a list with signals that are logged:

• vmax and amax; To see if this is a constant signal while the Turtle is driving.

• Overshootflag for x- and y direction.

• Cases for x-,y- and φ direction.

• atrajectoryplanner for x- and y direction; These are the accelerations that are
calculated by the trajectory planner and will not exceed amax.

• aparkingbrake for x- and y direction; These are the accelerations after the park-
ing brake at the "trajectory planner".

• xin for x- and y direction; These are the positions after the "Global to Local"-
block in Figure 3.1 in Chapter 3 "Motion Scheme"

29

• ain for x- and y direction; These are the accelerations after the "Global to
Local"- block in Figure 3.1. This is actually a position but because this is a
real signal it can be differentiated twice which gives the accelerations.

Firstly the vmax and amax should stay constant since the Turtle was not drib-
bling. Secondly the accelerations calculated by the trajectory planner will be differ-
ent from the simulations seen in Chapter 4 "Trajectory Planner". The Turtle drives
now in the real world so external deviations are taken into account and vision will
correct these deviations.

5.2 Results Turtle- movement

Since the path of the Turtle is intended to be in purely y direction the accelerations
in x- and φ direction are deviations that the robot detects and tries to resolve.

Figure 5.1: The acceleration after the parking brake for 1 movement in y direc-
tion

The acceleration after the parking brake in y direction is shown in Figure 5.1.
The acceleration after the parking brake in the x direction can be found in Fig-
ure D.1 in Appendix D. Every time step will be explained in the following enumer-
ation.

• Time[0 - 2.14]: Normal expected behavior of starting value for acceleration
and driving at maximal speed.

• Time[2.14 - 2.5]: Here are some strange peeks in the signal. In Figure 5.2
in the top figure a zoom is given of Figure 5.1 and it shows the peeks more

30

clear. The lowest figure shows the cases on the time of the peeks. At the
cases it can be seen that first the Turtle was in case 3, then went to case 21
for some time steps and then alternately went in case 3 respectively case 5.
Effectively this acceleration signal is zero what means that the Turtle drove
constantly on maximal velocity. The alternating cases show that the Turtle is
constantly trying to drive maximum velocity until he does or drives too fast.
This is because the threshold of the velocity is too small. When the threshold
of the velocity is somewhat bigger the Turtle’s velocity stays in the converged
area and stays in case 3. Because the case 5 is visited and the Turtle is not
decelerating to stop in time an overshoot flag is set so the acceleration gets
amplified with 3.

Figure 5.2: A zoom of the strange peeks in Figure 5.1 and the cases on time
frame[2.14 - 2.5]

• Time[2.5 - 3.8]: In this time frame of the acceleration after the parking brake
there are also some strange spikes but not so frequently as in the previous
time frame (see top figure Figure 5.3). These spikes can be declared again by
looking at the case (see lower figure in Figure 5.3). There are only two cases,
4 and 22. When one remembers section 4.4.2 "Movement in x direction
and y direction", it would be clear that this is because a small deviation in x
direction occurs. This can be seen in Appendix D in Figure D.2

31

Figure 5.3: A zoom of the strange peeks in Figure 5.1 and the cases on time
frame[2.5 - 3.8].

• Time[3.8 - 4.65] This is a very messy signal. In principle this behavior can be
declared like the previous time step. The difference now is that the deviation
in x direction is much larger and causes more disturbance for the y direction.

• Time[4.7 - 6]: In this time frame it looks like the x direction is converged but
the y direction is still in some time steps trying to reach its final position.
Effectively speaking this acceleration in y direction is zero.

Before this, nothing has been said about the signal after the block "Global to
Local". In Figure 5.4 the acceleration after the parking brake and the acceleration
after the block "Global to Local" are drawn. If one compares these two figures
with each other it can be seen that the signal after "Global to Local" is wrinkled.
This is caused by the the "Drift Control" and the corrections in φ direction. This
should be no problem by for example comparing this signal with the signal from
an accelerometer. The small inaccuracy should be small enough to neglect and
some big hills in the signal should be followed by the Turtle. So the accelerometer
should also give such acceleration values.

32

Figure 5.4: Comparison between acceleration after parking brake and accelera-
tion after "Drift Control"

33

34

Chapter 6

Possible control systems

Today many slip control systems exist, mostly developed for the automotive indus-
try. The basics of some of these control systems will be explained in section 6.1
"Slip control in other vehicles". Finally in section 6.2 "Initial Ideas" some initial
ideas are sketched for a traction controller in the Turtles.

6.1 Slip control in other vehicles

A well-known slip control used in cars is Anti-lock braking system (ABS). This
control system only works for decelerating. For accelerating another system can be
used like Anti-Slip Regulation (ASR). Here in short the basic principle of ABS and
ASR. There is also an Electronic Stability Program (ESP), this contains ABS and
ASR, but also controls lateral dynamics.

6.1.1 ABS and ASR

When a car is driving, all its wheels should have the same speed. This speed should
be the same as the speed of the vehicle itself. ABS detects that the car is slipping
by measuring and comparing the wheel speeds. If the car slips, ABS controls the
braking pressure and makes sure that the car decelerates without slipping. ABS
makes sure that the slip of a car stays in the stable area, so below 20 percent.

ASR operates on the same principle as ABS, but instead of controlling the brak-
ing pressure ASR controls the engine torque.

6.1.2 ESP

ESP is actually a coordinating control system over ABS and ASR. ESP decides
whether ABS or ASR should be used. ESP itself detects the loss of steering control.
When it does, it controls the wheel speeds individually. For example ESP brakes
the outer front wheel to counter oversteer and to counter understeer it brakes the
inner rear wheel. Understeer occurs when the maximal traction of front wheels is
exceeded. For example when there is understeer in a car it spins out in the turn
of the road. Oversteer occurs when the maximal traction of the rear wheels is ex-
ceeded. For example this happens when the car spins. To use ESP a car must be
equipped with some new sensors,[1] like:

35

• Steering wheel angle sensor; measures the desired steering behavior applied
by the operator

• Yaw rate sensor; measures the rotation speed of the vehicle around its vertical
axis.

• Lateral acceleration sensor: This measures the centrifugal forces acting on
the vehicle.

6.2 Initial Ideas

In previous section 6.1 "Slip control in other vehicles" anti-slip control systems are
illustrated that can be used in for example a car. Cars are non-holonomic vehicles
what means that they cannot move in every direction. If a car drives in a straight
line without slipping the wheels have at any moment the same velocity as the car.
When a car makes a turn it is a bit more complicated, but this can be solved. This
is why control systems mentioned in previous Chapter can be used for cars.

In Chapter 2 "The Turtles" is explained that the wheels of a Turtle do not rotate
in the direction the Turtle drives. The Turtle has wheel encoders that measures the
distance they traveled. A control system like ABS or ASR cannot be used in a Turtle
because the wheel speeds can not be compared to the vehicle velocity. The velocity
of the vehicle is always different from the angular velocity the wheels have. This
is why control systems as ABS or ASR cannot be used for a Turtle. ESP cannot be
used for the Turtles either because in the Turtle there is no steering wheel.

Because of this there should be thought of other ways to detect slip. Here are
some ideas created during the developing:

• The Turtle could calculate its wheel speeds beforehand. If one looks at the
from Equation 1.2 derived Equation 6.2, one would notice that the mass on a
robot can be determined and that the Rw and T are known. This means that
if Fw would be calculated the acceleration the wheels should have could be
achieved.

ai =
T(i)

Rw ·m
− Fw

m
(6.1)

Now the difference between the with the accelerometer measured actual ac-
celeration and the calculated acceleration can be known. The major disadvan-
tage is that like mentioned in section 1 "Traction and slip" the Fw depends
on the coefficient of fraction µ. Since this µ is different for every road(type),
every time before a Turtle drives on the field it would need to drive without
slipping to do measurements to determine the µ. The calculation of this µ
would be very difficult since the omniwheels have for each driving angle a
different µ. (See Chapter 2 "The Turtles")

• The Turtles are powered by a DC elektromotor. In Figure 6.1 a simplified
scheme is illustrated for an elektromotor. The amplifier is assumed to be
ideal, at the motor slip, tolerance , vibrations and inertial load are chosen to
be negligible and no noise is assumed at the double differentiation. In this
simplified model with known voltage, specifications of the amplifier/motor

36

and with the inertial load of the Turtle it can be calculated what the ratio in
Equation 6.2 should be.

U/a− ratio =
voltagewheel

accelerationwheel
(6.2)

If the position is measured with encoders the actual ratio can be calculated.
When this measured ratio differs too much from the modeled ratio slip is
detected.

A major problem in this idea is that the inertial load of the Turtle is not easy
to determine. When the robot drives in a certain direction its inertial load
will be different for every wheel at any time.

Figure 6.1: Simplified scheme of an electromotor

• As can be seen in Figure 3.1 in Chapter 3 "Motion Scheme" the input for the
low level control is the referential position. However like shown in Chapter 5
"Global Signal Analysis" this signal is differentiable. When this referential
position is differentiated twice the local acceleration input in the low level
control is known. The local acceleration of the Turtle can be measured with
an accelerometer. When there is a difference between these accelerations the
Turtle can detect slip.

