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Chapter 7

Traction controller

In this Chapter a traction controller is developed for preventing slip while accelerat-
ing and decelerating. Firstly in section 7.1 "Basic idea" the basic idea of the traction
controller will be explained in some more detail. Then in section 7.2 "Flowcharts"
two flowcharts are created to show how this traction controller really works. In sec-
tion 7.3 "Implementation" the implementation in the trajectory planner is shown
and in section 7.4 "Simulations traction controller" some simulations are done to
show what the traction controller does to the signals in the trajectory planner.

7.1 Basic idea

Like mentioned in previous Chapter is the traction controller developed in this
report based on controlling the amax. This control happens after the "trajectory
preprocessor" in Figure 3.1 in Chapter 3. This because here amax and vmax already
get changed for dribbling. The amax and vmax get used in the trajectory planner,
so the traction controller must have been implemented before or in the trajectory
planner. Since the signal has some strange behavior like shown in Chapter 4 "Tra-
jectory Planner" and Chapter 5 "Global Signal Analysis" it would be helpful to use
the cases in the traction controller. For that reason the traction controller is imple-
mented ín the trajectory planner.

The amax gets controlled by multiplying it with a so called safety factor. This
safety factor is initial equal to 1 and never bigger than 1 or smaller than 0.1. When
the Turtle detects slip it changes the safety factor to a value below 1 so the amax is
lower. By a feedback loop for the safety factor and the difference in previous safety
factor, the ideal safety factor will be evaluated. Since slip behavior is very unstable
and it is not desired to drive slowly unnecessary, the safety factor will be increased
when slip is not detected anymore.

7.2 Flowcharts

In this section two flowcharts are developed to show how the traction controller
works inside the trajectory planner. In the first subsection 7.2.1 "??" the im-
plementation needed for the traction controller is explained. In subsection 7.2.2
"Traction_Controller" the subroutine traction_controller is discussed in detail.
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7.2.1 Useful code in trajectory planner

In Figure 7.1 a flowchart is illustrated with the part of the trajectory planner where
the traction controller is implemented in. In this flowchart no directions are shown
because it holds for both, x- and y direction.

Figure 7.1: Flowchart of a piece of the trajectory planner with the traction
controller

At first the Turtle checks if it detects slip. When the difference between the
measured acceleration and the input acceleration is too big the variable slip is set
to 1. The value used as threshold for the difference between the two accelerations
should be based on such a diagram as Figure 1.2 in Chapter 1 "Traction and slip".
For the accelerations also exists a stable area. This stable are should be found for
the slip based on difference in acceleration.

Shown in section 5.2 "Results Turtle- movement" is that while the Turtle is
driving around vmax there is some strange behavior in the signal input. This only
occurs when the cases are 3 or 5. So when the cases of the previous time step (when
the Turtle slipped) are 3 or 5, slip is ignored and the corresponding variable is set
back to 0. Because sometimes when cases are 3 or 5 alternately it can happen that
case 21 occurs. For this reason roundmax is set to 5 when case 3 or 5 is detected.
When in a time step the case is not equal to 3 or 5 the roundmax is decreased. Now
in short, when case 21 occurs and the Turtle was the previous 5 time steps never in
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case 3 or 5 the Turtle is not around vmax and slip cannot be ignored.
After that in the trajectory planner it is checked if the x- or y direction is con-

verged or not. Depending on this the accelerations are calculated. Always before
these get calculated the subroutine traction_controller gets called.

7.2.2 Traction_Controller

In Figure 7.2 a Flowchart is illustrated of the subroutine traction_controller. This
is the block in the flowchart of the previous section 7.2.1 "Useful code in trajectory
planner".

In the flowchart the safety factor is shorted with Sf and the difference in safety
factor of previous time step with ∆sf_last.

Figure 7.2: Flowchart of the actual traction controller

Before the flowchart will be explained, first a numeration of inputs and variables
used in the traction controller:

• a_max_last; stored in a struct called tract. This variable contains the value of
the amax from the previous time step. For the traction controller this value
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will not be used. Because the safety factor is controlled the amax does not
have to be controlled.

• sf_last; also stored in tract and contains the safety factor of the previous time
step.

• ∆sf_last; stored in tract and contains the difference in safety factor in previ-
ous time stap.

• cases x respectively y; these contain the cases for respectively x- or y direc-
tion visited in subroutine Check Case (section 4.3 "Check Case" in Chapter 4
"Trajectory Planner" in the previous time step.

• overshootflag x respectively y; these contain whether an overshootflag is set
for x respectively y or not. This value will also not be used in the traction
controller. One could think that this should be considere for the reason that
an overshootflag can cause a magnification of the accelerations. Well the
decrease of the amax while slipping also is magnified, so indirectly it ís con-
sidered.

• roundmax x respectively y; these contain if the Turtle was driving at a velocity
near vmax.

Firstly the safety factor of the previous time step is evaluated. To keep it clear
this is subdivided in two subsections 7.2.2 "Previous safetyfactor much lower than
one" (follow arrow down "Much lower than 1" in the flowchart) and 7.2.2 "Previous
safetyfactor near one" (follow arrow to the right "Near 1").

Previous safetyfactor much lower than one

If this safety factor is lower that the threshold it means that in the previous time
step the amax is controlled. After that the Turtle evaluates its slip variable.

1. If the Turtle slips in this time step the traction controller will decrease the
safety factor. When the Turtle slips (follow the right arrow in the flowchart
"Yes") the difference in safety factor can be:

• positive (follow arrow down "Positive"). The last time slip was not de-
tected so the safety factor was increased. Because the Turtle is slipping
now the positive correction was too high assuming the ideal safety fac-
tor is constant. This is corrected by taking the previous time step again,
but then multiplied with 0.5 and subtracted from the last safety factor.
In this way the safety factor is converging to an ideal value.

• negative (follow left arrow "Negative"). In the previous time step was
slip detected and now again. This means that the correction of the pre-
vious step was not high enough. The same correction is used as the
previous time but then multiplied with 2 and subtracted from previ-
ous safety factor. Note that the difference in safety factor is an absolute
value.

• near 0 (follow right arrow "Near 0"). In the previous time step the
difference in safety factor was very very small. In this case when slip is
detected nothing will happen so when the difference in last safety factor
is really too small a normal correction will be introduced.
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2. If the Turtle does not slip the safety factor must be increased. When the
Turtle does not slip (follow the arrow down in the flowchart "No") and the
difference in safety factor can be:

• positive (follow the middle arrow "Positive"). One time step ago also
no slip was detected. This means that the correction back to 1 was not
high enough. For this reason the same correction is used as the previ-
ous time but then multiplied with 2 and added to the last safety factor.

• negative (follow the upper arrow "Negative"). The correction of the
safety factor in the previous time step was negative. This means that
the correction was too high. In trying to let the safety factor converge,
the difference in safety factor of the previous time is divided by 2 and
added to the safety factor of previous time. This in such a way that the
safety factor converges to the ideal safety factor.

• near 0 (follow the arrow down "Near 0". If the previous difference in
safety factor was 0 and no slip is detected the total correction is divided
by 2 and added to the previous safety factor to make sure the maximal
acceleration does not stay too low.

Previous safetyfactor near one

If the safety factor of the last time step was near 1 it means that there can be two
possibilities. The Turtle is now

1. slipping (follow the arrow to the richt "Yes". The difference in the last safety
factor can be:

• positive (follow arrow to the right "Positive"). The last time step no slip
was detected and the correction of the safety factor was too big. Now to
let the safety factor converge the safety factor is now reduced with the
difference of the previous safety factor divided by 2.

• negative or zero (follow arrow down "Negative or zero"). In this case
the traction controller will change the safety factor with a standard value.

2. not slipping (follow the arrow down "No"). Now there is no slip and previous
time step there was no or negligible slip. Set the safety factor to 1.

After all this cases finally the values should be stored and send. In the new amax
the safety factor influences its value, the difference in safety factor gets calculated
and the safety factor is minimized to 1 or maximized to 0.1 so no strange values
will occur for amax.

