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Abstract

The RoboCup project aims to have robots beat the human soccer world champion in 2050. Cur-
rently, the mid-size league depends on omni-wheels to move around on the soccer pitch. This
is reasonable for a carpet-like surface or artificial turf, but on real grass, this technology is not
sufficient. The University of Technology Eindhoven developed a Hexapod robot designed to walk,
jump and run, aiming to fill this gap. Basic low-level software for this robot was developed in an
earlier thesis, but after that thesis, the project was shut down temporarily. After more than a
year of silence, this open space project is set up to revive the Hexapod and discover its possibilities.

To get the project started, first the software version was updated and problems arising from
this update were solved. Then the real time loop was improved by solving an error in the commu-
nication between software components in this loop. These components were modified such that
they can only be started if given physically valid parameters, to make starting them fool-proof.
The safety component was rewritten such that the robot is able to recover from a safety shut-down
of an actuator. Also the gravity compensation component was rewritten to correct a theoretical
error. All of this made it possible to make the robot walk better than it had before. All working
software was documented on the Hexapod wiki page.

Additionally, a leg tip trajectory is given to decrease impact forces with the ground while
walking, but this method is not yet implemented. Finally also an initial approach is given to
making the Hexapod jump. The leg tip trajectory to do this is implemented and tested, but so
far without the success of making the robot jump.
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Chapter 1

Introduction

1.1 Motivation and background

The RoboCup project is a project that aims to improve robots by challenging teams to compete
in a robot soccer league. The goal of the project is to be able to have autonomous robots beat the
human world champions in 2050. Currently, the mid-size league robots depend on omni-wheels.
These wheels are designed to actively propel in the rotational direction, but also passively roll in
the direction perpendicular to the wheel disk. These are however not very suitable for moving on
a grass soccer pitch. The next logical step is to take the transition to legged locomotion. This is
where the Hexapod comes in.

1.2 Problem statement and objective

The Hexapod robot is a robot designed to walk, hop, jump and run. It is designed such that it
satisfies the requirements for a RoboCup robot in the mid-size league, aiming to take the next
step towards robotic soccer on a real soccer pitch. So far it has only walked slowly, in which
case it lacked stability; moreover, it has not moved at all in over a year. Therefore, the goal of
this project is to revive the Hexapod, bringing it back to its old capabilities, documenting the
existing software that is present at the end of the project and to explore further possibilities and
limitations of the robot.

1.3 Outline

To ensure that the information recovered during this project is not lost again, this report aims to
document the software that is available at the end of this project. To be able to give an explanation
of the software, first an overview of the hardware is given in chapter 2. Then the way the system
is modeled is explained in chapter 3. Finally, in chapter 4 the software that runs on the Hexapod
is explained. Because specific development was done regarding jumping, this subject is elaborated
upon further in chapter 5.
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Chapter 2

Hardware

This chapter describes the main hardware components that are necessary for the understanding
and design of software for the Hexapod. For more detailed information on the hardware design,
refer to [8]. For more hands-on instructions on start-up, refer to the Hexapod’s Wiki page [2].

2.1 Power supply

The power to the robot can be supplied by one of the 8 cell lithium polymer battery packs that
can be mounted on the bottom of the robot. For testing purposes however, the more practical
solution to powering the robot is to use a laboratory power supply. The power supply should be
set to 24 V and the current should not be limited to less than 10 A because the motors can draw
high peak currents.

2.2 Legs, actuators and transmission

The legs consist of three links. From body to tip, these are called the coxa, femur and tibia. The
actuators on the Hexapod are Maxon EC 45 flat brushless 30 Watt motors. There is one actuator
for each joint, which gives the robot 18 internal degrees of freedom, offering a large freedom of
movement compared to robots with, for instance, coupled joints. The actuators are connected to
torsional springs through a GS38A Maxon 60:1 gear head, so the system can be regarded as one
with Series Elastic Actuation. These torsional springs offer the possibility to store elastic energy
when a force is applied to the leg tip. A drawback of the springs is that they also imply that the
control bandwidth of the joints is rather low. Furthermore, the actuator torques for the femur and
tibia links are transferred from the end of the torsional spring to the joint through steel cables.
The cable between the coxa and the femur has the tendency to break, so there is a spare leg that
can replace a broken leg when necessary.