A problem in this method though is that sometimes the signal has strange
behavior like shown in Chapter 4 "Trajectory Planner" and Chapter 5 "Global
Signal Analysis. First this looked like the best method to implement a trac-
tion controller, but later on better ideas were developed. If one is interested
this traction controller is available in Simulink but is not included in this
report.

• The big disadvantage in previous point, that the signals sometimes have a
strange behavior, can be reduced by controlling in the trajectory planner in-
stead of low level control. In low level control every time step the new calcu-
lated path needs to get controlled and the strange behavior in the signals is
more.

In this option the amax is controlled in the trajectory planner. This method
will be explained further in the next Chapter 7 "Traction controller".

37

38

Chapter 7

Traction controller

In this Chapter a traction controller is developed for preventing slip while accelerat-
ing and decelerating. Firstly in section 7.1 "Basic idea" the basic idea of the traction
controller will be explained in some more detail. Then in section 7.2 "Flowcharts"
two flowcharts are created to show how this traction controller really works. In sec-
tion 7.3 "Implementation" the implementation in the trajectory planner is shown
and in section 7.4 "Simulations traction controller" some simulations are done to
show what the traction controller does to the signals in the trajectory planner.

7.1 Basic idea

Like mentioned in previous Chapter is the traction controller developed in this
report based on controlling the amax. This control happens after the "trajectory
preprocessor" in Figure 3.1 in Chapter 3. This because here amax and vmax already
get changed for dribbling. The amax and vmax get used in the trajectory planner,
so the traction controller must have been implemented before or in the trajectory
planner. Since the signal has some strange behavior like shown in Chapter 4 "Tra-
jectory Planner" and Chapter 5 "Global Signal Analysis" it would be helpful to use
the cases in the traction controller. For that reason the traction controller is imple-
mented ín the trajectory planner.

The amax gets controlled by multiplying it with a so called safety factor. This
safety factor is initial equal to 1 and never bigger than 1 or smaller than 0.1. When
the Turtle detects slip it changes the safety factor to a value below 1 so the amax is
lower. By a feedback loop for the safety factor and the difference in previous safety
factor, the ideal safety factor will be evaluated. Since slip behavior is very unstable
and it is not desired to drive slowly unnecessary, the safety factor will be increased
when slip is not detected anymore.

7.2 Flowcharts

In this section two flowcharts are developed to show how the traction controller
works inside the trajectory planner. In the first subsection 7.2.1 "??" the im-
plementation needed for the traction controller is explained. In subsection 7.2.2
"Traction_Controller" the subroutine traction_controller is discussed in detail.

39

7.2.1 Useful code in trajectory planner

In Figure 7.1 a flowchart is illustrated with the part of the trajectory planner where
the traction controller is implemented in. In this flowchart no directions are shown
because it holds for both, x- and y direction.

Figure 7.1: Flowchart of a piece of the trajectory planner with the traction
controller

At first the Turtle checks if it detects slip. When the difference between the
measured acceleration and the input acceleration is too big the variable slip is set
to 1. The value used as threshold for the difference between the two accelerations
should be based on such a diagram as Figure 1.2 in Chapter 1 "Traction and slip".
For the accelerations also exists a stable area. This stable are should be found for
the slip based on difference in acceleration.

Shown in section 5.2 "Results Turtle- movement" is that while the Turtle is
driving around vmax there is some strange behavior in the signal input. This only
occurs when the cases are 3 or 5. So when the cases of the previous time step (when
the Turtle slipped) are 3 or 5, slip is ignored and the corresponding variable is set
back to 0. Because sometimes when cases are 3 or 5 alternately it can happen that
case 21 occurs. For this reason roundmax is set to 5 when case 3 or 5 is detected.
When in a time step the case is not equal to 3 or 5 the roundmax is decreased. Now
in short, when case 21 occurs and the Turtle was the previous 5 time steps never in

40

case 3 or 5 the Turtle is not around vmax and slip cannot be ignored.
After that in the trajectory planner it is checked if the x- or y direction is con-

verged or not. Depending on this the accelerations are calculated. Always before
these get calculated the subroutine traction_controller gets called.

7.2.2 Traction_Controller

In Figure 7.2 a Flowchart is illustrated of the subroutine traction_controller. This
is the block in the flowchart of the previous section 7.2.1 "Useful code in trajectory
planner".

In the flowchart the safety factor is shorted with Sf and the difference in safety
factor of previous time step with ∆sf_last.

Figure 7.2: Flowchart of the actual traction controller

Before the flowchart will be explained, first a numeration of inputs and variables
used in the traction controller:

• a_max_last; stored in a struct called tract. This variable contains the value of
the amax from the previous time step. For the traction controller this value

41

will not be used. Because the safety factor is controlled the amax does not
have to be controlled.

• sf_last; also stored in tract and contains the safety factor of the previous time
step.

• ∆sf_last; stored in tract and contains the difference in safety factor in previ-
ous time stap.

• cases x respectively y; these contain the cases for respectively x- or y direc-
tion visited in subroutine Check Case (section 4.3 "Check Case" in Chapter 4
"Trajectory Planner" in the previous time step.

• overshootflag x respectively y; these contain whether an overshootflag is set
for x respectively y or not. This value will also not be used in the traction
controller. One could think that this should be considere for the reason that
an overshootflag can cause a magnification of the accelerations. Well the
decrease of the amax while slipping also is magnified, so indirectly it ís con-
sidered.

• roundmax x respectively y; these contain if the Turtle was driving at a velocity
near vmax.

Firstly the safety factor of the previous time step is evaluated. To keep it clear
this is subdivided in two subsections 7.2.2 "Previous safetyfactor much lower than
one" (follow arrow down "Much lower than 1" in the flowchart) and 7.2.2 "Previous
safetyfactor near one" (follow arrow to the right "Near 1").

Previous safetyfactor much lower than one

If this safety factor is lower that the threshold it means that in the previous time
step the amax is controlled. After that the Turtle evaluates its slip variable.

1. If the Turtle slips in this time step the traction controller will decrease the
safety factor. When the Turtle slips (follow the right arrow in the flowchart
"Yes") the difference in safety factor can be:

• positive (follow arrow down "Positive"). The last time slip was not de-
tected so the safety factor was increased. Because the Turtle is slipping
now the positive correction was too high assuming the ideal safety fac-
tor is constant. This is corrected by taking the previous time step again,
but then multiplied with 0.5 and subtracted from the last safety factor.
In this way the safety factor is converging to an ideal value.

• negative (follow left arrow "Negative"). In the previous time step was
slip detected and now again. This means that the correction of the pre-
vious step was not high enough. The same correction is used as the
previous time but then multiplied with 2 and subtracted from previ-
ous safety factor. Note that the difference in safety factor is an absolute
value.

• near 0 (follow right arrow "Near 0"). In the previous time step the
difference in safety factor was very very small. In this case when slip is
detected nothing will happen so when the difference in last safety factor
is really too small a normal correction will be introduced.

42

2. If the Turtle does not slip the safety factor must be increased. When the
Turtle does not slip (follow the arrow down in the flowchart "No") and the
difference in safety factor can be:

• positive (follow the middle arrow "Positive"). One time step ago also
no slip was detected. This means that the correction back to 1 was not
high enough. For this reason the same correction is used as the previ-
ous time but then multiplied with 2 and added to the last safety factor.

• negative (follow the upper arrow "Negative"). The correction of the
safety factor in the previous time step was negative. This means that
the correction was too high. In trying to let the safety factor converge,
the difference in safety factor of the previous time is divided by 2 and
added to the safety factor of previous time. This in such a way that the
safety factor converges to the ideal safety factor.

• near 0 (follow the arrow down "Near 0". If the previous difference in
safety factor was 0 and no slip is detected the total correction is divided
by 2 and added to the previous safety factor to make sure the maximal
acceleration does not stay too low.

Previous safetyfactor near one

If the safety factor of the last time step was near 1 it means that there can be two
possibilities. The Turtle is now

1. slipping (follow the arrow to the richt "Yes". The difference in the last safety
factor can be:

• positive (follow arrow to the right "Positive"). The last time step no slip
was detected and the correction of the safety factor was too big. Now to
let the safety factor converge the safety factor is now reduced with the
difference of the previous safety factor divided by 2.

• negative or zero (follow arrow down "Negative or zero"). In this case
the traction controller will change the safety factor with a standard value.

2. not slipping (follow the arrow down "No"). Now there is no slip and previous
time step there was no or negligible slip. Set the safety factor to 1.

After all this cases finally the values should be stored and send. In the new amax
the safety factor influences its value, the difference in safety factor gets calculated
and the safety factor is minimized to 1 or maximized to 0.1 so no strange values
will occur for amax.

7.3 Implementation

In this section the actual implementation in the C - file: "trajectory planner" is
presented. Sometimes pieces of the original trajectory planner are printed too but
in the comments can be seen which pieces that are. Some added pieces especially
for the traction controller are not displayed here like the code to implement extra
ports for in- and output variables or lines that includes header files. In every case

43

one line is added to define the case, this is also not added. The cases are explained
in section 4.3 "Check Case".