7.3 Implementation

In this section the actual implementation in the C - file: "trajectory planner" is
presented. Sometimes pieces of the original trajectory planner are printed too but
in the comments can be seen which pieces that are. Some added pieces especially
for the traction controller are not displayed here like the code to implement extra
ports for in- and output variables or lines that includes header files. In every case
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one line is added to define the case, this is also not added. The cases are explained
in section 4.3 "Check Case".

This section is divide in several subsections. In the first subsection 7.3.1 "Struct
traction" the struct called traction used in the trajectory planner is defined. In the
second subsection 7.3.2 "Detecting slip" the code for detecting slip is defined. In
subsection 7.3.3 "Converged directions" the code where the traction controller gets
called is added and finally the subroutine traction_controller can be found in the
fourth and last subsection 7.3.4 "Controlling slip".

7.3.1 Struct traction

Some variables used in the traction controller are stored in a struct. This struct is
defined in this header file:

Listing 7.1: Struct traction
# i f n d e f s t r u c t s _ h
# d e f i n e s t r u c t s _ h

s t r u c t t r a c t i o n {

double a_max_ las t ; %a_max of p r e v i o u s time s t e p
double s f _ l a s t ; %s a f e t y f a c t o r o f p r e v i o u s time s t e p
double d i f _ s f _ l a s t ; %p r e v i o u s change in s a f e t y f a c t o r
i n t c a s e s x ; %c a s e in x d i r e c t i o n
i n t c a s e s y ; %c a s e in y d i r e c t i o n
i n t o v e r s h o o t f l a g x ; %o v e r s h o o t f l a g in x d i r e c t i o n
i n t o v e r s h o o t f l a g y ; %o v e r s h o o t f l a g in y d i r e c t i o n
i n t roundmaxx ; %counter in x d i r e c t i o n
i n t roundmaxy ; %counter in y d i r e c t i o n

} ; t y p e d e f s t r u c t t r a c t i o n t r a c t ;
# e n d i f

7.3.2 Detecting slip

Here some calculations are done before subroutine traction_controller gets called.
Firstly it tries to detect slip and ignores slip when the Turtle has nearly vmax as a
velocity. Following the implementation for this:

Listing 7.2: Detecting slip
i f ( dabs ( a_measx − a_ inx ) >= EPSILON_SLIP ) { / / s l i p in x

s l i p [ 0 ] = 1 ;
}
i f ( dabs ( a_measy − a_ iny ) >= EPSILON_SLIP ) { / / s l i p in y

s l i p [ 1 ] = 1 ;
}
i f ( t r a c t . c a s e s x == 3 | | t r a c t . c a s e s x == 5 ) { / / c a s e 3 or 5

s l i p [ 0 ] = 0;
t r a c t . roundmaxx = 5 ;

} e l s e {
t r a c t . roundmaxx−−;

}
i f ( t r a c t . c a s e s y == 3 | | t r a c t . c a s e s y == 5 ) {

s l i p [ 1 ] = 0 ;
t r a c t . roundmaxy = 5 ;

} e l s e {
t r a c t . roundmaxy−−;

}
i f ( t r a c t . c a s e s x == 21 && t r a c t . roundmaxx > 0 ) { / / v_max ?

s l i p [ 0 ] = 0;
}
i f ( t r a c t . c a s e s y == 21 && t r a c t . roundmaxy > 0 ) {
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s l i p [ 1 ] = 0 ;
}

7.3.3 Converged directions

In section 4.1 "Outputs" there are four possible ways illustrated where the Turtle
can be in with. The following order is the same as in that section and the added
lines are written in that part of the file.

Outputs trajectory planner

Every part has the same variables as output off course and this looks like:

Listing 7.3: Ouputs trajectory planner
y [ 0 ] = q_x ; / / from o r i g i n a l f i l e
y [ 1 ] = q_y ; / / from o r i g i n a l f i l e
t [ 0 ] = t r a c t . s f _ l a s t ;
t [ 1 ] = t r a c t . d i f _ s f _ l a s t ;
t [ 2 ] = t r a c t . a_max_ las t ;
c [ 0 ] = t r a c t . c a s e s x ;
c [ 1 ] = t r a c t . c a s e s y ;
c [ 2 ] = t r a c t . o v e r s h o o t f l a g x ;
c [ 3 ] = t r a c t . o v e r s h o o t f l a g y ;
c [ 4 ] = t r a c t . roundmaxx ;
c [ 5 ] = t r a c t . roundmaxy ;

x- and y direction converged

For the first possibility that both x- and y direction are converged. It is desired that
traction control gets applied only once. Otherwise the amax could get corrected
twice. If x- and y direction are both converged there is no case or overshootflag
determined so these are set to the default value of -1 respectively 0. Finally all
values of the struct are outputted to be used as input for the next time step. Here
is the implementation:

Listing 7.4: x- and y direction converged

c o n t r o l l e d = t r a c t i o n _ c o n t r o l (&a_max , s l i p [ 0 ] , & t r a c t ) ;
q_x = dmin ( dmax ( ( x f d o t−x0dot ) / SAMPLE_TIME,−a_max ) , a_max ) ; / / from o r i g i n a l f i l e
t r a c t . c a s e s x = −1;
t r a c t . o v e r s h o o t f l a g x = 0;
i f ( ! c o n t r o l l e d ) {

c o n t r o l l e d = t r a c t i o n _ c o n t r o l (&a_max , s l i p [ 1 ] , & t r a c t ) ;
}
q_y = dmin ( dmax ( ( y f d o t−y0dot ) / SAMPLE_TIME,−a_max ) , a_max ) ; / / from o r i g i n a l f i l e
t r a c t . c a s e s y = −1;
t r a c t . o v e r s h o o t f l a g y = 0;

Only x direction converged

In the below implementation only the x direction is converged. For this the same
reasoning holds for the x direction as for the previous implementation. However
for the y direction calculate _time gets called. this means that a case and an over-
shootflag will be defined.

45



Listing 7.5: Only x direction converged

c o n t r o l l e d = t r a c t i o n _ c o n t r o l (&a_max , s l i p [ 0 ] , & t r a c t ) ;
q_x = dmin ( dmax ( ( x f d o t−x0dot ) / SAMPLE_TIME,−a_max ) , a_max ) ; / / from o r i g i n a l f i l e
t r a c t . c a s e s x = −1;
t r a c t . o v e r s h o o t f l a g x = −1;
i f ( ! c o n t r o l l e d ) {
c o n t r o l l e d = t r a c t i o n _ c o n t r o l (&a_max , s l i p [ 1 ] , & t r a c t ) ;
}
ETA_y = c a l c u l a t e _ t i m e ( yf , y0dot , y f d o t , v_max , a_max , &q_y ) ; / / from o r i g i n a l f i l e
p o v e r s h o o t f l a g [ 1 ] = o v e r s h o o t f l a g ; / / from o r i g i n a l f i l e

t r a c t . o v e r s h o o t f l a g y = o v e r s h o o t f l a g ;

Only y direction converged

For the following C- code hold the same reasoning as for previous implementation.
However here it is vice versa for x- and y direction.

Listing 7.6: Only y direction converged

c o n t r o l l e d = t r a c t i o n _ c o n t r o l (&a_max , s l i p [ 0 ] , & t r a c t ) ;
ETA_x = c a l c u l a t e _ t i m e ( xf , x0dot , x f d o t , v_max , a_max ,& q_x ) ; \ \ from o r i g i n a l f i l e f i l e
t r a c t . o v e r s h o o t f l a g y = o v e r s h o o t f l a g ;
i f ( c o n t r o l l e d ) {

o v e r s h o o t f l a g = 0;
}
p o v e r s h o o t f l a g [ 0 ] = o v e r s h o o t f l a g ; \ \ from o r i g i n a l f i l e
i f ( ! c o n t r o l l e d ) {

c o n t r o l l e d = t r a c t i o n _ c o n t r o l (&a_max , s l i p [ 1 ] , & t r a c t ) ;
}
q_y = dmin ( dmax ( ( y f d o t−y0dot ) / SAMPLE_TIME,−a_max ) , a_max ) ;
t r a c t . c a s e s y = −1;
t r a c t . o v e r s h o o t f l a g y = 0;

No directions converged

For the fourth case the same idea holds. Following code is implemented before the
loop where the ideal driving angle gets calculated (See section 4.1 "Outputs".

