Embedded Motion Control

Real-Time Concepts for Embedded Systems Chapter 1: Introduction

Group 1: Rein Appeldoorn Jeroen Graafmans Bart Peeters Ton Peters Scott van Venrooij

TU

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

- Real-Life examples of embedded systems
- Definition embedded systems
- Definition real-time embedded systems
- Future
- Points to remember

Examples (1)

Consumer electronics

- Digital cameras
- DVD players
- Printers
- Mobile phone

Examples (2)

- Medical equipment
 - Cardiac arrhythmia monitors
 - Cardiac pacemakers

Examples (3)

- Advanced avionics
 - Flight control systems
 - Missile guidance systems

Examples (4)

- Automotive designs
 - Fuel injection systems
 - Antilock-braking systems

/ Department of Mechanical Engineering

Examples (5)

Internet

Defining the embedded system

General definition:

"Embedded systems are computing systems with tightly coupled hardware and software integration, that are designed to perform a dedicated function."

PC Processors

- Personal computers have stock processors
 - Full scale of features
 - Memory management, extra costs
 - Compatible with multiple operating systems
 - Not designed for a specific task

Embedded Processors

- Embedded systems have processors with special purposes:
 - Power
 - Geometry
 - Price
 - Heat productivity

TRANSLE

Iranssearsais I

Hardware/Software development for E.S.

Cross-Platform Development

- Host system
 - System on which you develop
- Target system
 - The embedded system
- Cross-compiling
 - Same processor architecture

/ Department of Mechanical Engineering

7-5-2012 PAGE 11

Cross-Platform Development

HS: Linux/Mac/Windows

- Develop C, C++ Code
- Compile to executable
 - Debug your code

Flash executable to storage on E.S.

TS: Embedded system

- Run the compiled executable

Software Storage and Upgradeability

- Code of an embedded system needs to be stored
 - ROM (Read only Memory)
 - Non-volatile content
 - Without external power source
 - RAM (Random Access Memory)
 - External power source
 - Faster

- 1. Mask Programmed ROM
- 2. Field Programmed ROM (PROM)
- 3. Erasable Programmable ROM (EPROM)
- 4. Electrically Erasable Programmable ROM (EEPROM)
- 5. Flash Memory

1. Mask Programmed ROM

- 2. Field Programmed ROM (PROM)
- 3. Erasable Programmable ROM (EPROM)
- 4. Electrically Erasable Programmable ROM (EEPROM)
- 5. Flash Memory
 - Programmed during manufacturing process
 - Content can't be changed
 - Advantage: Cheap

1. Mask Programmed ROM

2. Field Programmed ROM (PROM)

- 3. Erasable Programmable ROM (EPROM)
- 4. Electrically Erasable Programmable ROM (EEPROM)
- 5. Flash Memory
 - Custom-Programmed once
 - Content can't be changed
 - Advantage: Cheap and Custom

- 1. Mask Programmed ROM
- 2. Field Programmed ROM (PROM)
- 3. Erasable Programmable ROM (EPROM)
- 4. Electrically Erasable Programmable ROM (EEPROM)
- 5. Flash Memory
 - Custom-Programmed
 - Content can be changed
 - Changes only by completely erasing the content
 - Advantage: Reprogrammable

- 1. Mask Programmed ROM
- 2. Field Programmed ROM (PROM)
- 3. Erasable Programmable ROM (EPROM)
- 4. Electrically Erasable Programmable ROM (EEPROM)
- 5. Flash Memory
 - Custom-Programmed
 - Content can be changed
 - Every byte can be reprogrammed separately
 - Advantage: Reprogrammable (byte by byte)

- 1. Mask Programmed ROM
- 2. Field Programmed ROM (PROM)
- 3. Erasable Programmable ROM (EPROM)
- 4. Electrically Erasable Programmable ROM
- 5. Flash Memory
 - Custom-Programmed
 - Content can be changed
 - Blocks (e.g. 512-byte) can be reprogrammed
 - Advantage: Reprogrammable and faster than EEPROM

Which ROM to choose

- ROM/PROM: Cheap
- EPROM: Rewritable (at location)
- EEPROM/Flash: Rewritable from distance

RAM

- Dynamic RAM (DRAM)
 - Needs periodic refreshing
- Static RAM (SRAM)
 - Retains content as long as power is supplied
- Non-Volatile RAM (NVRAM)
 - 1. SRAM with backup power
 - 2. SRAM with EEPROM (saves data when power is off)

- Real-time systems
 - Systems that respond to external events in a timely fashion

Real-time embedded systems

 Relationship between real-time systems and embedded systems:

- Interaction
 - Periodic
 - Aperiodic

- Example
 - Real-time weapons defense system
 - http://www.youtube.com/watch?v=jZ-53a2JsNg

- Two essential characteristics
 - Logical or functional correctness
 - Timing correctness
- Deterministic

Hard

- Near-zero flexibility
- Missed deadline: catastrophic
- Soft
 - Degree of flexibility (non-zero)
 - Missed deadline: non-catastrophic

Trends of Embedded Systems (1)

 Processing power increases according to Moore's Law

"The number of transistors per integrated circuit doubles every 18 months."

Trends of Embedded Systems (2)

- Product markets now dictate six- to nine-month cycles
- Connectivity is now a requirement
- Electronics-based products become more complex

Trends of Embedded Systems (3)

New/smarter classes of products

Embedded systems will reshape the world

Future of Embedded Systems

- Google Glass Project
- http://www.youtube.com/watch?v=9c6W4CCU9M4

/ Department of Mechanical Engineering

Points to remember

- Embedded systems:
 - Built for a specific application.
 - Generally built using embedded processors
- Real-time systems:
 - Timing is as important as functionality
 - Hard and soft real-time systems
- Real-time embedded systems
 - Embedded systems with real-time behaviors

Questions

/ Department of Mechanical Engineering

7-5-2012 PAGE 33