This section is divide in several subsections. In the first subsection 7.3.1 "Struct
traction" the struct called traction used in the trajectory planner is defined. In the
second subsection 7.3.2 "Detecting slip" the code for detecting slip is defined. In
subsection 7.3.3 "Converged directions" the code where the traction controller gets
called is added and finally the subroutine traction_controller can be found in the
fourth and last subsection 7.3.4 "Controlling slip".

7.3.1 Struct traction

Some variables used in the traction controller are stored in a struct. This struct is
defined in this header file:

Listing 7.1: Struct traction
i f n d e f s t r u c t s _ h
d e f i n e s t r u c t s _ h

s t r u c t t r a c t i o n {

double a_max_ las t ; %a_max of p r e v i o u s time s t e p
double s f _ l a s t ; %s a f e t y f a c t o r o f p r e v i o u s time s t e p
double d i f _ s f _ l a s t ; %p r e v i o u s change in s a f e t y f a c t o r
i n t c a s e s x ; %c a s e in x d i r e c t i o n
i n t c a s e s y ; %c a s e in y d i r e c t i o n
i n t o v e r s h o o t f l a g x ; %o v e r s h o o t f l a g in x d i r e c t i o n
i n t o v e r s h o o t f l a g y ; %o v e r s h o o t f l a g in y d i r e c t i o n
i n t roundmaxx ; %counter in x d i r e c t i o n
i n t roundmaxy ; %counter in y d i r e c t i o n

} ; t y p e d e f s t r u c t t r a c t i o n t r a c t ;
e n d i f

7.3.2 Detecting slip

Here some calculations are done before subroutine traction_controller gets called.
Firstly it tries to detect slip and ignores slip when the Turtle has nearly vmax as a
velocity. Following the implementation for this:

Listing 7.2: Detecting slip
i f (dabs (a_measx − a_ inx) >= EPSILON_SLIP) { / / s l i p in x

s l i p [0] = 1 ;
}
i f (dabs (a_measy − a_ iny) >= EPSILON_SLIP) { / / s l i p in y

s l i p [1] = 1 ;
}
i f (t r a c t . c a s e s x == 3 | | t r a c t . c a s e s x == 5) { / / c a s e 3 or 5

s l i p [0] = 0;
t r a c t . roundmaxx = 5 ;

} e l s e {
t r a c t . roundmaxx−−;

}
i f (t r a c t . c a s e s y == 3 | | t r a c t . c a s e s y == 5) {

s l i p [1] = 0 ;
t r a c t . roundmaxy = 5 ;

} e l s e {
t r a c t . roundmaxy−−;

}
i f (t r a c t . c a s e s x == 21 && t r a c t . roundmaxx > 0) { / / v_max ?

s l i p [0] = 0;
}
i f (t r a c t . c a s e s y == 21 && t r a c t . roundmaxy > 0) {

44

s l i p [1] = 0 ;
}

7.3.3 Converged directions

In section 4.1 "Outputs" there are four possible ways illustrated where the Turtle
can be in with. The following order is the same as in that section and the added
lines are written in that part of the file.

Outputs trajectory planner

Every part has the same variables as output off course and this looks like:

Listing 7.3: Ouputs trajectory planner
y [0] = q_x ; / / from o r i g i n a l f i l e
y [1] = q_y ; / / from o r i g i n a l f i l e
t [0] = t r a c t . s f _ l a s t ;
t [1] = t r a c t . d i f _ s f _ l a s t ;
t [2] = t r a c t . a_max_ las t ;
c [0] = t r a c t . c a s e s x ;
c [1] = t r a c t . c a s e s y ;
c [2] = t r a c t . o v e r s h o o t f l a g x ;
c [3] = t r a c t . o v e r s h o o t f l a g y ;
c [4] = t r a c t . roundmaxx ;
c [5] = t r a c t . roundmaxy ;

x- and y direction converged

For the first possibility that both x- and y direction are converged. It is desired that
traction control gets applied only once. Otherwise the amax could get corrected
twice. If x- and y direction are both converged there is no case or overshootflag
determined so these are set to the default value of -1 respectively 0. Finally all
values of the struct are outputted to be used as input for the next time step. Here
is the implementation:

Listing 7.4: x- and y direction converged

c o n t r o l l e d = t r a c t i o n _ c o n t r o l (&a_max , s l i p [0] , & t r a c t) ;
q_x = dmin (dmax ((x f d o t−x0dot) / SAMPLE_TIME,−a_max) , a_max) ; / / from o r i g i n a l f i l e
t r a c t . c a s e s x = −1;
t r a c t . o v e r s h o o t f l a g x = 0;
i f (! c o n t r o l l e d) {

c o n t r o l l e d = t r a c t i o n _ c o n t r o l (&a_max , s l i p [1] , & t r a c t) ;
}
q_y = dmin (dmax ((y f d o t−y0dot) / SAMPLE_TIME,−a_max) , a_max) ; / / from o r i g i n a l f i l e
t r a c t . c a s e s y = −1;
t r a c t . o v e r s h o o t f l a g y = 0;

Only x direction converged

In the below implementation only the x direction is converged. For this the same
reasoning holds for the x direction as for the previous implementation. However
for the y direction calculate _time gets called. this means that a case and an over-
shootflag will be defined.

45

Listing 7.5: Only x direction converged

c o n t r o l l e d = t r a c t i o n _ c o n t r o l (&a_max , s l i p [0] , & t r a c t) ;
q_x = dmin (dmax ((x f d o t−x0dot) / SAMPLE_TIME,−a_max) , a_max) ; / / from o r i g i n a l f i l e
t r a c t . c a s e s x = −1;
t r a c t . o v e r s h o o t f l a g x = −1;
i f (! c o n t r o l l e d) {
c o n t r o l l e d = t r a c t i o n _ c o n t r o l (&a_max , s l i p [1] , & t r a c t) ;
}
ETA_y = c a l c u l a t e _ t i m e (yf , y0dot , y f d o t , v_max , a_max , &q_y) ; / / from o r i g i n a l f i l e
p o v e r s h o o t f l a g [1] = o v e r s h o o t f l a g ; / / from o r i g i n a l f i l e

t r a c t . o v e r s h o o t f l a g y = o v e r s h o o t f l a g ;

Only y direction converged

For the following C- code hold the same reasoning as for previous implementation.
However here it is vice versa for x- and y direction.

Listing 7.6: Only y direction converged

c o n t r o l l e d = t r a c t i o n _ c o n t r o l (&a_max , s l i p [0] , & t r a c t) ;
ETA_x = c a l c u l a t e _ t i m e (xf , x0dot , x f d o t , v_max , a_max ,& q_x) ; \ \ from o r i g i n a l f i l e f i l e
t r a c t . o v e r s h o o t f l a g y = o v e r s h o o t f l a g ;
i f (c o n t r o l l e d) {

o v e r s h o o t f l a g = 0;
}
p o v e r s h o o t f l a g [0] = o v e r s h o o t f l a g ; \ \ from o r i g i n a l f i l e
i f (! c o n t r o l l e d) {

c o n t r o l l e d = t r a c t i o n _ c o n t r o l (&a_max , s l i p [1] , & t r a c t) ;
}
q_y = dmin (dmax ((y f d o t−y0dot) / SAMPLE_TIME,−a_max) , a_max) ;
t r a c t . c a s e s y = −1;
t r a c t . o v e r s h o o t f l a g y = 0;

No directions converged

For the fourth case the same idea holds. Following code is implemented before the
loop where the ideal driving angle gets calculated (See section 4.1 "Outputs".

Listing 7.7: No direction converged
c o n t r o l l e d = t r a c t i o n _ c o n t r o l (&a_max , s l i p [0] , & t r a c t) ;
ETA_x = c a l c u l a t e _ t i m e (xf , x0dot , x f d o t , v_max_x , a_max_x ,& q_x) ; / / from o r i g i n a l f i l e
i f (c o n t r o l l e d) {

o v e r s h o o t f l a g = 0;
}
p o v e r s h o o t f l a g [0] = o v e r s h o o t f l a g ; / / from o r i g i n a l f i l e
t r a c t . o v e r s h o o t f l a g x = o v e r s h o o t f l a g ;
i f (! c o n t r o l l e d) {

c o n t r o l l e d = t r a c t i o n _ c o n t r o l (&a_max , s l i p [1] , & t r a c t) ;
}
ETA_y = c a l c u l a t e _ t i m e (yf , y0dot , y f d o t , v_max_y , a_max_y ,& q_y) ; / / from o r i g i n a l f i l e
p o v e r s h o o t f l a g [1] = o v e r s h o o t f l a g ; / / from o r i g i n a l f i l e

t r a c t . o v e r s h o o t f l a g y = o v e r s h o o t f l a g ;

7.3.4 Controlling slip

Finally the C- code of the traction controller traction_controller is given below. At
first used variables are declared and the total correction is calculated. Secondly
are the steps that are shown in the flowchart in previous section 7.2 "Flowcharts"
exactly implemented.