Listing 7.7: No direction converged
c o n t r o l l e d = t r a c t i o n _ c o n t r o l (&a_max , s l i p [ 0 ] , & t r a c t ) ;
ETA_x = c a l c u l a t e _ t i m e ( xf , x0dot , x f d o t , v_max_x , a_max_x ,& q_x ) ; / / from o r i g i n a l f i l e
i f ( c o n t r o l l e d ) {

o v e r s h o o t f l a g = 0;
}
p o v e r s h o o t f l a g [ 0 ] = o v e r s h o o t f l a g ; / / from o r i g i n a l f i l e
t r a c t . o v e r s h o o t f l a g x = o v e r s h o o t f l a g ;
i f ( ! c o n t r o l l e d ) {

c o n t r o l l e d = t r a c t i o n _ c o n t r o l (&a_max , s l i p [ 1 ] , & t r a c t ) ;
}
ETA_y = c a l c u l a t e _ t i m e ( yf , y0dot , y f d o t , v_max_y , a_max_y ,& q_y ) ; / / from o r i g i n a l f i l e
p o v e r s h o o t f l a g [ 1 ] = o v e r s h o o t f l a g ; / / from o r i g i n a l f i l e

t r a c t . o v e r s h o o t f l a g y = o v e r s h o o t f l a g ;

7.3.4 Controlling slip

Finally the C- code of the traction controller traction_controller is given below. At
first used variables are declared and the total correction is calculated. Secondly
are the steps that are shown in the flowchart in previous section 7.2 "Flowcharts"
exactly implemented.
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Listing 7.8: Subroutine traction_control
i n t t r a c t i o n _ c o n t r o l ( double∗ a_max , i n t s l i p , s t r u c t t r a c t i o n ∗ t r a c t ) {

double EPSILON_SF_LAST = 0 . 0 0 5 ; / / Value should be tuned
double EPSILON_dSF_LAST = 0 . 0 5 ; / / Value should be tuned
double EPSILON_STAND_VAL = 0 . 1 ; / / Value should be tuned
double s a f e _ f a c t = 1 ;
double r e t = −1;

double s f _ l a s t = t r a c t−> s f _ l a s t ;
double d i f _ s f _ l a s t = t r a c t−> d i f _ s f _ l a s t ;
double a_max_ las t = t r a c t−>a_max_ las t ;

double t o t _ c o r = 1 − s f _ l a s t ;

i f ( s f _ l a s t > 1 − EPSILON_SF_LAST ) {
i f ( s l i p ) { / / Decrease s f

i f ( d i f _ s f _ l a s t >= EPSILON_dSF_LAST ) { / / Smal ler + c o r r
s a f e _ f a c t = 1 − dabs ( d i f _ s f _ l a s t / 2 ) ;

} e l s e { / / C o r r e c t i o n i s n e a r l y 0
s a f e _ f a c t = 1 − EPSILON_STAND_VAL ;

}
r e t = 1 ;

} e l s e { / / No c o r r e c t i o n , no s l i p
s a f e _ f a c t = 1 ;
r e t = 0;

}
} e l s e { / / There i s a c o r r e c t i o n going on

i f ( s l i p ) { / / Decrease s f
i f ( d i f _ s f _ l a s t >= EPSILON_dSF_LAST ) { / / Smal ler + c o r r

s a f e _ f a c t = s f _ l a s t − dabs ( d i f _ s f _ l a s t / 2 ) ;
} e l s e i f ( d i f _ s f _ l a s t <= −EPSILON_dSF_LAST ) { / / L a r g e r −c o r r

s a f e _ f a c t = s f _ l a s t − 2∗dabs ( d i f _ s f _ l a s t ) ;
} e l s e { / / Standard c o r r e c t i o n

s a f e _ f a c t = s f _ l a s t − EPSILON_STAND_VAL ;
}
r e t = 3 ;

} e l s e { / / I n c r e a s e s f
i f ( d i f _ s f _ l a s t >= EPSILON_dSF_LAST ) { / / L a r g e r + c o r r

s a f e _ f a c t = s f _ l a s t + 2∗dabs ( d i f _ s f _ l a s t ) ;
} e l s e i f ( d i f _ s f _ l a s t <= −EPSILON_dSF_LAST ) { / / Smal ler −c o r r

s a f e _ f a c t = s f _ l a s t + dabs ( d i f _ s f _ l a s t / 2 ) ;
} e l s e { / / Standard p o s i t i v e c o r r e c t i o n

s a f e _ f a c t = s f _ l a s t + dabs ( t o t _ c o r / 2 ) ;
}
r e t = 2 ;

}
}
i f ( s a f e _ f a c t > 1 ) {

s a f e _ f a c t = 1 ;
} e l s e i f { s a f e _ f a c t < 0 . 1 }

s a f e _ f a c t = 0 . 1 ;
}
∗a_max = s a f e _ f a c t ∗ (∗ a_max ) ;
t r a c t−> s f _ l a s t = s a f e _ f a c t ;
t r a c t−> d i f _ s f _ l a s t = s a f e _ f a c t − s f _ l a s t ;
t r a c t−>a_max_ las t = ∗a_max ;

r e t u r n r e t ;
}

7.4 Simulations traction controller

For the explained traction controller in previous sections the measurements done
by an accelerometer are essential. It is not possible to test this traction controller on
a Turtle because the accelerometer on the Turtles cannot be used properly. Because
of this, only simulations on the computer are run for this traction controller.

In Figure E.1 in Appendix E the simulation setup is illustrated and explained.
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With a signal builder an error is added to the simulation. Because the signal builder
creates a signal that gets multiplied with the accelerationvalues its default value is
1. This is why in this simulation will be spoken of an error + 1. This error is applied
in a referential signal, so whatever the traction controller does, the imposed error
stays the same.

In the first two experiments just a movement in the x direction is modeled.
In section 7.4.1 "Simulation with no error" a first simulation is performed with
no error. In the next section 7.4.2 "Simulation with a small error" a small er-
ror is imposed. In section 7.4.3 "Simulation with an error and x- and y direction
movement" an y movement is introduced to see what happens if two directions are
not converged. Finally in section 7.4.4 "Simulation for slip at maximal velocity it
is checked if the traction controller does not do anything while driving at maximal
speed.

7.4.1 Simulation with no error

In this simulation no error is introduced to the system. Only one movement in x
direction is simulated. This means that the accelerations, velocities and positions
should be the same as in simulation 1 of Chapter 4 "Trajectory Planner. The safety
factor should be equal to 1 and the variable roundmaxx should only have a value of
5 when the Turtle is in case 3 and drives on maximal speed.

Figure 7.3: Acceleration in x direction, safety factor and roundmax in x direction
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Results

The results are exactly the same as the expectations. In Figure 7.3 on the previ-
ous page the acceleration in x direction, the safety factor and the roundmax in x
direction are shown.

As can be seen the same peek as in section 4.4.1 "Movement in x direction" is
visible. Only when the acceleration is zero the roundmaxx is equal to 5. This shows
that the traction controller does not do anything if no slip is detected.

7.4.2 Simulation with a small error

In this simulation a certain error is given. In reality this will not occur on this
way, because whatever the traction controller does the error will not decrease. This
means that the safety factor will get a minimal value defined by the traction con-
troller, 0.1. Nevertheless with this simulation one can see what the traction con-
troller does and how acceleration changes.

Figure 7.4: The piece where the error+1 is introduced, the safety factor in that
same time frame and the acceleration value in x direction
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Results

In the top figure of Figure 7.4 one can see what error is applied. These figures
are zoomed in on a certain time frame where the error is applied. Outside that
time frame the behavior of the signals is obviously exactly the same as in previous
simulation.

It can be seen in the middle figure that when the error is bigger than a certain
value the safety factor gets decreased. Because the error stays the same the Turtle
constantly thinks it is slipping. When the safety factor reaches 0.1 it converges.
When then the error becomes small again the safety factor gets increased again
and becomes 1.