2.3 Sensors

The legs are equipped with magnetic single turn absolute encoders. This means that they do not
need calibration when the robot is started. They need to be calibrated only after changing a leg
or other repair work that may have changed the zero point of the encoder itself, such as replacing
a broken steel cable. An example of an absolute encoder disk is shown in figure 2.1. Each joint is
equipped with two encoders, one of which is placed in the actuator and the other at the joint itself.

The built-in CHR-6d IMU (Inertial Measurement Unit) measures linear acceleration along
three axes, rotation rates about three axes and pitch and roll angles.
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CHAPTER 2. HARDWARE

Figure 2.1: Schematic visualization of an absolute encoder disk. Signals may be read magnetically
or optically.

2.4 Data acquisition

The real time data acquisition is performed by two Beckhoff EtherCAT FB111-0142 piggyback
controller boards. The first one is connected to the motors and encoders, the other is connected
to the IMU and the power supply, which may be a battery or an external power supply. These
modules can be connected to the on board PC, but as this PC is currently not operational, the
robot is controlled by an off-board laptop PC.
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Chapter 3

System model

The software for the Hexapod is based on a simplification of reality. In this chapter this model of
the robot system is explained. To do this, first the used reference frames are illustrated in section
one. In the second section, the dynamic model of the robot body is explained.

3.1 On the used reference frames

In order to elaborate on the theory of the Hexapod, several frames of reference are needed. The
robot moves its body freely space with respect to a world frame, it has six legs that each have
their own reference frame in Cartesian space, these frames can be expressed with respect to the
body fixed frame and additionally, there is a direction oriented reference frame. The relationships
between these frames and their meanings are explained in this section.

3.1.1 World frame

The world frame such that

X =WXW =
[
~eW1 , ~eW2 , ~eW3

]
[X,Y, Z]

T
(3.1)

is the inertial frame. It has its Z-axis upwards from the ground, and the X and Y axes oriented
such that they form a right handed frame. The most obvious choice for the X axis is the initial
body x axis. The world frame is also the frame the body height and pitch and roll angles are
expressed in. Also odometry information would typically be expressed in this frame.

3.1.2 Body fixed frame

As the name implies, the body fixed frame such that

x = BxB =
[
~eB1 , ~e

B
2 , ~e

B
3

]
[x, y, z]

T
(3.2)

is attached to the robot body. It has the z axis pointing up, the x axis towards leg 1 and the y
axis such that the right handed frame is completed. It translates and rotates with the robot in
all directions. This frame spans what is commonly referred to as the operational space. The tip
coordinates of the legs are represented in this base before they are converted to joint space by the
inverse kinematics. The body fixed frame and world frame are displayed in figure 3.1

3.1.3 Direction-of-movement fixed frame

Direction based frame such that

ξ = DξD =
[
~eD1 , ~e

D
2 , ~e

D
3

]
[ξx, ξy, ξz]

T
(3.3)
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CHAPTER 3. SYSTEM MODEL

Figure 3.1: Relation of the body fixed frame and the world frame

Figure 3.2: Relation of the body fixed frame and the direction-of-movement fixed frame

is oriented such that its ξz axis coincides with the (body) z axis and the ξx axis is always in the
horizontal direction of movement. The reference trajectories for the leg tips are defined in this
reference frame to be independent of the direction of movement. For clarity, this is illustrated in
figure 3.2.