46

Listing 7.8: Subroutine traction_control
i n t t r a c t i o n _ c o n t r o l (double∗ a_max , i n t s l i p , s t r u c t t r a c t i o n ∗ t r a c t) {

double EPSILON_SF_LAST = 0 . 0 0 5 ; / / Value should be tuned
double EPSILON_dSF_LAST = 0 . 0 5 ; / / Value should be tuned
double EPSILON_STAND_VAL = 0 . 1 ; / / Value should be tuned
double s a f e _ f a c t = 1 ;
double r e t = −1;

double s f _ l a s t = t r a c t−> s f _ l a s t ;
double d i f _ s f _ l a s t = t r a c t−> d i f _ s f _ l a s t ;
double a_max_ las t = t r a c t−>a_max_ las t ;

double t o t _ c o r = 1 − s f _ l a s t ;

i f (s f _ l a s t > 1 − EPSILON_SF_LAST) {
i f (s l i p) { / / Decrease s f

i f (d i f _ s f _ l a s t >= EPSILON_dSF_LAST) { / / Smal ler + c o r r
s a f e _ f a c t = 1 − dabs (d i f _ s f _ l a s t / 2) ;

} e l s e { / / C o r r e c t i o n i s n e a r l y 0
s a f e _ f a c t = 1 − EPSILON_STAND_VAL ;

}
r e t = 1 ;

} e l s e { / / No c o r r e c t i o n , no s l i p
s a f e _ f a c t = 1 ;
r e t = 0;

}
} e l s e { / / There i s a c o r r e c t i o n going on

i f (s l i p) { / / Decrease s f
i f (d i f _ s f _ l a s t >= EPSILON_dSF_LAST) { / / Smal ler + c o r r

s a f e _ f a c t = s f _ l a s t − dabs (d i f _ s f _ l a s t / 2) ;
} e l s e i f (d i f _ s f _ l a s t <= −EPSILON_dSF_LAST) { / / L a r g e r −c o r r

s a f e _ f a c t = s f _ l a s t − 2∗dabs (d i f _ s f _ l a s t) ;
} e l s e { / / Standard c o r r e c t i o n

s a f e _ f a c t = s f _ l a s t − EPSILON_STAND_VAL ;
}
r e t = 3 ;

} e l s e { / / I n c r e a s e s f
i f (d i f _ s f _ l a s t >= EPSILON_dSF_LAST) { / / L a r g e r + c o r r

s a f e _ f a c t = s f _ l a s t + 2∗dabs (d i f _ s f _ l a s t) ;
} e l s e i f (d i f _ s f _ l a s t <= −EPSILON_dSF_LAST) { / / Smal ler −c o r r

s a f e _ f a c t = s f _ l a s t + dabs (d i f _ s f _ l a s t / 2) ;
} e l s e { / / Standard p o s i t i v e c o r r e c t i o n

s a f e _ f a c t = s f _ l a s t + dabs (t o t _ c o r / 2) ;
}
r e t = 2 ;

}
}
i f (s a f e _ f a c t > 1) {

s a f e _ f a c t = 1 ;
} e l s e i f { s a f e _ f a c t < 0 . 1 }

s a f e _ f a c t = 0 . 1 ;
}
∗a_max = s a f e _ f a c t ∗ (∗ a_max) ;
t r a c t−> s f _ l a s t = s a f e _ f a c t ;
t r a c t−> d i f _ s f _ l a s t = s a f e _ f a c t − s f _ l a s t ;
t r a c t−>a_max_ las t = ∗a_max ;

r e t u r n r e t ;
}

7.4 Simulations traction controller

For the explained traction controller in previous sections the measurements done
by an accelerometer are essential. It is not possible to test this traction controller on
a Turtle because the accelerometer on the Turtles cannot be used properly. Because
of this, only simulations on the computer are run for this traction controller.

In Figure E.1 in Appendix E the simulation setup is illustrated and explained.

47

With a signal builder an error is added to the simulation. Because the signal builder
creates a signal that gets multiplied with the accelerationvalues its default value is
1. This is why in this simulation will be spoken of an error + 1. This error is applied
in a referential signal, so whatever the traction controller does, the imposed error
stays the same.

In the first two experiments just a movement in the x direction is modeled.
In section 7.4.1 "Simulation with no error" a first simulation is performed with
no error. In the next section 7.4.2 "Simulation with a small error" a small er-
ror is imposed. In section 7.4.3 "Simulation with an error and x- and y direction
movement" an y movement is introduced to see what happens if two directions are
not converged. Finally in section 7.4.4 "Simulation for slip at maximal velocity it
is checked if the traction controller does not do anything while driving at maximal
speed.

7.4.1 Simulation with no error

In this simulation no error is introduced to the system. Only one movement in x
direction is simulated. This means that the accelerations, velocities and positions
should be the same as in simulation 1 of Chapter 4 "Trajectory Planner. The safety
factor should be equal to 1 and the variable roundmaxx should only have a value of
5 when the Turtle is in case 3 and drives on maximal speed.

Figure 7.3: Acceleration in x direction, safety factor and roundmax in x direction

48

Results

The results are exactly the same as the expectations. In Figure 7.3 on the previ-
ous page the acceleration in x direction, the safety factor and the roundmax in x
direction are shown.

As can be seen the same peek as in section 4.4.1 "Movement in x direction" is
visible. Only when the acceleration is zero the roundmaxx is equal to 5. This shows
that the traction controller does not do anything if no slip is detected.

7.4.2 Simulation with a small error

In this simulation a certain error is given. In reality this will not occur on this
way, because whatever the traction controller does the error will not decrease. This
means that the safety factor will get a minimal value defined by the traction con-
troller, 0.1. Nevertheless with this simulation one can see what the traction con-
troller does and how acceleration changes.

Figure 7.4: The piece where the error+1 is introduced, the safety factor in that
same time frame and the acceleration value in x direction

49

Results

In the top figure of Figure 7.4 one can see what error is applied. These figures
are zoomed in on a certain time frame where the error is applied. Outside that
time frame the behavior of the signals is obviously exactly the same as in previous
simulation.

It can be seen in the middle figure that when the error is bigger than a certain
value the safety factor gets decreased. Because the error stays the same the Turtle
constantly thinks it is slipping. When the safety factor reaches 0.1 it converges.
When then the error becomes small again the safety factor gets increased again
and becomes 1.

The maximal acceleration in the lowest figure follows this behavior since those
two get multiplied. Right before the acceleration is decreased there is a peek in
the signal. This peek is caused because of the overshootflag. Because the Turtle is
decreasing its acceleration, but still has to drive some distance, the overshootflag is
set. This error is not desired but it does not matter much.

Because the amax is equal to 1, Equation 7.4.2 holds. This can be seen in Fig-
ure 7.5. The top figure shows the error+1.

amax = safetyfactor · amax = safetyfactor (7.1)

Figure 7.5: The error+1, the acceleration and the x- and y velocity

50

7.4.3 Simulation with an error and x- and y direction
movement

This is a short experiment to show what the traction controller does with the speed
of the Turtle. This simulation is somehow similar to that from section 4.4.2 "Move-
ment in x direction and y direction" only here an error is introduced.

Results

Figure 7.6: The error, acceleration in x- and y direction respectively velocity
for movement in x- and y direction

In Figure 7.6 the error+1 imposed on the model is illustrated. In the second figure
the acceleration is shown.

It is clear that the traction controller does its work nicely. The acceleration is
purely constant around 0.1 and the direction with the overshootflag is 0.3. This

51

is because the safety factor gets limited. It can be seen that from the moment no
error is noticed an overshoot gets set. This does not really matter because in reality
when the Turtle slips the amax gets controlled. On that moment it does not matter
whether an overshootflag is set or not.

On the moment the error + 1 is imposed, the velocity in the third figure has a
much lower slope. This is very logic, because the acceleration is limited. The same
amax is used for both directions.

7.4.4 Simulation for slip at maximal velocity

In this section a small simulation is performed to show that slip at maximal velocity
is ignored. In this case the vmax is set to 0.5 so the vmax is early reached.

Figure 7.7: The error, velocity in x (driving) direction and the cases in the x
direction

52

Results

In Figure 7.7 one could see that the error + 1 is imposed right before time = 1.5sec.
In the lowest figure it can be seen that the case is 3 in the time frame [0.5 - 2]. While
the error + 1 is imposed the case is 3 and the velocity is 0.5. Right when the Turtle
is not in case 3 anymore the the amax is controlled. This can be seen in the safety
factor, drawn in the lowest figure.

7.5 Improvements of the traction controller

Because it was not possible to test the traction controller on the Turtles, it was also
not possible to tune the parameters and build more features into it. Here some
features that are not included in the tractioncontroller explained in this Chapter.

When in the struct tract a counter is included, it would be possible to make sure the
safety factor does not variate too much. The idea of this counter is that it waits with the
positive corrections and keeps the safety factor for some time steps on a constant value.