The maximal acceleration in the lowest figure follows this behavior since those
two get multiplied. Right before the acceleration is decreased there is a peek in
the signal. This peek is caused because of the overshootflag. Because the Turtle is
decreasing its acceleration, but still has to drive some distance, the overshootflag is
set. This error is not desired but it does not matter much.

Because the amax is equal to 1, Equation 7.4.2 holds. This can be seen in Fig-
ure 7.5. The top figure shows the error+1.

amax = safetyfactor · amax = safetyfactor (7.1)

Figure 7.5: The error+1, the acceleration and the x- and y velocity
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7.4.3 Simulation with an error and x- and y direction
movement

This is a short experiment to show what the traction controller does with the speed
of the Turtle. This simulation is somehow similar to that from section 4.4.2 "Move-
ment in x direction and y direction" only here an error is introduced.

Results

Figure 7.6: The error, acceleration in x- and y direction respectively velocity
for movement in x- and y direction

In Figure 7.6 the error+1 imposed on the model is illustrated. In the second figure
the acceleration is shown.

It is clear that the traction controller does its work nicely. The acceleration is
purely constant around 0.1 and the direction with the overshootflag is 0.3. This
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is because the safety factor gets limited. It can be seen that from the moment no
error is noticed an overshoot gets set. This does not really matter because in reality
when the Turtle slips the amax gets controlled. On that moment it does not matter
whether an overshootflag is set or not.

On the moment the error + 1 is imposed, the velocity in the third figure has a
much lower slope. This is very logic, because the acceleration is limited. The same
amax is used for both directions.

7.4.4 Simulation for slip at maximal velocity

In this section a small simulation is performed to show that slip at maximal velocity
is ignored. In this case the vmax is set to 0.5 so the vmax is early reached.

Figure 7.7: The error, velocity in x (driving) direction and the cases in the x
direction
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Results

In Figure 7.7 one could see that the error + 1 is imposed right before time = 1.5sec.
In the lowest figure it can be seen that the case is 3 in the time frame [0.5 - 2]. While
the error + 1 is imposed the case is 3 and the velocity is 0.5. Right when the Turtle
is not in case 3 anymore the the amax is controlled. This can be seen in the safety
factor, drawn in the lowest figure.

7.5 Improvements of the traction controller

Because it was not possible to test the traction controller on the Turtles, it was also
not possible to tune the parameters and build more features into it. Here some
features that are not included in the tractioncontroller explained in this Chapter.

When in the struct tract a counter is included, it would be possible to make sure the
safety factor does not variate too much. The idea of this counter is that it waits with the
positive corrections and keeps the safety factor for some time steps on a constant value.

The traction controller does not react on an overshootflag that gets set. Even though
an overshootflag amplifies the acceleration and could cause slip. It is true that when
the safety factor changes a value, and that value gets amplified, the difference also gets
amplified. So indirectly the overshootflag is taken into account. However this is probably
not reliable. The overshootflag gets set while the traction controller is doing iets work. This
should not matter because then the amax is just made 3 times smaller, until the Turtle is
not slipping anymore. When one could test the traction controller on the Turtle, one could
investigate is this really does not matter.

53



54



Concluding Remarks

Slip can be prevented by driving very slowly. For a Turtle this would be a very bad
strategy, because it wants to move over the soccer field as quick as possible. For
that reason a fast adaptive traction control is desired for the Turtles.

Since the wheels of a Turtle are not in a rectilinear configuration it is not possi-
ble to use the same control systems as used in a car. For that reason is in this report
chosen for another approach, namely comparing the intended acceleration with the
actual acceleration measured by an accelerometer. For this it is important to clearly
understand on which principles these intended accelerations are based on. So, this
report contains an extensive research into the motion software of the Turtle, mostly
in the trajectory planner. During this research some unwanted abnormalities are
noticed and summarized in the next Chapter.

Basically the approach used in this report changes the maximal tolerable accel-
eration. The developed traction controller only works for accelerating and decel-
erating. A traction controller that also works when a Turtle is pushing against an
opponent is shortly explained in the next Chapter, but this are only small basics.

The most trivial part of developing a controller was not possible in this report.
It is very unfortnate that the accelerometer in the Turtle does not work properly
because now the created traction controller is not validated, tuned and optimized.
However in the simulations done on the computer one could see that the traction
controller works like explained in the theory.
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Future Work

The in this report developed traction controller is not tested yet on the Turtles.
For this, one needs the accelerometer, or can use an observer to differentiate the
encoders twice. When the traction controller is tested the parameters can be tuned.
Parameters like thresholds and standard changes in safety factor.

One undesired property of the developed traction controller that is known for
now is that the safety factor never reaches a constant value. This because when
there is no slip anymore the safety factor should be 1 again. One could build in a
counter that waits with positive corrections. This is not implemented in the in this
report developed traction controller because it could not be tested properly.

As important thing in the development to a traction controller the accelerome-
ter must be implemented. The accelerometer does not find itself in the middle of
a Turtle, but somewhere on the side in a different coordinate system. This means
the values obtained by the accelerometer are nonsense and must be transformed
to the coordinate system of the Turtle. The rotating can be done by using a cosine
direction matrix.[2] Although position is not important while discussing accelera-
tion also the translation of the coordinate system is important. When the Turtle is
only rotating in φ direction and the accelerometer is mounted on the side it will
constantly detect an acceleration in a certain direction and this is not wanted.

While reading Chapter 4 "Trajectory Planner" one would have noticed some
undesirable abnormalities are created by the trajectory planner. Following some
examples.

• In section 4.4.1 "Movement in x direction" a simple simulation is performed with
the trajectory planner. The calculated acceleration can exceed the maximal accel-
eration which should not be possible. In the velocity and position the peek in the
acceleration does not matter but nevertheless it is an irregularity in the signal.

• The behavior when case 3,5 or 21 (See section 4.3 "Check Case") gets visited, sec-
tion 5.2 "Results Turtle- movement". Probably this behavior is caused because the
threshold for the maximal velocity is too small. In the same section some vague
peeks can be seen but then in another time frame, these are caused by a deviation
in another direction and a alternate case (21 and 4)

The traction controller described in Chapter 7 "Traction controller" is based on
accelerating and decelerating of a robot on a path. However for the Turtles it is
sometimes important to push against another robot. When a Turtle has a maximal
acceleration without slip the pushing force against an opponent is maximal. The
traction controller in previous section would lower the amax until this is zero. This
is not wanted and for that reason another idea should be performed. Following an
example of such an idea.
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• Like mentioned in section 6.2 "Initial Ideas" the Turtle cannot compare its wheel
speeds. However because in the motion scheme the signal out of the encoders gets
decoupled from wheels to local coordinates the displacement of a Turtle is known
in x, y and φ. With an observer can one trace the accelerations in x, y and φ
direction the wheels think the Turtle drove. With the accelerometer one would be
able to detect slip and correct the desired wheel speeds individually.
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Appendix A

Decoupling local- to wheel
coordinates

wi is the wheel speed of the ith wheel and Vr is the velocity vector of the robot. First
the wheel speeds are defined like:w1

w2

w3

 =

−|Vr| · sin(30 + φ) +R1 · φ̇
|Vr| · cos(φ) +R2 · φ̇

|Vr| · sin(−30 + φ) +R3 · φ̇


Then some conversion equations:

− sin(30 + φ) = − sin(30) · cos(φ)− cos(30) sin(φ) = −1

2
cos(φ)−

√
3

2
sin)(φ)

sin(−30 + φ) = − sin(30) · cos(φ) + cos(30) sin(φ) = −1

2
cos(φ) +

√
3

2
sin)(φ)

Vx = |Vr| · cosφ

Vy = |Vr| · sinφ
So the wheel speeds can be written as:w1

w2

w3

 =

− 1
2 −

√
3
2 R1

1 0 R2

− 1
2

√
3
2 R3

 ·
VxVy

˙phi


And the speeds in local robot coordinates become:VxVy

φ̇

 =

− 1
2 −

√
3
2 R1

1 0 R2

− 1
2

√
3
2 R3


−1

·

w1

w2

w3


VxVy
φ̇

 =
1

R1 +R2 +R3
·

 −R2 R3 +R2 −R2

− 1√
3
(2R3 +R2) 1√

3
(−R3 +R1) 1√

3
(R2 + 2R1)

1 1 1

·
w1

w2

w3


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Appendix B

Simulations

In the simulation the Turtle follows the given signal perfectly. The idea is to let the
Turtle drive 2 meters purely in x direction with a final velocity of zero. The set up
is shown in Figure B.1 and the inputs for the trajectory planner in this simulation
are in following order:

• desired movement in x direction

• desired final velocity in x direction

• desired movement in y direction

• desired final velocity in y direction

• instantaneous movement in x direction

• instantaneous movement in y direction

• instantaneous velocity in x direction

• instantaneous velocity in y direction

• maximal velocity

• maximal acceleration

• robotID; 2 for a normal Turtle.

