

Software Design - 1

Aditya Kamath (0976155) Alexis Siagkris-Lekkos (0980790) Amrith Vel Arul Kumar (0976940) Ayush Kumar (0976467) Mahmoud Al Abbassi (0978245)

Behavior System Model

Mission - Task - Motion

Which corridors to follow and where has the robot already been?

Every turn/crossroad/T-section/dead-end considered a **node**

Nodes are connected by the **distance** between them

These distances are the **cost** that we have to pay to reach our goal (exit)

Implemented in a search algorithm like **Dijkstra**, **A***, **Tremaux**

Mission - Task - Motion

Selecting a trajectory to reach next corridor

Go forward

Avoid Obstacles

Align the robot

Detect nodes

Compute next node (make decision for next move)

Develop trajectory to next corridor from the current position

Mission - Task - Motion

Mission - Task - <u>Motion</u>

Sample Laser Range Finder (LRF) and odometry data

Follow plan trajectory based on data

Select velocity profile (e.g. in the corners the robot drives with a smaller speed etc)

Structure Model

Interconnection of Behaviors and Activities. Described by 5Cs:

- Computation: Represents the core functionality of the robot (behavior)
- Configurator: Configures computational elements
- Coordinator: Triggers/Stops computational elements
- Communication: Data exchange between elements
- Composition: Describes the coupling among the above ^

Composition Pattern