The traction controller does not react on an overshootflag that gets set. Even though
an overshootflag amplifies the acceleration and could cause slip. It is true that when
the safety factor changes a value, and that value gets amplified, the difference also gets
amplified. So indirectly the overshootflag is taken into account. However this is probably
not reliable. The overshootflag gets set while the traction controller is doing iets work. This
should not matter because then the amax is just made 3 times smaller, until the Turtle is
not slipping anymore. When one could test the traction controller on the Turtle, one could
investigate is this really does not matter.

53

54

Concluding Remarks

Slip can be prevented by driving very slowly. For a Turtle this would be a very bad
strategy, because it wants to move over the soccer field as quick as possible. For
that reason a fast adaptive traction control is desired for the Turtles.

Since the wheels of a Turtle are not in a rectilinear configuration it is not possi-
ble to use the same control systems as used in a car. For that reason is in this report
chosen for another approach, namely comparing the intended acceleration with the
actual acceleration measured by an accelerometer. For this it is important to clearly
understand on which principles these intended accelerations are based on. So, this
report contains an extensive research into the motion software of the Turtle, mostly
in the trajectory planner. During this research some unwanted abnormalities are
noticed and summarized in the next Chapter.

Basically the approach used in this report changes the maximal tolerable accel-
eration. The developed traction controller only works for accelerating and decel-
erating. A traction controller that also works when a Turtle is pushing against an
opponent is shortly explained in the next Chapter, but this are only small basics.

The most trivial part of developing a controller was not possible in this report.
It is very unfortnate that the accelerometer in the Turtle does not work properly
because now the created traction controller is not validated, tuned and optimized.
However in the simulations done on the computer one could see that the traction
controller works like explained in the theory.

55

56

Future Work

The in this report developed traction controller is not tested yet on the Turtles.
For this, one needs the accelerometer, or can use an observer to differentiate the
encoders twice. When the traction controller is tested the parameters can be tuned.
Parameters like thresholds and standard changes in safety factor.

One undesired property of the developed traction controller that is known for
now is that the safety factor never reaches a constant value. This because when
there is no slip anymore the safety factor should be 1 again. One could build in a
counter that waits with positive corrections. This is not implemented in the in this
report developed traction controller because it could not be tested properly.

As important thing in the development to a traction controller the accelerome-
ter must be implemented. The accelerometer does not find itself in the middle of
a Turtle, but somewhere on the side in a different coordinate system. This means
the values obtained by the accelerometer are nonsense and must be transformed
to the coordinate system of the Turtle. The rotating can be done by using a cosine
direction matrix.[2] Although position is not important while discussing accelera-
tion also the translation of the coordinate system is important. When the Turtle is
only rotating in φ direction and the accelerometer is mounted on the side it will
constantly detect an acceleration in a certain direction and this is not wanted.

While reading Chapter 4 "Trajectory Planner" one would have noticed some
undesirable abnormalities are created by the trajectory planner. Following some
examples.

• In section 4.4.1 "Movement in x direction" a simple simulation is performed with
the trajectory planner. The calculated acceleration can exceed the maximal accel-
eration which should not be possible. In the velocity and position the peek in the
acceleration does not matter but nevertheless it is an irregularity in the signal.

• The behavior when case 3,5 or 21 (See section 4.3 "Check Case") gets visited, sec-
tion 5.2 "Results Turtle- movement". Probably this behavior is caused because the
threshold for the maximal velocity is too small. In the same section some vague
peeks can be seen but then in another time frame, these are caused by a deviation
in another direction and a alternate case (21 and 4)

The traction controller described in Chapter 7 "Traction controller" is based on
accelerating and decelerating of a robot on a path. However for the Turtles it is
sometimes important to push against another robot. When a Turtle has a maximal
acceleration without slip the pushing force against an opponent is maximal. The
traction controller in previous section would lower the amax until this is zero. This
is not wanted and for that reason another idea should be performed. Following an
example of such an idea.

57

• Like mentioned in section 6.2 "Initial Ideas" the Turtle cannot compare its wheel
speeds. However because in the motion scheme the signal out of the encoders gets
decoupled from wheels to local coordinates the displacement of a Turtle is known
in x, y and φ. With an observer can one trace the accelerations in x, y and φ
direction the wheels think the Turtle drove. With the accelerometer one would be
able to detect slip and correct the desired wheel speeds individually.

58

Bibliography

[1] Rem- en slipgedrag.pdf, E. Gernaat (ISBN 987-90-808907-7-0) 02-09-2011

[2] Multibody Dynamics (4J400), N. van de Wouw; Technical University of Eind-
hoven (Department of Mechanical Engeneering) 2010

59

60

Appendix A

Decoupling local- to wheel
coordinates

wi is the wheel speed of the ith wheel and Vr is the velocity vector of the robot. First
the wheel speeds are defined like:w1

w2

w3

 =

−|Vr| · sin(30 + φ) +R1 · φ̇
|Vr| · cos(φ) +R2 · φ̇

|Vr| · sin(−30 + φ) +R3 · φ̇


Then some conversion equations:

− sin(30 + φ) = − sin(30) · cos(φ)− cos(30) sin(φ) = −1

2
cos(φ)−

√
3

2
sin)(φ)

sin(−30 + φ) = − sin(30) · cos(φ) + cos(30) sin(φ) = −1

2
cos(φ) +

√
3

2
sin)(φ)

Vx = |Vr| · cosφ

Vy = |Vr| · sinφ
So the wheel speeds can be written as:w1

w2

w3

 =

− 1
2 −

√
3
2 R1

1 0 R2

− 1
2

√
3
2 R3

 ·
VxVy

˙phi


And the speeds in local robot coordinates become:VxVy

φ̇

 =

− 1
2 −

√
3
2 R1

1 0 R2

− 1
2

√
3
2 R3


−1

·

w1

w2

w3


VxVy
φ̇

 =
1

R1 +R2 +R3
·

 −R2 R3 +R2 −R2

− 1√
3
(2R3 +R2) 1√

3
(−R3 +R1) 1√

3
(R2 + 2R1)

1 1 1

·
w1

w2

w3



61

62

Appendix B

Simulations

In the simulation the Turtle follows the given signal perfectly. The idea is to let the
Turtle drive 2 meters purely in x direction with a final velocity of zero. The set up
is shown in Figure B.1 and the inputs for the trajectory planner in this simulation
are in following order:

• desired movement in x direction

• desired final velocity in x direction

• desired movement in y direction

• desired final velocity in y direction

• instantaneous movement in x direction

• instantaneous movement in y direction

• instantaneous velocity in x direction

• instantaneous velocity in y direction

• maximal velocity

• maximal acceleration

• robotID; 2 for a normal Turtle.

The turn flag is set to zero. Outside this simulation the turn flag is set to one
when the Turtle is dribbling. The control enable is set to one to enable the parking
brake.

63

Figure B.1: Set up for simulation 1

For the simulation (simulation 2) where also a movement is introduced in y
direction the same set up is used, but with a value for the desired movement in y
direction.

For the simulation (simulation 3) where is attempt to simulate the real world a
signal builder is used instead of a constant value for the y movement.

Figure B.2: Signal builder for simulation 3

64

Appendix C

C file trajectory planner

Listing C.1: C implementation trajectory planner
/∗ F i l e : t r a j . c

∗ A b s t r a c t : T r a j e c t o r y g e n e r a t o r
∗
∗/

d e f i n e S_FUNCTION_NAME t r a j e c t o r y p l a n n e r
d e f i n e S_FUNCTION_LEVEL 2

i n c l u d e " s ims t ruc . h"
i n c l u d e <math . h>
i n c l u d e < s t d i o . h>
i n c l u d e " g l o b a l _ p a r . h"
i n c l u d e " bus . h"

d e f i n e dabs (A) ((A) >=0?(A) :− (A))
d e f i n e dmin (A, B) ((A−B) >=0?(B) : (A))
d e f i n e dmax (A, B) ((A−B) >=0?(A) : (B))
d e f i n e dsgn (A) ((A) > = 0 ? (1) : (− 1))

d e f i n e EPSILON_POSITION_CONVERGED 0.005 /∗ sample_time∗v_max +0.5∗ a_max∗sample_time∗sample_time ∗/
d e f i n e EPSILON_VELOCITY_CONVERGED 0.001∗2.5 /∗ sample_time∗a_max ∗/
d e f i n e EPS 1 e−16 /∗ Machine p r e c i s i o n ∗/

/∗====================∗
∗ S−f u n c t i o n methods ∗
∗====================∗/

/∗ Funct ion : m d l I n i t i a l i z e S i z e s ===
∗ A b s t r a c t :
∗ The s i z e s i n f o r m a t i o n i s used by Simulink t o determine the S−f u n c t i o n
∗ block ’ s c h a r a c t e r i s t i c s (number o f inputs , outputs , s t a t e s , e t c .) .
∗/

s t a t i c i n t o v e r s h o o t f l a g ;

s t a t i c v o i d m d l I n i t i a l i z e S i z e s (S imStruc t ∗S)
{

ssSetNumSFcnParams (S , 0) ; /∗ Number o f e x p e c t e d parameters ∗/
i f (ssGetNumSFcnParams (S) ! = ssGetSFcnParamsCount (S)) {

r e t u r n ; /∗ Parameter mismatch w i l l be r e p o r t e d by Simulink ∗/
}

ssSetNumContStates (S , 0) ;
ssSetNumDiscSta tes (S , 0) ;

i f (! ssSetNumInputPorts (S , 1)) r e t u r n ;
s sSe t InputPor tWid th (S , 0 , 1 1) ;
s sSe t InputPor tDi rec tFeedThrough (S , 0 , 1) ;