The turn flag is set to zero. Outside this simulation the turn flag is set to one
when the Turtle is dribbling. The control enable is set to one to enable the parking
brake.
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Figure B.1: Set up for simulation 1

For the simulation (simulation 2) where also a movement is introduced in y
direction the same set up is used, but with a value for the desired movement in y
direction.

For the simulation (simulation 3) where is attempt to simulate the real world a
signal builder is used instead of a constant value for the y movement.

Figure B.2: Signal builder for simulation 3
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Appendix C

C file trajectory planner

Listing C.1: C implementation trajectory planner
/∗ F i l e : t r a j . c

∗ A b s t r a c t : T r a j e c t o r y g e n e r a t o r
∗
∗/

# d e f i n e S_FUNCTION_NAME t r a j e c t o r y p l a n n e r
# d e f i n e S_FUNCTION_LEVEL 2

# i n c l u d e " s ims t ruc . h"
# i n c l u d e <math . h>
# i n c l u d e < s t d i o . h>
# i n c l u d e " g l o b a l _ p a r . h"
# i n c l u d e " bus . h"

# d e f i n e dabs (A) ( ( A) >=0?(A) :− (A ) )
# d e f i n e dmin (A, B ) ( ( A−B) >=0?(B ) : ( A ) )
# d e f i n e dmax (A, B ) ( ( A−B) >=0?(A ) : ( B ) )
# d e f i n e dsgn (A) ( ( A) > = 0 ? ( 1 ) : ( − 1 ) )

# d e f i n e EPSILON_POSITION_CONVERGED 0.005 /∗ sample_time∗v_max +0.5∗ a_max∗sample_time∗sample_time ∗/
# d e f i n e EPSILON_VELOCITY_CONVERGED 0.001∗2.5 /∗ sample_time∗a_max ∗/
# d e f i n e EPS 1 e−16 /∗ Machine p r e c i s i o n ∗/

/∗====================∗
∗ S−f u n c t i o n methods ∗
∗====================∗/

/∗ Funct ion : m d l I n i t i a l i z e S i z e s ===============================================
∗ A b s t r a c t :
∗ The s i z e s i n f o r m a t i o n i s used by Simulink t o determine the S−f u n c t i o n
∗ block ’ s c h a r a c t e r i s t i c s ( number o f inputs , outputs , s t a t e s , e t c . ) .
∗/

s t a t i c i n t o v e r s h o o t f l a g ;

s t a t i c v o i d m d l I n i t i a l i z e S i z e s ( S imStruc t ∗S )
{

ssSetNumSFcnParams ( S , 0 ) ; /∗ Number o f e x p e c t e d parameters ∗/
i f ( ssGetNumSFcnParams ( S ) ! = ssGetSFcnParamsCount ( S ) ) {

r e t u r n ; /∗ Parameter mismatch w i l l be r e p o r t e d by Simulink ∗/
}

ssSetNumContStates ( S , 0 ) ;
ssSetNumDiscSta tes ( S , 0 ) ;

i f ( ! ssSetNumInputPorts ( S , 1 ) ) r e t u r n ;
s sSe t InputPor tWid th ( S , 0 , 1 1 ) ;
s sSe t InputPor tDi rec tFeedThrough ( S , 0 , 1 ) ;
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i f ( ! ssSetNumOutputPorts ( S , 2 ) ) r e t u r n ;
ssSetOutputPor tWidth ( S , 0 , 3 ) ;
ssSetOutputPor tWidth ( S , 1 , 2 ) ;

ssSetNumSampleTimes ( S , 1 ) ;
ssSetNumRWork ( S , 0 ) ;
ssSetNumIWork ( S , 0 ) ;
ssSetNumPWork ( S , 0 ) ;
ssSetNumModes ( S , 0 ) ;
ssSetNumNonsampledZCs ( S , 0 ) ;

/∗ Take c a r e when s p e c i f y i n g e x c e p t i o n f r e e code − see sfuntmpl_doc . c ∗/
s s S e t O p t i o n s ( S , SS_OPTION_EXCEPTION_FREE_CODE ) ;

}

/∗ Funct ion : m d l I n i t i a l i z e S a m p l e T i m e s =========================================
∗ A b s t r a c t :
∗ S p e c i f i y t h a t we have a cont inuous sample time .
∗/

s t a t i c v o i d m d l I n i t i a l i z e S a m p l e T i m e s ( SimStruc t ∗S )
{

ssSetSampleTime ( S , 0 ,CONTINUOUS_SAMPLE_TIME ) ;
s s S e t O f f s e t T i m e ( S , 0 , 0 . 0 ) ;

}

i n t check_case ( double wf , double w0dot , double wfdot , double v_max , double a_max , double∗ q_w ,
double∗ t _ a c c e n t , double∗ w_accent , double∗ wdot_accent ) {

double w1dot = 0 , t _ I , t _ I I ;
double r e v = 1 ;
double SAMPLE_TIME = 0 . 0 0 1 ; /∗ g l o b a l v a r i a b l e ? ! ∗/

i f ( ( wf<=0 && wfdot >=0) | | ( wf<0 && wfdot <0) ) {
/∗ Case 0: r e v e r s e n e g a t i v e c a s e s ∗/

wf = −wf ;
w0dot = −w0dot ;
wfdot = −wfdot ;
r e v = −r e v ;

}

i f ( dabs ( wf ) <=EPSILON_POSITION_CONVERGED && dabs ( wfdot−w0dot ) <EPSILON_VELOCITY_CONVERGED ) {
/∗ No c a s e : converged ! ∗/

∗q_w = dmin ( dmax ( ( wfdot−w0dot ) / SAMPLE_TIME,−a_max ) , a_max ) ;
∗ t _ a c c e n t = 0;
∗w_accent = 0;
∗wdot_accent = wfdot ;
r e t u r n 1 ;

} e l s e i f ( w0dot >v_max ) {
/∗ Case 5 : too l a r g e v e l o c i t y ( a f t e r t a r g e t swi tch , or no i se ) ; d e c e l e r a t e ∗/

∗q_w = −a_max ;
∗ t _ a c c e n t = ( w0dot−v_max ) / a_max ;
∗w_accent = 0 . 5∗ ( w0dot∗w0dot−v_max∗v_max ) / a_max ;
∗wdot_accent = v_max ;

} e l s e i f ( dabs ( w0dot−v_max ) <=EPSILON_VELOCITY_CONVERGED &&
wf >0 .5∗ ( w0dot∗w0dot−wfdot∗wfdot ) / a_max ) {
/∗ Case 3 : d r i v i n g a t maximal v e l o c i t y ∗/

∗q_w = ( v_max−w0dot ) / SAMPLE_TIME ;
∗ t _ a c c e n t = wf / v_max +0.5∗wfdot∗wfdot / v_max / a_max−0.5∗v_max / a_max ;
∗w_accent = wf +0 .5∗ ( wfdot∗wfdot−v_max∗v_max ) / a_max+EPS ;
∗wdot_accent = v_max ;

} e l s e i f ( v_max+EPSILON_VELOCITY_CONVERGED>=w0dot && w0dot>0 &&
wf <=0.5∗ ( w0dot∗w0dot−wfdot∗wfdot ) / a_max ) {
/∗ Case 4 : need t o d e c e l e r a t e t o s t o p in time ∗/

