
Data structures used by the perceptor 

 
Map struct 

Variable Type Usage 

Objects [Vector <Object>] To define the map. The map 
exists of multiple objects which 
can be a different type. 

Function I/O Description 

Transform [Map| x| y| a] > [Map] Transform all the object in the 
map to a new location and 
orientation. First rotate then 
translate. 

Scale [Map| x| y] > [Map] Scale all the objects in the map 
with a factor x and y in the x 
and y direction respectively. 

Print [Map] > [-] Print the names of all the 
objects in the console, used for 
debugging. 

Printparents [Map] > [-] Print all the points and their 
parents from all the objects in 
the in the console, used for 
debugging. 

Printprojectionlinks [Map] > [-] Print all the objects in the map 
with their points and 
projection points in the 
console, used for debugging. 

removeobjects [Map] > [Map] Reorder the vector of objects 
so all the objects which have 
the remove flag set are at the 



end of the vector and then 
remove these objects from the 
vector. 

setobjectsold [Map] > [Map] This function sets all the 
newobject variables to false 
which is used to distinguish 
between the data from the 
objects from the new scan and 
the objects already in the local 
map. 

 

Object struct 

Variable Type Usage 

Name [char array [15]] Visualization: Identification 

Type [enum] Identification used to separate 
different objects [wall | door | 
test | origin | robot | 
dynamicobstacle | 
staticobstacle | safeDis | 
destination | projections | 
cabinet | start | path | node | 
nodes | roomwall] 

points [vector <Point>] To define objects which consist 
of multiple points. Walls and 
doors consist of 2, other 
objects such as the origin, the 
robot, arrows and so on can 
consist of more points. 

projectedpoints [vector <Point*>] Used to identify possible doors 
and rooms. 

pointradius [float] Visualization: define how large 
to draw the points. 

Drawtype [enum] Visualization: define if the 
points have to be connected 
with lines [points | lines] 

connection [enum] Visualization: define if the first 
and last point have to be 
connected with a line [open | 
closed] 

Color [int array [3]] Visualisation: specify the color 
of the object 

remove [bool] Map remove function: 
determine if the object will be 
removed when the next 
removeobjects is called. 

newobject [bool] Do distinguish between the 
objects that are already in the 
localmap and the objects from 
the new scan. 

Function I/O Description 



anglefrom [Object| Point] > [float] 
 

Calculate the angle of an 
object relative to the input 
point. 

angle [Object] > [float] Calculate the angle [0 PI] of an 
object relative to 0. Works only 
when the object has 2 points 
e.g. wall or door. 

origionalangle [Object] > [float] 
 

Calculate the angle [-PI PI] of 
an object relative to 0. Works 
only when the object has 2 
points e.g. wall or door. 
 

length [Object] > [float] Calculate the length of an 
object. Works only when the 
object has 2 points e.g. wall or 
door. 

middle [Object] > [Vector2] Calculate the middle position 
of an object. 

smallestrelativeangle [Object| Object] > [float] Calculate the smallest angle 
between 2 objects which both 
have 2 points. 

averageperpendiculardistance 
 

[Object| Object] > [float] Calculate the average 
perpendicular distance 
between 2 objects which both 
have 2 points. 

projection [Object| point/Vector2] > 
[Vector2] 

Calculate the projection of the 
input point / vector onto the 
object. 

Constrained projection [Object| Vector2] > [Vector2] Calculate the projection of the 
input vector onto the object. 
Return zero if the projection is 
not on the object. 

anglebetween [Object| Object] > [float] Calculate the angle between 2 
objects measured from 1 
direction. 

gapdistance [Object| Object] > [float] Calculate the gap distance 
between 2 objects which both 
have 2 points. This is used 
when 2 objects are 
approximately parallel and 
have a small average 
perpendicular distance. 

connectedto [Object| Object] > [bool] Determine if the two input 
objects have overlapping 
points and are thus connected 
to each other. 

transform [Object| x| y| a] > [Object] This rotates and then 
translates all the points in this 
object with angle and an offset 
x and y. 



scale [Object| x| y] > [Object] This scales all the points in this 
object with factor x and y in 
the x and y direction 
respectively. 

 

Point struct 

Variable Type Usage 

Location [Vector2] To describe the location of the 
point in a XY frame 

Property [enum] To describe the property of a 
point [floating | convex | 
concave | connected | 
projected] 

Connectedwith [vector <Point*>] To specify to which points it is 
connected   

Projectionpoint [Point*] A reference to the projection 
of this point which is a new 
point. 

Parents [vector <Object*>] References to all objects which 
have a point at this location 

Weight [float] A weight to describe how 
certain a point is in the correct 
location 

Function I/O Description 

sameparentobject [Point| Point] > [bool] To check if two points have the 
same parent object. 

connectedpoint [Point| Point] > [bool] To check if the two input 
points are connected to each 
other. 

 

Vector2 struct 

Variable Type Usage 

x [float]  To store the x component of 
the vector. 

y [float]  To store the y component of 
the vector. 

Function I/O Description 

Operators | + | - | [Vector2| Vector2] > [Vector2] To add or subtract 2 vectors. 

Operators | / | * |  [Vector2| float] > [Vector2] To multiply or divide a vector 
with a number. 

Operator | == | [Vector2| Vector2] > [bool] Determine if 2 vectors are the 
same. 

Distance [Vector2] > [float] Calculate the Distance 
between 2 vectors. 

Length [Vector2] > [float] Calculate the length of the 
input vector. 

Angle [Vector2] > [float] Calculate the angle of the 
input vector relative to 0. 



dot [Vector2| Vector2] > [float] Calculate the dot product of 2 
vectors. 

unit [Vector2] > [Vector2] Calculate the unit vector of a 
given vector. 

transform [Vector2| x| y| a] > [Vector2] Rotate the input vector with 
angle a and then translate this 
vector with x and y. 

scale [Vector2| x| y] > [Vector2] Scale the input vector in the x 
and y direction 

      

Position struct 

Variable Type Usage 

x [float]  To store the x component of 
the position. 

y [float]  To store the y component of 
the position. 

a [float] To store the angle component 
to the position. 

Function I/O Description 

Operators | + | - | [Position] > [Position] To do simple calculations with 
a position variable. 

 