65

i f (! ssSetNumOutputPorts (S , 2)) r e t u r n ;
ssSetOutputPor tWidth (S , 0 , 3) ;
ssSetOutputPor tWidth (S , 1 , 2) ;

ssSetNumSampleTimes (S , 1) ;
ssSetNumRWork (S , 0) ;
ssSetNumIWork (S , 0) ;
ssSetNumPWork (S , 0) ;
ssSetNumModes (S , 0) ;
ssSetNumNonsampledZCs (S , 0) ;

/∗ Take c a r e when s p e c i f y i n g e x c e p t i o n f r e e code − see sfuntmpl_doc . c ∗/
s s S e t O p t i o n s (S , SS_OPTION_EXCEPTION_FREE_CODE) ;

}

/∗ Funct ion : m d l I n i t i a l i z e S a m p l e T i m e s ===
∗ A b s t r a c t :
∗ S p e c i f i y t h a t we have a cont inuous sample time .
∗/

s t a t i c v o i d m d l I n i t i a l i z e S a m p l e T i m e s (SimStruc t ∗S)
{

ssSetSampleTime (S , 0 ,CONTINUOUS_SAMPLE_TIME) ;
s s S e t O f f s e t T i m e (S , 0 , 0 . 0) ;

}

i n t check_case (double wf , double w0dot , double wfdot , double v_max , double a_max , double∗ q_w ,
double∗ t _ a c c e n t , double∗ w_accent , double∗ wdot_accent) {

double w1dot = 0 , t _ I , t _ I I ;
double r e v = 1 ;
double SAMPLE_TIME = 0 . 0 0 1 ; /∗ g l o b a l v a r i a b l e ? ! ∗/

i f ((wf<=0 && wfdot >=0) | | (wf<0 && wfdot <0)) {
/∗ Case 0: r e v e r s e n e g a t i v e c a s e s ∗/

wf = −wf ;
w0dot = −w0dot ;
wfdot = −wfdot ;
r e v = −r e v ;

}

i f (dabs (wf) <=EPSILON_POSITION_CONVERGED && dabs (wfdot−w0dot) <EPSILON_VELOCITY_CONVERGED) {
/∗ No c a s e : converged ! ∗/

∗q_w = dmin (dmax ((wfdot−w0dot) / SAMPLE_TIME,−a_max) , a_max) ;
∗ t _ a c c e n t = 0;
∗w_accent = 0;
∗wdot_accent = wfdot ;
r e t u r n 1 ;

} e l s e i f (w0dot >v_max) {
/∗ Case 5 : too l a r g e v e l o c i t y (a f t e r t a r g e t swi tch , or no i se) ; d e c e l e r a t e ∗/

∗q_w = −a_max ;
∗ t _ a c c e n t = (w0dot−v_max) / a_max ;
∗w_accent = 0 . 5∗ (w0dot∗w0dot−v_max∗v_max) / a_max ;
∗wdot_accent = v_max ;

} e l s e i f (dabs (w0dot−v_max) <=EPSILON_VELOCITY_CONVERGED &&
wf >0 .5∗ (w0dot∗w0dot−wfdot∗wfdot) / a_max) {
/∗ Case 3 : d r i v i n g a t maximal v e l o c i t y ∗/

∗q_w = (v_max−w0dot) / SAMPLE_TIME ;
∗ t _ a c c e n t = wf / v_max +0.5∗wfdot∗wfdot / v_max / a_max−0.5∗v_max / a_max ;
∗w_accent = wf +0 .5∗ (wfdot∗wfdot−v_max∗v_max) / a_max+EPS ;
∗wdot_accent = v_max ;

} e l s e i f (v_max+EPSILON_VELOCITY_CONVERGED>=w0dot && w0dot>0 &&
wf <=0.5∗ (w0dot∗w0dot−wfdot∗wfdot) / a_max) {
/∗ Case 4 : need t o d e c e l e r a t e t o s t o p in time ∗/

∗q_w = −a_max ;
∗ t _ a c c e n t = (w0dot−wfdot) / a_max ;
∗w_accent = 0 . 5∗ (w0dot∗w0dot−wfdot∗wfdot) / a_max ;
∗wdot_accent = wfdot ;

} e l s e i f (wf >0 .5∗ (wfdot∗wfdot−w0dot∗w0dot) / a_max) {
/∗ Case 2 : normal a c c e l e r a t i o n ∗/

t _ I = (v_max−w0dot) / a_max ;
w1dot = s q r t (wf∗a_max +0 .5∗ (w0dot∗w0dot+ wfdot∗wfdot)) ;
t _ I I = (w1dot−w0dot) / a_max ;
i f (t _ I <= t _ I I) {

66

/∗ Case 2 . 1 : a c c e l e r a t e t o maximum v e l o c i t y ∗/
∗q_w = a_max ;
∗ t _ a c c e n t = t _ I ;
∗w_accent = 0 . 5∗ (v_max∗v_max−w0dot∗w0dot) / a_max ;
∗wdot_accent = v_max ;

} e l s e {
/∗ Case 2 . 2 : a c c e l e r a t e t o w1dot <v_max ∗/

∗q_w = a_max ;
∗ t _ a c c e n t = t _ I I ;
∗w_accent = 0.5∗wf +0.25∗ (wfdot∗wfdot−w0dot∗w0dot) / a_max+EPS ;
∗wdot_accent = w1dot ;

}
} e l s e i f (wf >0 .5∗ (w0dot∗w0dot−wfdot∗wfdot) / a_max) {
/∗ Case a a n l o o p j e : d i s t a n c e too smal l t o reach d e s i r e d f i n a l v e l o c i t y ∗/

i f (wfdot >0){
w1dot = −1.1∗ s q r t (−wf∗a_max +0 .5∗ (w0dot∗w0dot+ wfdot∗wfdot)) ;
∗q_w = −a_max ;
∗ t _ a c c e n t = (w0dot−w1dot) / a_max ;
∗w_accent = 0 . 5∗ (w0dot∗w0dot−w1dot∗w1dot) / a_max ;
∗wdot_accent = w1dot ;

} e l s e {
w1dot = 1 . 1∗ s q r t (wf∗a_max +0 .5∗ (w0dot∗w0dot+ wfdot∗wfdot)) ;
∗q_w = a_max ;
∗ t _ a c c e n t = (w1dot−w0dot) / a_max ;
∗w_accent = 0 . 5∗ (w1dot∗w1dot−w0dot∗w0dot) / a_max ;
∗wdot_accent = w1dot ;

}
} e l s e i f (w0dot <0){
/∗ Case 1 : d r i v i n g in n e g a t i v e (wrong) d i r e c t i o n ; a c c e l e r a t e ∗/

∗q_w = a_max ;
∗ t _ a c c e n t = −w0dot / a_max ;
∗w_accent = −0.5∗w0dot∗w0dot / a_max ;
∗wdot_accent = 0;

} e l s e {
/∗ p r i n t f (" E r r o r \n\n ") ; ∗/
}

/∗ Compensate f o r Case 1 , r e v e r t i n g ∗/
∗w_accent = r e v∗∗w_accent ;
∗wdot_accent = r e v∗∗wdot_accent ;
∗q_w = r e v∗∗q_w ;

r e t u r n 0;
}

double c a l c u l a t e _ t i m e (double wf , double w0dot , double wfdot , double v_max_w , double a_max_w , double∗ q_impl) {

double t = 0; /∗ i n i t i a l t ime ∗/
double q_w = 0; /∗ i n i t i a l p o s i t i o n ∗/
double t _ a c c e n t = 0; /∗ update time ∗/
double w_accent = 0; /∗ update p o s i t i o n ∗/
double wdot_accent = 0; /∗ update v e l o c i t y ∗/
double ETA = 0; /∗ Est imated Time of A r r i v a l ∗/

i n t N = 1 0 ;
i n t i = 0 ;
i n t converged = 0;

o v e r s h o o t f l a g = 0;

f o r (i =0; i <N; i ++){
converged = check_case (wf , w0dot , wfdot , v_max_w , a_max_w ,&q_w,& t _ a c c e n t ,& w_accent ,& wdot_accent) ;

/ / i f i ==0 && q_w < 0.0 en j e w i l naar wf > 0.0 && (i f i ==1 && ! converged)
i f (i ==0 && q_w<0.0 && wf > 0 . 0)
{

o v e r s h o o t f l a g = 1 ;
}
i f (i ==1 && o v e r s h o o t f l a g ==1 && ! converged)
{

o v e r s h o o t f l a g = 3 ;
}

/ / i f i ==0 && q_w > 0.0 en j e w i l naar wf < 0.0 && (i f i ==1 && ! converged)