∗q_w = −a_max ;
∗ t _ a c c e n t = ( w0dot−wfdot ) / a_max ;
∗w_accent = 0 . 5∗ ( w0dot∗w0dot−wfdot∗wfdot ) / a_max ;
∗wdot_accent = wfdot ;

} e l s e i f ( wf >0 .5∗ ( wfdot∗wfdot−w0dot∗w0dot ) / a_max ) {
/∗ Case 2 : normal a c c e l e r a t i o n ∗/

t _ I = ( v_max−w0dot ) / a_max ;
w1dot = s q r t ( wf∗a_max +0 .5∗ ( w0dot∗w0dot+ wfdot∗wfdot ) ) ;
t _ I I = ( w1dot−w0dot ) / a_max ;
i f ( t _ I <= t _ I I ) {
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/∗ Case 2 . 1 : a c c e l e r a t e t o maximum v e l o c i t y ∗/
∗q_w = a_max ;
∗ t _ a c c e n t = t _ I ;
∗w_accent = 0 . 5∗ ( v_max∗v_max−w0dot∗w0dot ) / a_max ;
∗wdot_accent = v_max ;

} e l s e {
/∗ Case 2 . 2 : a c c e l e r a t e t o w1dot <v_max ∗/

∗q_w = a_max ;
∗ t _ a c c e n t = t _ I I ;
∗w_accent = 0.5∗wf +0.25∗ ( wfdot∗wfdot−w0dot∗w0dot ) / a_max+EPS ;
∗wdot_accent = w1dot ;

}
} e l s e i f ( wf >0 .5∗ ( w0dot∗w0dot−wfdot∗wfdot ) / a_max ) {
/∗ Case a a n l o o p j e : d i s t a n c e too smal l t o reach d e s i r e d f i n a l v e l o c i t y ∗/

i f ( wfdot >0){
w1dot = −1.1∗ s q r t (−wf∗a_max +0 .5∗ ( w0dot∗w0dot+ wfdot∗wfdot ) ) ;
∗q_w = −a_max ;
∗ t _ a c c e n t = ( w0dot−w1dot ) / a_max ;
∗w_accent = 0 . 5∗ ( w0dot∗w0dot−w1dot∗w1dot ) / a_max ;
∗wdot_accent = w1dot ;

} e l s e {
w1dot = 1 . 1∗ s q r t ( wf∗a_max +0 .5∗ ( w0dot∗w0dot+ wfdot∗wfdot ) ) ;
∗q_w = a_max ;
∗ t _ a c c e n t = ( w1dot−w0dot ) / a_max ;
∗w_accent = 0 . 5∗ ( w1dot∗w1dot−w0dot∗w0dot ) / a_max ;
∗wdot_accent = w1dot ;

}
} e l s e i f ( w0dot <0){
/∗ Case 1 : d r i v i n g in n e g a t i v e ( wrong ) d i r e c t i o n ; a c c e l e r a t e ∗/

∗q_w = a_max ;
∗ t _ a c c e n t = −w0dot / a_max ;
∗w_accent = −0.5∗w0dot∗w0dot / a_max ;
∗wdot_accent = 0;

} e l s e {
/∗ p r i n t f ( " E r r o r \n\n " ) ; ∗/
}

/∗ Compensate f o r Case 1 , r e v e r t i n g ∗/
∗w_accent = r e v∗∗w_accent ;
∗wdot_accent = r e v∗∗wdot_accent ;
∗q_w = r e v∗∗q_w ;

r e t u r n 0;
}

double c a l c u l a t e _ t i m e ( double wf , double w0dot , double wfdot , double v_max_w , double a_max_w , double∗ q_impl ) {

double t = 0; /∗ i n i t i a l t ime ∗/
double q_w = 0; /∗ i n i t i a l p o s i t i o n ∗/
double t _ a c c e n t = 0; /∗ update time ∗/
double w_accent = 0; /∗ update p o s i t i o n ∗/
double wdot_accent = 0; /∗ update v e l o c i t y ∗/
double ETA = 0; /∗ Est imated Time of A r r i v a l ∗/

i n t N = 1 0 ;
i n t i = 0 ;
i n t converged = 0;

o v e r s h o o t f l a g = 0;

f o r ( i =0; i <N; i ++){
converged = check_case ( wf , w0dot , wfdot , v_max_w , a_max_w ,&q_w,& t _ a c c e n t ,& w_accent ,& wdot_accent ) ;

/ / i f i ==0 && q_w < 0.0 en j e w i l naar wf > 0.0 && ( i f i ==1 && ! converged )
i f ( i ==0 && q_w<0.0 && wf > 0 . 0 )
{

o v e r s h o o t f l a g = 1 ;
}
i f ( i ==1 && o v e r s h o o t f l a g ==1 && ! converged )
{

o v e r s h o o t f l a g = 3 ;
}

/ / i f i ==0 && q_w > 0.0 en j e w i l naar wf < 0.0 && ( i f i ==1 && ! converged )
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i f ( i ==0 && q_w>0.0 && wf < 0 . 0 )
{

o v e r s h o o t f l a g = 2 ;
}
i f ( i ==1 && o v e r s h o o t f l a g ==2 && ! converged )
{

o v e r s h o o t f l a g = 3 ;
}

i f ( i ==0){
∗q_impl = q_w ;

}

/∗ Update time , p o s i t i o n and v e l o c i t y ∗/
t = t + t _ a c c e n t ;
wf = wf − w_accent ;
w0dot = wdot_accent ;

i f ( converged ) {
ETA = t ;
break ;

}
}
r e t u r n ETA ;

}

/∗ Funct ion : mdlOutputs =======================================================
∗ A b s t r a c t :
∗ y = Cx + Du
∗/

s t a t i c v o i d mdlOutputs ( S imStruc t ∗S , in t_T t i d )
{

double ∗y = s s G e t O u t p u t P o r t R e a l S i g n a l ( S , 0 ) ;
r e a l _ T ∗p o v e r s h o o t f l a g = ( r e a l _ T ∗ ) s s G e t O u t p u t P o r t S i g n a l ( S , 1 ) ;
I np u tR e a l P t r s Ty p e uPt rs = s s G e t I n p u t P o r t R e a l S i g n a l P t r s ( S , 0 ) ; /∗ x _ r e f , x d o t _ r e f , y _ r e f ,
y d o t _ r e f , x , y , x0dot , y0dot , v_max , a_max , robotID ∗/
double x f = ∗uPt rs [0]−∗ uPt rs [ 4 ] ;
double x f d o t = ∗uPt rs [ 1 ] ; /∗ f o r the keeper ( r o b o t 1 ) , i t i s assumed t h a t
x f d o t and y f d o t a r e zero ! ( v e l o c i t i e s and a c c e l e r a t i o n s a r e not a d j u s t e d f o r the keeper
when end−v e l o c i t i e s a r e c o n s i d e r e d ) ∗/
double y f = ∗uPt rs [2]−∗ uPt rs [ 5 ] ;
double y f d o t = ∗uPt rs [ 3 ] ;
double x0dot = ∗uPt rs [ 6 ] ;
double y0dot = ∗uPt rs [ 7 ] ;
double v_max = ∗uPt rs [ 8 ] ; /∗ in c a s e o f r o b o t 1 ( g o a l k e e p e r ) , v_max and
a_max r e p r e s e n t the v e l o c i t y and a c c e l e r a t i o n in y−d i r e c t i o n ∗/
double a_max = ∗uPt rs [ 9 ] ;
i n t robotID = ( i n t ) ∗uPt rs [ 1 0 ] ;

double SAMPLE_TIME = 0 . 0 0 1 ; /∗ g l o b a l v a r i a b l e ? ! ∗/

double q_x = 0;
double ETA_x = 0;
double ETA_x_min = 0;
double ETA_x_max = 0;

double q_y = 0;
double ETA_y = 0;
double ETA_y_min = 0;
double ETA_y_max = 0;

s t a t i c double a lpha = 0.25∗M_PI ;
double alpha_min = 0;
double alpha_max = 0.5∗M_PI ;

double v_max_x , v_max_y , a_max_x , a_max_y , v_max_d ;
double SYNC_TIME_PRECISION1 = . 0 0 1 ;
double SYNC_TIME_PRECISION2 = . 0 0 1 ;
double EPSILON_VELOCITY_CONVERGED2 = 0 . 3 ;

i n t j = 0 ;
i n t s y n c a b l e = 0;