3.1.4 Leg reference frame

Each leg has its own reference frame, where

x = LxL =
[
~eL1 , ~e

L
2 , ~e

L
3

]
[x, y, z]

T
(3.4)

in which the leg Jacobian is defined. The z-axis of this system is along the axis of the first joint,
parallel to the body z axis, the x-axis is pointed outward and the y-axis completes the right-handed
frame. The origin of this system is located at the z position corresponding to the height of the
second joint.

3.1.5 Joint space

Finally, the tip position is controlled in joint space, spanned by

q = J qJ =
[
~eJ1 , ~e

J
2 , ~e

J
3

]
[θ1, θ2, ϑ3]T . (3.5)
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CHAPTER 3. SYSTEM MODEL

Figure 3.3: An example of the relation between relative angle θ and absolute angle ϑ.

Note that the final element in the joint space vector is

ϑ3 = θ3 + θ2, (3.6)

such that it is the angle as used in the Denavit-Hartenberg convention [6]. This is not entirely
trivial since the joint angle that is measured by the actuator encoder is θ3 as this joint is physically
decoupled from joint 2. The distinction is illustrated in figure 3.3.

3.2 Body dynamics

A large part of this section is adopted directly from [8]. However, a fundamental improvement
was made to his elaboration, being that the correct vector bases are now taken into account in the
matrix calculations. The forces and moments acting on the robot in normal operation are only the
reaction forces from the ground on the leg tips. As the leg tips are unable to transfer moments,
only forces are applied to the leg tips. The total force and moment vectors applied to the robot’s
body by the legs can thus be expressed as

F =

p∑
i=1

fi, (3.7)

M =

p∑
i=1

ri × fi, (3.8)

where i is the leg index, p the number of legs on the floor, ri the position vector of the tip of leg
i and fi the force vector acting on that leg tip. The force vector can be expressed in matrix form
as

F = JFf (3.9a)

=
[
I3 · · · I3

] f1...
fp

 (3.9b)

where JF ∈ R3×3p and f ∈ R3p. And the moment vector can be rewritten in a similar way as

M = JMf (3.10a)

=

 0 −rz,1 ry,1 · · · 0 −rz,p ry,p
rz,1 0 −rx,1 · · · rz,p 0 −rx,p
−ry,1 rx,1 0 · · · −ry,p rx,p 0


f1...
fp

 (3.10b)

where JM ∈ R3×3p and rx,i, ry,i and rz,i are components of ri expressed in the body fixed frame.
Note that in equations 3.9 and 3.10, no longer italic fonts are used for F and M, indicating that
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CHAPTER 3. SYSTEM MODEL

these are matrices expressed with respect to a base; more specifically, the body fixed vector base
B. Superscripts are omitted for readability. These two matrix equations can be combined to

W = JFMf , (3.11)

with

JFM =
[
JF

T JM
T
]T ∈ R6×3p,

W =
[
FT MT

]T ∈ R6

and W denoting the wrench. Using this equation, the required tip force distribution for equilibrium
can be calculated from the wrench expressed in the body fixed frame. As the wrench is known in
inertial space, i.e. the world reference frame, it should first be converted to the body fixed frame
before it can be applied to equation 3.11. This can be done using the rotation matrix RB

W relating
the world frame to the body fixed frame as

xB = RB
WXW . (3.12)

As equation 3.11 is under-determined, it has multiple solutions. It can however be solved mini-
mizing ||f || using the pseudo inverse of JFM, which is numerically efficiently obtained using the
singular value decomposition of JFM [3]
Finally, the required joint torques for a leg can be found by premultiplying the tip force vector of
the respective leg with the transpose of its Jacobian. For the derivation of the Jacobian, refer to
[8]. As this Jacobian is defined with respect to the leg root, the force vector needs an additional
rotation before premultiplication with the Jacobian. This results in

τ J
i = JTRB

l,kf
B
i (3.13)

giving the required joint torques for leg i.
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Chapter 4

Software

This chapter aims to explain the software that is used for the Hexapod. A large part of this software
was already written by [8]. However, many improvements were made varying from small fixes to
corrections of fundamental flaws. For information about the important improvements, especially
note the sections about the framework, the safety component and the gravity compensation.