67

i f (i ==0 && q_w>0.0 && wf < 0 . 0)
{

o v e r s h o o t f l a g = 2 ;
}
i f (i ==1 && o v e r s h o o t f l a g ==2 && ! converged)
{

o v e r s h o o t f l a g = 3 ;
}

i f (i ==0){
∗q_impl = q_w ;

}

/∗ Update time , p o s i t i o n and v e l o c i t y ∗/
t = t + t _ a c c e n t ;
wf = wf − w_accent ;
w0dot = wdot_accent ;

i f (converged) {
ETA = t ;
break ;

}
}
r e t u r n ETA ;

}

/∗ Funct ion : mdlOutputs ===
∗ A b s t r a c t :
∗ y = Cx + Du
∗/

s t a t i c v o i d mdlOutputs (S imStruc t ∗S , in t_T t i d)
{

double ∗y = s s G e t O u t p u t P o r t R e a l S i g n a l (S , 0) ;
r e a l _ T ∗p o v e r s h o o t f l a g = (r e a l _ T ∗) s s G e t O u t p u t P o r t S i g n a l (S , 1) ;
I np u tR e a l P t r s Ty p e uPt rs = s s G e t I n p u t P o r t R e a l S i g n a l P t r s (S , 0) ; /∗ x _ r e f , x d o t _ r e f , y _ r e f ,
y d o t _ r e f , x , y , x0dot , y0dot , v_max , a_max , robotID ∗/
double x f = ∗uPt rs [0]−∗ uPt rs [4] ;
double x f d o t = ∗uPt rs [1] ; /∗ f o r the keeper (r o b o t 1) , i t i s assumed t h a t
x f d o t and y f d o t a r e zero ! (v e l o c i t i e s and a c c e l e r a t i o n s a r e not a d j u s t e d f o r the keeper
when end−v e l o c i t i e s a r e c o n s i d e r e d) ∗/
double y f = ∗uPt rs [2]−∗ uPt rs [5] ;
double y f d o t = ∗uPt rs [3] ;
double x0dot = ∗uPt rs [6] ;
double y0dot = ∗uPt rs [7] ;
double v_max = ∗uPt rs [8] ; /∗ in c a s e o f r o b o t 1 (g o a l k e e p e r) , v_max and
a_max r e p r e s e n t the v e l o c i t y and a c c e l e r a t i o n in y−d i r e c t i o n ∗/
double a_max = ∗uPt rs [9] ;
i n t robotID = (i n t) ∗uPt rs [1 0] ;

double SAMPLE_TIME = 0 . 0 0 1 ; /∗ g l o b a l v a r i a b l e ? ! ∗/

double q_x = 0;
double ETA_x = 0;
double ETA_x_min = 0;
double ETA_x_max = 0;

double q_y = 0;
double ETA_y = 0;
double ETA_y_min = 0;
double ETA_y_max = 0;

s t a t i c double a lpha = 0.25∗M_PI ;
double alpha_min = 0;
double alpha_max = 0.5∗M_PI ;

double v_max_x , v_max_y , a_max_x , a_max_y , v_max_d ;
double SYNC_TIME_PRECISION1 = . 0 0 1 ;
double SYNC_TIME_PRECISION2 = . 0 0 1 ;
double EPSILON_VELOCITY_CONVERGED2 = 0 . 3 ;

i n t j = 0 ;
i n t s y n c a b l e = 0;

/∗ check f e a s i b i l i t y o f f i n a l v e l o c i t i e s ∗/

68

/∗ t h i s a l s o p r e v e n t s alpha_min >alpha_max (see below) ∗/
v_max_d = s q r t (x f d o t∗ x f d o t + y f d o t∗ y f d o t) ;
i f (v_max_d >0.8∗v_max) {

x f d o t = x f d o t ∗ (0.8∗ v_max) / v_max_d ;
y f d o t = y f d o t ∗ (0.8∗ v_max) / v_max_d ;

}
i f (dabs (x f d o t) <0.5∗EPSILON_VELOCITY_CONVERGED2) {

x f d o t = 0;
} e l s e i f (x f d o t >0){

x f d o t = dmax (x f d o t , EPSILON_VELOCITY_CONVERGED2) ;
} e l s e {

x f d o t = dmin (x f d o t ,−EPSILON_VELOCITY_CONVERGED2) ;
}
i f (dabs (y f d o t) <0.5∗EPSILON_VELOCITY_CONVERGED2) {

y f d o t = 0;
} e l s e i f (y f d o t >0){

y f d o t = dmax (y f d o t , EPSILON_VELOCITY_CONVERGED2) ;
} e l s e {

y f d o t = dmin (y f d o t ,−EPSILON_VELOCITY_CONVERGED2) ;
}

/∗ i f f i n a l v e l o c i t i e s a r e requ i red , alpha_max and / or alpha_min a r e l i m i t e d ∗/
i f (dabs (x f d o t) >0) {

v_max_x = dabs (x f d o t) ;
alpha_max = acos (v_max_x / v_max) ;
v_max_y = s i n (alpha_max)∗ v_max ;
a_max_y = s i n (alpha_max)∗ a_max ;
a_max_x = cos (alpha_max)∗ a_max ;

ETA_x_max = c a l c u l a t e _ t i m e (xf , x0dot , x f d o t , v_max_x , a_max_x ,& q_x) ;
p o v e r s h o o t f l a g [0] = o v e r s h o o t f l a g ;
ETA_y_min = c a l c u l a t e _ t i m e (yf , y0dot , y f d o t , v_max_y , a_max_y ,& q_y) ;
p o v e r s h o o t f l a g [1] = o v e r s h o o t f l a g ;

}
i f (dabs (y f d o t) >0) {

v_max_y = dabs (y f d o t) ;
alpha_min = a s i n (v_max_y / v_max) ;
v_max_x = cos (alpha_min)∗ v_max ;
a_max_x = cos (alpha_min)∗ a_max ;
a_max_y = s i n (alpha_min)∗ a_max ;

ETA_x_min = c a l c u l a t e _ t i m e (xf , x0dot , x f d o t , v_max_x , a_max_x ,& q_x) ;
p o v e r s h o o t f l a g [0] = o v e r s h o o t f l a g ;
ETA_y_max = c a l c u l a t e _ t i m e (yf , y0dot , y f d o t , v_max_y , a_max_y ,& q_y) ;
p o v e r s h o o t f l a g [1] = o v e r s h o o t f l a g ;

}
a lpha = dmax (alpha , alpha_min) ;
a lpha = dmin (alpha , alpha_max) ;

/∗ check whether e i t h e r one or both d i r e c t i o n s a r e converged ∗/
i f ((dabs (x f) <=EPSILON_POSITION_CONVERGED && dabs (x f d o t−x0dot) <EPSILON_VELOCITY_CONVERGED2) &&
(dabs (y f) <EPSILON_POSITION_CONVERGED && dabs (y f d o t−y0dot) <EPSILON_VELOCITY_CONVERGED2)) {

q_x = dmin (dmax ((x f d o t−x0dot) / SAMPLE_TIME,−a_max) , a_max) ;
q_y = dmin (dmax ((y f d o t−y0dot) / SAMPLE_TIME,−a_max) , a_max) ;
i f (dabs (q_x) >0){

ETA_x = (x f d o t−x0dot) / q_x ;
} e l s e {

ETA_x = 0;
}
i f (dabs (q_y) >0){

ETA_y = (y f d o t−y0dot) / q_y ;
} e l s e {

ETA_y = 0;
}
y [0] = q_x ;
y [1] = q_y ;
y [2] = dmax (ETA_x , ETA_y) ;

} e l s e i f (dabs (x f) <=EPSILON_POSITION_CONVERGED && dabs (x f d o t−x0dot) <EPSILON_VELOCITY_CONVERGED2) {
q_x = dmin (dmax ((x f d o t−x0dot) / SAMPLE_TIME,−a_max) , a_max) ;
ETA_y = c a l c u l a t e _ t i m e (yf , y0dot , y f d o t , v_max , a_max ,& q_y) ;
p o v e r s h o o t f l a g [1] = o v e r s h o o t f l a g ;
y [0] = q_x ;
y [1] = q_y ;

69

y [2] = ETA_y ;

} e l s e i f (dabs (y f) <=EPSILON_POSITION_CONVERGED && dabs (y f d o t−y0dot) <EPSILON_VELOCITY_CONVERGED2) {
q_y = dmin (dmax ((y f d o t−y0dot) / SAMPLE_TIME,−a_max) , a_max) ;
ETA_x = c a l c u l a t e _ t i m e (xf , x0dot , x f d o t , v_max , a_max ,& q_x) ;
p o v e r s h o o t f l a g [0] = o v e r s h o o t f l a g ;
y [0] = q_x ;
y [1] = q_y ;
y [2] = ETA_x ;

} e l s e { /∗ no d i r e c t i o n converged y e t : s ynchron ize i f p o s s i b l e ∗/