/∗ check f e a s i b i l i t y o f f i n a l v e l o c i t i e s ∗/
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/∗ t h i s a l s o p r e v e n t s alpha_min >alpha_max ( see below ) ∗/
v_max_d = s q r t ( x f d o t∗ x f d o t + y f d o t∗ y f d o t ) ;
i f ( v_max_d >0.8∗v_max ) {

x f d o t = x f d o t ∗ (0.8∗ v_max ) / v_max_d ;
y f d o t = y f d o t ∗ (0.8∗ v_max ) / v_max_d ;

}
i f ( dabs ( x f d o t ) <0.5∗EPSILON_VELOCITY_CONVERGED2 ) {

x f d o t = 0;
} e l s e i f ( x f d o t >0){

x f d o t = dmax ( x f d o t , EPSILON_VELOCITY_CONVERGED2 ) ;
} e l s e {

x f d o t = dmin ( x f d o t ,−EPSILON_VELOCITY_CONVERGED2 ) ;
}
i f ( dabs ( y f d o t ) <0.5∗EPSILON_VELOCITY_CONVERGED2 ) {

y f d o t = 0;
} e l s e i f ( y f d o t >0){

y f d o t = dmax ( y f d o t , EPSILON_VELOCITY_CONVERGED2 ) ;
} e l s e {

y f d o t = dmin ( y f d o t ,−EPSILON_VELOCITY_CONVERGED2 ) ;
}

/∗ i f f i n a l v e l o c i t i e s a r e requ i red , alpha_max and / or alpha_min a r e l i m i t e d ∗/
i f ( dabs ( x f d o t ) >0 ) {

v_max_x = dabs ( x f d o t ) ;
alpha_max = acos ( v_max_x / v_max ) ;
v_max_y = s i n ( alpha_max )∗ v_max ;
a_max_y = s i n ( alpha_max )∗ a_max ;
a_max_x = cos ( alpha_max )∗ a_max ;

ETA_x_max = c a l c u l a t e _ t i m e ( xf , x0dot , x f d o t , v_max_x , a_max_x ,& q_x ) ;
p o v e r s h o o t f l a g [ 0 ] = o v e r s h o o t f l a g ;
ETA_y_min = c a l c u l a t e _ t i m e ( yf , y0dot , y f d o t , v_max_y , a_max_y ,& q_y ) ;
p o v e r s h o o t f l a g [ 1 ] = o v e r s h o o t f l a g ;

}
i f ( dabs ( y f d o t ) >0 ) {

v_max_y = dabs ( y f d o t ) ;
alpha_min = a s i n ( v_max_y / v_max ) ;
v_max_x = cos ( alpha_min )∗ v_max ;
a_max_x = cos ( alpha_min )∗ a_max ;
a_max_y = s i n ( alpha_min )∗ a_max ;

ETA_x_min = c a l c u l a t e _ t i m e ( xf , x0dot , x f d o t , v_max_x , a_max_x ,& q_x ) ;
p o v e r s h o o t f l a g [ 0 ] = o v e r s h o o t f l a g ;
ETA_y_max = c a l c u l a t e _ t i m e ( yf , y0dot , y f d o t , v_max_y , a_max_y ,& q_y ) ;
p o v e r s h o o t f l a g [ 1 ] = o v e r s h o o t f l a g ;

}
a lpha = dmax ( alpha , alpha_min ) ;
a lpha = dmin ( alpha , alpha_max ) ;

/∗ check whether e i t h e r one or both d i r e c t i o n s a r e converged ∗/
i f ( ( dabs ( x f ) <=EPSILON_POSITION_CONVERGED && dabs ( x f d o t−x0dot ) <EPSILON_VELOCITY_CONVERGED2 ) &&
( dabs ( y f ) <EPSILON_POSITION_CONVERGED && dabs ( y f d o t−y0dot ) <EPSILON_VELOCITY_CONVERGED2 ) ) {

q_x = dmin ( dmax ( ( x f d o t−x0dot ) / SAMPLE_TIME,−a_max ) , a_max ) ;
q_y = dmin ( dmax ( ( y f d o t−y0dot ) / SAMPLE_TIME,−a_max ) , a_max ) ;
i f ( dabs ( q_x ) >0){

ETA_x = ( x f d o t−x0dot ) / q_x ;
} e l s e {

ETA_x = 0;
}
i f ( dabs ( q_y ) >0){

ETA_y = ( y f d o t−y0dot ) / q_y ;
} e l s e {

ETA_y = 0;
}
y [ 0 ] = q_x ;
y [ 1 ] = q_y ;
y [ 2 ] = dmax ( ETA_x , ETA_y ) ;

} e l s e i f ( dabs ( x f ) <=EPSILON_POSITION_CONVERGED && dabs ( x f d o t−x0dot ) <EPSILON_VELOCITY_CONVERGED2 ) {
q_x = dmin ( dmax ( ( x f d o t−x0dot ) / SAMPLE_TIME,−a_max ) , a_max ) ;
ETA_y = c a l c u l a t e _ t i m e ( yf , y0dot , y f d o t , v_max , a_max ,& q_y ) ;
p o v e r s h o o t f l a g [ 1 ] = o v e r s h o o t f l a g ;
y [ 0 ] = q_x ;
y [ 1 ] = q_y ;
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y [ 2 ] = ETA_y ;

} e l s e i f ( dabs ( y f ) <=EPSILON_POSITION_CONVERGED && dabs ( y f d o t−y0dot ) <EPSILON_VELOCITY_CONVERGED2 ) {
q_y = dmin ( dmax ( ( y f d o t−y0dot ) / SAMPLE_TIME,−a_max ) , a_max ) ;
ETA_x = c a l c u l a t e _ t i m e ( xf , x0dot , x f d o t , v_max , a_max ,& q_x ) ;
p o v e r s h o o t f l a g [ 0 ] = o v e r s h o o t f l a g ;
y [ 0 ] = q_x ;
y [ 1 ] = q_y ;
y [ 2 ] = ETA_x ;

} e l s e { /∗ no d i r e c t i o n converged y e t : s ynchron ize i f p o s s i b l e ∗/

/∗ check sync ’ a b i l i t y o f s i t u a t i o n ∗/
i f ( robotID == 1 ) {

s y n c a b l e = 0; /∗ do not sync in c a s e o f r o b o t 1∗/

ETA_x = c a l c u l a t e _ t i m e ( xf , x0dot , x f d o t , v_max , a_max ,& q_x ) ;
p o v e r s h o o t f l a g [ 0 ] = o v e r s h o o t f l a g ;
ETA_y = c a l c u l a t e _ t i m e ( yf , y0dot , y f d o t , v_max , a_max ,& q_y ) ;
p o v e r s h o o t f l a g [ 1 ] = o v e r s h o o t f l a g ;
y [ 0 ] = q_x ;
y [ 1 ] = q_y ;
y [ 2 ] = dmax ( ETA_x , ETA_y ) ;

} e l s e i f ( dabs ( x f d o t ) >0 && dabs ( y f d o t ) >0 ) {
i f ( ETA_y_min<=ETA_x_max && ETA_x_min<=ETA_y_max ) {

s y n c a b l e = 1 ; /∗ sync ’ a b l e ! ∗/
} e l s e {

s y n c a b l e = 0; /∗ non sync ’ a b l e ( y e t ) ∗/
i f ( ETA_y_min>ETA_x_max ) {

a lpha = alpha_max ;
v_max_y = s i n ( a lpha )∗ v_max ;
a_max_y = s i n ( a lpha )∗ a_max ;
ETA_y_min = c a l c u l a t e _ t i m e ( yf , y0dot , y f d o t , v_max_y , a_max_y ,& q_y ) ;
p o v e r s h o o t f l a g [ 1 ] = o v e r s h o o t f l a g ;
y [ 0 ] = 0;
y [ 1 ] = q_y ;
y [ 2 ] = ETA_y_min ;