4.1 Framework

The software that is used for the Hexapod is based on Orocos. Orocos stands for Open RObot
COntrol Software. This is an open source framework that lets the user create components which
can communicate with each other using their ports. The power of this framework lies in RTT (Real
Time Toolkit), which makes it possible to run these components (almost) in real time, yielding low
latency and predictable behaviour. This is especially useful when controlling hardware. For a de-
tailed explanation about Orocos and its usage, refer to the Orocos Component Builder’s Manual [4]

The next software level will be based on ROS, the Robot Operating System. This is a frame-
work based on nodes communicating through topics, over which messages are sent. This structure,
which is similar to that of Orocos, offers the possibility to separate software tasks and divide them
into different nodes. ROS is also used for the TechUnited care robot Amigo and will be used for
the TechUnited soccer robots (TURTLEs) in the near future, the latter making it an especially
good choice, making sure that the software for the Hexapod is compatible with the higher level
software of the existing soccer robots.

The ROS distribution that was originally used for the Hexapod is ROS Electric, whereas the
used distribution by TechUnited, the University of Technology Eindhoven RoboCup team, at the
start of this project was ROS Fuerte. To be up to date with the rest of the team, migration was
performed to Fuerte. Up to this point, ROS is only used for interfacing with RViz, a visualization
interface for the robot’s perception of itself and its environment. However, the streams that pass
data from Orocos to ROS were not working, giving the error “Need a transport for creating

streams”. This problem was solved by giving appropriate sizes to the streams. The joint states
and IMU data are sent to RViz, making it possible to visualize the robot with its actual current
leg configuration and its pitch and roll angles.

The next step in usage of ROS, is to use it to generate a Twist message, and send it to
the Orocos software. A Twist message is a message that contains two vectors: one of linear
velocities and one of angular velocities. The Orocos software should be able to translate such a
message to a gait pattern and control the leg joints such that the robot follows this Twist message.

As stated by [8], a URDF (Unified Robot Description) model was also built for the Hexapod,
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CHAPTER 4. SOFTWARE

making it possible to use Gazebo, a robot physics simulation program, to simulate the robot’s
behaviour. At the end of this project this simulator can be started and the model can be spawned,
but the interfacing with Orocos is not yet recovered.

4.2 Architecture

In this section, the general architecture of the real time software is explained. This architecture
is based on a feedback loop with on line reference generation in Cartesian space and was set up
by [8]. A schematic overview of the control loop is shown in figure 4.1. In this figure, observe
the four driver components on the right hand side (including SOEM). Together, these form the
hardware interface. Also observe the reference generation on the left hand side. In between these
parts, there is a standard feedback loop: the error is calculated and sent through several control
filters before it is sent to the hardware interface (in this case through a safety component). In
section 4.3, the separate components are explained more into detail.

Orocos components can be configured to run at a fixed frequency. This means that the up-
dateHook is executed every time step, reading data from its input ports, executing calculations
on them and passing its output data to the next components in line. Originally, the Hexapod’s
Orocos components were configured in this manner. This explains the delay of approximately 9
ms found by [8] in the joint control loop. This however results in a delay of one time step for each
component in the loop, as the next component in line only responds to the new data when it has
reached the next time step. This means that with a loop of, say, ten components and a time step
of 0.001 s, the delay is already 0.01 s, increasing linearly with the number of components in the
loop. Also, the frequency of the components is never actually deterministic, which means that the
time instances at which data is transferred from one component to another is non-deterministic,
resulting in unpredictable behaviour.

To realize faster and more predictable behaviour, regular input ports are now replaced by
EventPorts. In this concept, one component runs at a fixed frequency, running its updateHook at
this frequency. Another component, connected to the output port of this first component using an
EventPort, is triggered by this first component, also executing its updateHook. A third component
can then be triggered by this second component and so on. This means that the next component
can get started processing data the moment it receives data from upstream, resulting in a much
faster loop.