/∗ check sync ’ a b i l i t y o f s i t u a t i o n ∗/
i f (robotID == 1) {

s y n c a b l e = 0; /∗ do not sync in c a s e o f r o b o t 1∗/

ETA_x = c a l c u l a t e _ t i m e (xf , x0dot , x f d o t , v_max , a_max ,& q_x) ;
p o v e r s h o o t f l a g [0] = o v e r s h o o t f l a g ;
ETA_y = c a l c u l a t e _ t i m e (yf , y0dot , y f d o t , v_max , a_max ,& q_y) ;
p o v e r s h o o t f l a g [1] = o v e r s h o o t f l a g ;
y [0] = q_x ;
y [1] = q_y ;
y [2] = dmax (ETA_x , ETA_y) ;

} e l s e i f (dabs (x f d o t) >0 && dabs (y f d o t) >0) {
i f (ETA_y_min<=ETA_x_max && ETA_x_min<=ETA_y_max) {

s y n c a b l e = 1 ; /∗ sync ’ a b l e ! ∗/
} e l s e {

s y n c a b l e = 0; /∗ non sync ’ a b l e (y e t) ∗/
i f (ETA_y_min>ETA_x_max) {

a lpha = alpha_max ;
v_max_y = s i n (a lpha)∗ v_max ;
a_max_y = s i n (a lpha)∗ a_max ;
ETA_y_min = c a l c u l a t e _ t i m e (yf , y0dot , y f d o t , v_max_y , a_max_y ,& q_y) ;
p o v e r s h o o t f l a g [1] = o v e r s h o o t f l a g ;
y [0] = 0;
y [1] = q_y ;
y [2] = ETA_y_min ;

} e l s e i f (ETA_x_min>ETA_y_max) {
a lpha = alpha_min ;
v_max_x = cos (alpha_min)∗ v_max ;
a_max_x = cos (alpha_min)∗ a_max ;
ETA_x_min = c a l c u l a t e _ t i m e (xf , x0dot , x f d o t , v_max_x , a_max_x ,& q_x) ;
p o v e r s h o o t f l a g [0] = o v e r s h o o t f l a g ;
y [0] = q_x ;
y [1] = 0 ;
y [2] = ETA_x_min ;

} e l s e {
/∗ p r i n t f (" This should not be p o s s i b l e ! ETA_y_min = %f , ETA_x_max = %f ,

ETA_x_min = %f , ETA_y_max = %f \n " , ETA_y_min , ETA_x_max , ETA_x_min , ETA_y_max) ; ∗/
}

}
} e l s e i f (dabs (x f d o t) >0) {

i f (ETA_y_min<=ETA_x_max) {
s y n c a b l e = 1 ; /∗ sync ’ a b l e ! ∗/

} e l s e {
s y n c a b l e = 0; /∗ non sync ’ a b l e (y e t) ∗/
a lpha = alpha_max ;
v_max_y = s i n (a lpha)∗ v_max ;
a_max_y = s i n (a lpha)∗ a_max ;
ETA_y_min = c a l c u l a t e _ t i m e (yf , y0dot , y f d o t , v_max_y , a_max_y ,& q_y) ;
p o v e r s h o o t f l a g [1] = o v e r s h o o t f l a g ;
y [0] = 0;
y [1] = q_y ;
y [2] = ETA_y_min ;

}
} e l s e i f (dabs (y f d o t) >0) {

i f (ETA_x_min<=ETA_y_max) {
s y n c a b l e = 1 ; /∗ sync ’ a b l e ! ∗/

} e l s e {
s y n c a b l e = 0; /∗ non sync ’ a b l e (y e t) ∗/
a lpha = alpha_min ;
v_max_x = cos (alpha_min)∗ v_max ;
a_max_x = cos (alpha_min)∗ a_max ;

70

ETA_x_min = c a l c u l a t e _ t i m e (xf , x0dot , x f d o t , v_max_x , a_max_x ,& q_x) ;
p o v e r s h o o t f l a g [0] = o v e r s h o o t f l a g ;
y [0] = q_x ;
y [1] = 0 ;
y [2] = ETA_x_min ;

}
} e l s e { /∗ no f i n a l v e l o c i t i e s ∗/

s y n c a b l e = 1 ; /∗ sync ’ a b l e ! ∗/
}

/∗ i f sync ’ ab le , check p r e v i o u s l y d e r i v e d (s t a t i c) a lpha ∗/
i f (s y n c a b l e) {

v_max_x = cos (a lpha)∗ v_max ;
a_max_x = cos (a lpha)∗ a_max ;
v_max_y = s i n (a lpha)∗ v_max ;
a_max_y = s i n (a lpha)∗ a_max ;

ETA_x = c a l c u l a t e _ t i m e (xf , x0dot , x f d o t , v_max_x , a_max_x ,& q_x) ;
p o v e r s h o o t f l a g [0] = o v e r s h o o t f l a g ;
ETA_y = c a l c u l a t e _ t i m e (yf , y0dot , y f d o t , v_max_y , a_max_y ,& q_y) ;
p o v e r s h o o t f l a g [1] = o v e r s h o o t f l a g ;

i f (dabs (ETA_x−ETA_y) >SYNC_TIME_PRECISION2) {
/∗ (renew i n i t i a l guess a lpha omit ted / not implemented) ∗/
whi le (dabs (ETA_x−ETA_y) >SYNC_TIME_PRECISION1) {

i f (j ==0){
/∗ p r i n t f (" need t o i t e r a t e ! x f=%f , y f=%f , x0dot=%f , y0dot=%f , alpha_min=%f ,
alpha_max=%f , a lpha=%f , ETA_x=%f , ETA_y=%f \n " , x f , y f , x0dot , y0dot , alpha_min ,
alpha_max , alpha , ETA_x , ETA_y) ; ∗/

}
i f (ETA_x<ETA_y) {

alpha_min = a lpha ;
a lpha = 0.5∗ a lpha +0.5∗ alpha_max ;

} e l s e {
alpha_max = a lpha ;
a lpha = 0.5∗ a lpha +0.5∗ alpha_min ;

}

v_max_x = cos (a lpha)∗ v_max ;
a_max_x = cos (a lpha)∗ a_max ;
v_max_y = s i n (a lpha)∗ v_max ;
a_max_y = s i n (a lpha)∗ a_max ;

ETA_x = c a l c u l a t e _ t i m e (xf , x0dot , x f d o t , v_max_x , a_max_x ,& q_x) ;
p o v e r s h o o t f l a g [0] = o v e r s h o o t f l a g ;
ETA_y = c a l c u l a t e _ t i m e (yf , y0dot , y f d o t , v_max_y , a_max_y ,& q_y) ;
p o v e r s h o o t f l a g [1] = o v e r s h o o t f l a g ;

j ++ ;
/∗ p r i n t f (" a lpha = %f , ETA_x=%f , ETA_y=%f \n " , a lpha , ETA_x , ETA_y) ; ∗/
i f (j >50){

/∗ p r i n t f (" bi−s e c t i o n a l go r i t hm not converged ! \ n ") ; ∗/
break ;

}
}

/∗ } e l s e { ∗/
/∗ p r i n t f (" p r e v i o u s a lpha was ok \n ") ; ∗/
}

y [0] = q_x ;
y [1] = q_y ;
y [2] = 0 . 5∗ (ETA_x+ETA_y) ;

}
}

}

/∗ Funct ion : mdlTerminate ===
∗ A b s t r a c t :
∗ No t e r m i n a t i o n needed , but we a r e r e q u i r e d t o have t h i s r o u t i n e .
∗/

s t a t i c v o i d mdlTerminate (S imStruc t ∗S)
{

UNUSED_ARG(S) ; /∗ unused input argument ∗/

71

}

i f d e f MATLAB_MEX_FILE /∗ I s t h i s f i l e being compiled as a MEX−f i l e ? ∗/
i n c l u d e " s imul ink . c " /∗ MEX−f i l e i n t e r f a c e mechanism ∗/
e l s e
i n c l u d e " cg_sfun . h" /∗ Code g e n e r a t i o n r e g i s t r a t i o n f u n c t i o n ∗/
e n d i f

72

Appendix D

Acceleration x direction
Chapter 5

Figure D.1: Acceleration after the parking brake in x direction

73

Figure D.2: A zoom of the x- and y acceleration and the case for the y direction
on time frame[2.5 - 6].

74

Appendix E

Set up for simulations
traction controller

Figure E.1: The set up for the simulation of the traction controller.

Now the inputs are the same as in Appendix A, but there are 13 inputs more:

75

• The instantaneous input acceleration in x direction.

• The measured acceleration in x position

• The instantaneous input acceleration in y direction.

• The measured acceleration in y position

• The safety factor of previous time step

• The difference in safety factor of previous time step

• The maximal acceleration of previous time step

• the cases in x direction

• the cases in y direction

• the overshootflag in x direction

• the overshootflag in y direction

• the roundmax in x direction

• the roundmax in y direction

With the signal builders there is an error imposed in the signal. The signal
builders are initial 1, but for some time frames they have a value above 1.

76