} e l s e i f ( ETA_x_min>ETA_y_max ) {
a lpha = alpha_min ;
v_max_x = cos ( alpha_min )∗ v_max ;
a_max_x = cos ( alpha_min )∗ a_max ;
ETA_x_min = c a l c u l a t e _ t i m e ( xf , x0dot , x f d o t , v_max_x , a_max_x ,& q_x ) ;
p o v e r s h o o t f l a g [ 0 ] = o v e r s h o o t f l a g ;
y [ 0 ] = q_x ;
y [ 1 ] = 0 ;
y [ 2 ] = ETA_x_min ;

} e l s e {
/∗ p r i n t f ( " This should not be p o s s i b l e ! ETA_y_min = %f , ETA_x_max = %f ,

ETA_x_min = %f , ETA_y_max = %f \n " , ETA_y_min , ETA_x_max , ETA_x_min , ETA_y_max ) ; ∗/
}

}
} e l s e i f ( dabs ( x f d o t ) >0 ) {

i f ( ETA_y_min<=ETA_x_max ) {
s y n c a b l e = 1 ; /∗ sync ’ a b l e ! ∗/

} e l s e {
s y n c a b l e = 0; /∗ non sync ’ a b l e ( y e t ) ∗/
a lpha = alpha_max ;
v_max_y = s i n ( a lpha )∗ v_max ;
a_max_y = s i n ( a lpha )∗ a_max ;
ETA_y_min = c a l c u l a t e _ t i m e ( yf , y0dot , y f d o t , v_max_y , a_max_y ,& q_y ) ;
p o v e r s h o o t f l a g [ 1 ] = o v e r s h o o t f l a g ;
y [ 0 ] = 0;
y [ 1 ] = q_y ;
y [ 2 ] = ETA_y_min ;

}
} e l s e i f ( dabs ( y f d o t ) >0 ) {

i f ( ETA_x_min<=ETA_y_max ) {
s y n c a b l e = 1 ; /∗ sync ’ a b l e ! ∗/

} e l s e {
s y n c a b l e = 0; /∗ non sync ’ a b l e ( y e t ) ∗/
a lpha = alpha_min ;
v_max_x = cos ( alpha_min )∗ v_max ;
a_max_x = cos ( alpha_min )∗ a_max ;
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ETA_x_min = c a l c u l a t e _ t i m e ( xf , x0dot , x f d o t , v_max_x , a_max_x ,& q_x ) ;
p o v e r s h o o t f l a g [ 0 ] = o v e r s h o o t f l a g ;
y [ 0 ] = q_x ;
y [ 1 ] = 0 ;
y [ 2 ] = ETA_x_min ;

}
} e l s e { /∗ no f i n a l v e l o c i t i e s ∗/

s y n c a b l e = 1 ; /∗ sync ’ a b l e ! ∗/
}

/∗ i f sync ’ ab le , check p r e v i o u s l y d e r i v e d ( s t a t i c ) a lpha ∗/
i f ( s y n c a b l e ) {

v_max_x = cos ( a lpha )∗ v_max ;
a_max_x = cos ( a lpha )∗ a_max ;
v_max_y = s i n ( a lpha )∗ v_max ;
a_max_y = s i n ( a lpha )∗ a_max ;

ETA_x = c a l c u l a t e _ t i m e ( xf , x0dot , x f d o t , v_max_x , a_max_x ,& q_x ) ;
p o v e r s h o o t f l a g [ 0 ] = o v e r s h o o t f l a g ;
ETA_y = c a l c u l a t e _ t i m e ( yf , y0dot , y f d o t , v_max_y , a_max_y ,& q_y ) ;
p o v e r s h o o t f l a g [ 1 ] = o v e r s h o o t f l a g ;

i f ( dabs ( ETA_x−ETA_y) >SYNC_TIME_PRECISION2 ) {
/∗ ( renew i n i t i a l guess a lpha omit ted / not implemented ) ∗/
whi le ( dabs ( ETA_x−ETA_y) >SYNC_TIME_PRECISION1 ) {

i f ( j ==0){
/∗ p r i n t f ( " need t o i t e r a t e ! x f=%f , y f=%f , x0dot=%f , y0dot=%f , alpha_min=%f ,
alpha_max=%f , a lpha=%f , ETA_x=%f , ETA_y=%f \n " , x f , y f , x0dot , y0dot , alpha_min ,
alpha_max , alpha , ETA_x , ETA_y ) ; ∗/

}
i f ( ETA_x<ETA_y ) {

alpha_min = a lpha ;
a lpha = 0.5∗ a lpha +0.5∗ alpha_max ;

} e l s e {
alpha_max = a lpha ;
a lpha = 0.5∗ a lpha +0.5∗ alpha_min ;

}

v_max_x = cos ( a lpha )∗ v_max ;
a_max_x = cos ( a lpha )∗ a_max ;
v_max_y = s i n ( a lpha )∗ v_max ;
a_max_y = s i n ( a lpha )∗ a_max ;

ETA_x = c a l c u l a t e _ t i m e ( xf , x0dot , x f d o t , v_max_x , a_max_x ,& q_x ) ;
p o v e r s h o o t f l a g [ 0 ] = o v e r s h o o t f l a g ;
ETA_y = c a l c u l a t e _ t i m e ( yf , y0dot , y f d o t , v_max_y , a_max_y ,& q_y ) ;
p o v e r s h o o t f l a g [ 1 ] = o v e r s h o o t f l a g ;

j ++ ;
/∗ p r i n t f ( " a lpha = %f , ETA_x=%f , ETA_y=%f \n " , a lpha , ETA_x , ETA_y ) ; ∗/
i f ( j >50){

/∗ p r i n t f ( " bi−s e c t i o n a l go r i t hm not converged ! \ n " ) ; ∗/
break ;

}
}

/∗ } e l s e { ∗/
/∗ p r i n t f ( " p r e v i o u s a lpha was ok \n " ) ; ∗/
}

y [ 0 ] = q_x ;
y [ 1 ] = q_y ;
y [ 2 ] = 0 . 5∗ ( ETA_x+ETA_y ) ;

}
}

}

/∗ Funct ion : mdlTerminate =====================================================
∗ A b s t r a c t :
∗ No t e r m i n a t i o n needed , but we a r e r e q u i r e d t o have t h i s r o u t i n e .
∗/

s t a t i c v o i d mdlTerminate ( S imStruc t ∗S )
{

UNUSED_ARG( S ) ; /∗ unused input argument ∗/
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}

# i f d e f MATLAB_MEX_FILE /∗ I s t h i s f i l e being compiled as a MEX−f i l e ? ∗/
# i n c l u d e " s imul ink . c " /∗ MEX−f i l e i n t e r f a c e mechanism ∗/
# e l s e
# i n c l u d e " cg_sfun . h" /∗ Code g e n e r a t i o n r e g i s t r a t i o n f u n c t i o n ∗/
# e n d i f
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Appendix D

Acceleration x direction
Chapter 5

Figure D.1: Acceleration after the parking brake in x direction
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Figure D.2: A zoom of the x- and y acceleration and the case for the y direction
on time frame[2.5 - 6].
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Appendix E

Set up for simulations
traction controller

Figure E.1: The set up for the simulation of the traction controller.

Now the inputs are the same as in Appendix A, but there are 13 inputs more:
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• The instantaneous input acceleration in x direction.

• The measured acceleration in x position

• The instantaneous input acceleration in y direction.

• The measured acceleration in y position

• The safety factor of previous time step

• The difference in safety factor of previous time step

• The maximal acceleration of previous time step

• the cases in x direction

• the cases in y direction

• the overshootflag in x direction

• the overshootflag in y direction

• the roundmax in x direction

• the roundmax in y direction

With the signal builders there is an error imposed in the signal. The signal
builders are initial 1, but for some time frames they have a value above 1.
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