In this project, the timing strategy of the Orocos components was changed from the periodic to

Figure 4.1: Schematic overview of the Hexapod control loop. Components with gray text are
implemented but not in use because of inaccuracy.
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CHAPTER 4. SOFTWARE

event-triggered. The SOEM component is used as the periodic component triggering the compo-
nents in the loop. The reference generation, if not triggered by the forward kinematics, is also set
to this fixed frequency. Before this change, the robot did not move smoothly and while standing,
it made a stuttering noise, sagging slightly with every jolt. The implementation of EventPorts
removed the stuttering noise and moreover, it resolved the sagging and resulted in smoother move-
ments.

Orocos components also have properties; these can be used as parameters in the component
program. Properties are used for controller components to set the control parameters, but also for
robot characteristics such as weight, dimensions, encoder offsets and joint limits. In the previously
existing software, components could be started without setting their properties. This would result
in software crashes or worse, unpredictable behaviour of the hardware. In this project, all used
components that showed this unsafety were fixed. The implemented solution was to pre-assign
the properties with a physically meaningless value and adding an assertion to check the physical
validity of the properties. This assertion is performed in the startHook, which is the first method to
be executed when a component is started and which is performed only once. This implementation
ensures that the component can only be started when the properties are properly set, which makes
starting components fool-proof.

4.3 Components

This section shows the workings of the separate Orocos components that are written for control
of the Hexapod. Also it explains how these components are deployed and how they interact with
each other.

4.3.1 Launching and deployment

Orocos components can be started using Orocos’ TaskBrowser. This is a command line application
that prompts for commands to pass to the deployer. Orocos components are deployed as a plugin
to the deployer. For more into detail information on deployment, refer to the documentation on
the Deployment component [5]. Especially when starting larger numbers of components, using the
TaskBrowser manually to start components one by one becomes more time consuming. Therefore,
it is possible to list the necessary commands for the deployer in a script (.ops file). These scripts
can call each other, and can in turn be called by ROS’ launch files. Keeping in mind the goal
of running software from ROS, it is convenient to start a deployment script using a launch file
that can be started using ROS. At this point, several .ops scripts call other scripts, which needs
hard coded paths. A script was written to find these paths and change them to the user path.
This is not very user-friendly, so in time, it may be best to either combine these scripts into larger
scripts, or launch these scripts from a ROS launch file, which is capable of using ROS’ environment
variables.

4.3.2 SOEM

The Hexapod’s Orocos software is built around a present driver for the EtherCAT boards, called
SOEM, or Simple Open EtherCAT Master. For this master, a wrapper exists, making integration
with Orocos possible. Also a driver exists for the Hexapod enabling very basic communication
between Orocos components and the robot. This driver is depicted with Soem in figure 4.1. Other
components are constructed to interface with the basic interface of the Hexapod’s SOEM driver.

4.3.3 Encoder driver

The encoder signals are read from the SOEM component by the encoder driver. This component
converts the counts from the encoders to angles in radians. For that it needs a zero position,
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which is read from a properties file during deployment. The encoder driver takes into account the
number of revolutions, such that when the encoder passes its start/end point (its count value goes
from very high to very low in one time step), 2π is added to the output angle and vice versa. The
encoder driver also converts the absolute angle θ3 that is measured by the actuator encoders to
the relative angle ϑ3; the joint encoders already give the relative angle. When a leg is replaced or
repaired, often the joint encoders are not placed exactly as they were before, so the encoders need
to be recalibrated. This can also be done using this component and the hardware calibration.ops
file.

4.3.4 Ground contact

The ground contact component is designed to determine if a leg is touching the ground or not.
It utilizes the torsional springs that connect the actuators to the joints. If a force is applied to
a leg, this is converted to joint torques and consequently, torques in the torsional springs. These
torques lead to elastic deformation, which can be calculated from the difference between the joint
angle and the actuator angle. If this deformation passes a certain threshold, the leg is assumed to
be touching the ground.

There are some issues with the ground contact component. It seems that ground contact is
frequently registered falsely positive. This may be caused by torques to accelerate links, also
generating a torsion of the springs. Another possible cause is backlash in the gear houses and
joints. Whatever the cause, if the output of the ground contact component is used as input for
compensation of the weight of the robot (see subsection 4.3.12), this can result in unexpected or
even unstable behaviour, especially when switching between support and transfer phase often.

4.3.5 IMU driver

The IMU driver receives its input from SOEM. It translates the raw IMU data to pitch, roll, gyro
and acceleration data, removing offsets where necessary and scaling them to SI units.

4.3.6 Actuator driver

The actuator driver recieves SI units from the safety component and converts these to hardware-
compatible units. Also it is equipped with a saturation to limit the demanded motor currents.

4.3.7 Safety

The safety component is designed to guard the geometric safety of the robot. Originally, this
component turned the tibia actuator off when ϑ3 went outside of its workspace. On the one hand,
this is very liberal, as there are no constraints on the coxa and femur joints, although they do
exist in practice. On the other hand, this safety measure is very limiting as the robot is unable to
autonomously recover from such a case.

To improve this, the safety component is rewritten to ensure that an actuator is turned off
when its corresponding joint limit is reached and the input signal is still towards the joint limit.
When the control signal is turned away from the joint limit, back into the workspace, the actuator
is turned on again. This way, the robot can recover from the error and proceed with its task.
Also the other joints are now limited such that the links do not damage the body or themselves.
Another possible improvement is a dynamic safety measure to ensure that the legs do not hit each
other while walking or jumping.

4.3.8 Control filters

The control filters that are used for the Hexapod are part of the generic RTT components from
the Systems and Control library [1]. Three filters are used: a lead filter, a low pass filter and a

12 Reviving the Hexapod



CHAPTER 4. SOFTWARE

Table 4.1: Controller parameters for joint control

Joint 1 Joint 2 Joint 3
Lead zero [Hz] 1.7 1.7 1.7
Lead pole [Hz] 15.0 15.0 15.0
Low pass pole [Hz] 25.0 25.0 25.0
Gain [-] -10.0 5.0 -5.0

gain, with parameters based on [8] and shown in table 4.1.

4.3.9 Joint error

The joint error component calculates the error in the joint positions from the difference between
the joint encoder angle and the reference joint angle. It is triggered by the input port on which
the encoder angle is received to guard the real-timeness of the loop.

4.3.10 Kinematics

There are two kintematics components. One for the forward kinematics (FK), and one for the
inverse kinematics (IK). Both depend on the robot model, which is defined in a URDF-file like
the Gazebo model, and on KDL (the Kinematics and Dynamics Library of the Orocos project).
The forward kinematics component calculates the tip position from joint angles, while the inverse
kinematics determine feasible joint angles for given leg tip positions. The latter may get input that
makes it impossible to find a feasible solution. In that case, it does not send any joint reference
position at all.

Each of these components is implemented in a distributed manner, so each leg has its own
instance of the FK and the IK component. For now, this approach is adopted from [8], but the
quality of the choice is not assessed in this project.

4.3.11 Reference generation

Several reference generation components are available, among which HexapodPosition, Hexapod-
ContinuousGait and HexapodJump. These are bundled in the hexapod gaits package. Reference
generation components written by [8] are generally also implemented in a distributed way. The
quality of this approach is assessed for the continuous gait component by making the robot walk.
In this experiment it appears that the legs are not synchronized, which results in an irregular gait.
This may be improved by using a centralized reference generation or by implementing a central
clock to synchronize the components.

The HexapodPosition component uses the function setTipPosition to create a reference tra-
jectory from the current position to the setpoint. This trajectory is linear in both time and in
Cartesian space. This method may be improved by creating a trajectory of third order, or linear
with parabolic blends [6].

The HexapodContinuousGait component creates a 2 dimensional reference trajectory for a
walking gait. To do this, it uses a variable phase, which can be set differently for each leg.
This way, several different gaits are possible, such as tripod, quadruped or quint The reference
trajectory is defined in the ξx, ξz space (in the direction based frame). The phase here is defined
as a fraction of the full cycle, so

φ ∈ [0, 1). (4.1)

The reference is then generated as a function of the time in the cycle

t̃ ∈ [0, tc), (4.2)
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where tc is the cycle time. The implemented 2D reference trajectory in the continuous gait
component can be expressed as

ξx =


− R

βtc
t̃+

R

2
if t̃ ≤ β,

R

2
cos

(
π

tc(1− β)

)
(t̃− tcβ) else;

(4.3a)

ξz =


H if t̃ ≤ β,

C sin

(
π

tc(1− β)

)
(t̃− tcβ) else.

(4.3b)

Here, R is the stride, or step size, H is the body height, C is the foot clearance and β is the duty
factor, which is the fraction of the cycle time that the foot is on the ground. This trajectory is
plotted in Matlab and can be found in figure 4.2. Finally, this trajectory is converted from the
direction based frame to the body fixed frame using

x =ξx cos γ + r cosαi, (4.4a)

y =ξx sin γ + r sinαi, (4.4b)

z =ξz. (4.4c)

Here, γ is the angle between the body x-axis and the walking direction; r is the gait radius, which
is the perpendicular distance from the body z-axis and the leg tip; and αi is the angle between
the x-axis and the line from the body z-axis to the leg z-axis of the respective leg, with i the leg
index.

Observe that the position profile has a sudden change of slope at t̃ = βtc and at t̃ = 0, where
the state changes either from support to transfer or vice versa. This means that the velocity
profile is not continuous and the acceleration of the reference trajectory equals infinity or minus
infinity at this point. To solve this, another reference may be implemented based on the reference
trajectory designed by [9]:

ξx =


− R

βtc
t̃+

R

2
if t̃ ≤ β,

a

(
1

5
t̃5 − 1

2
(β + 1)t̃4 +

1

3
(β2 + 4β + 1)t̃3 − β(β + 1)t̃2 + β2t̃

)
− R

β
t̃+ C2 else;

(4.5a)

ξz =


H if t̃ ≤ β,

H +
C

2

(
1− cos

(
2π

(t̃− β)

(1− β)

))
else;

(4.5b)

where

a =− 60
R

2β(β − 1)5
,

C2 =R
β5 − 3β4 + 10β2 + 5β − 1

2(β − 1)5
.

This reference trajectory is designed such that the velocity profile is continuous and the tip matches
the ground speed at the point where it touches the ground. This reduces the impact force, which
may make the Hexapod walk smoother. The trajectory is plotted in Matlab, which can be seen
in figure 4.3 and it is ready to be implemented on the Hexapod.
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Figure 4.2: Reference trajectory as implemented by [8] with a step size of 0.1 m, a body height of
0.16 m, a foot clearance of 0.05 m, a cycle time of 1 s and a duty factor of 0.5
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Figure 4.3: Reference trajectory as designed by [9] with a step size of 0.1 m, a body height of 0.16
m, a foot clearance of 0.05 m, a cycle time of 1 s and a duty factor of 0.5
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4.3.12 Gravity compensation

The implementation of the gravity compensation was corrected accordingly to the fundamental
improvement explained in 3.2. The component uses information from the ground contact com-
ponent to determine which legs are on the ground. It only sends a nonzero force if there are at
least three legs on the ground. Then the necessary vectors of forces and moments F and M are
calculated in the world frame, so far this is only the gravitational force vector gW = [0, 0, gm]T ,
where g = −9.81. Using the IMU data, these vectors are converted to the body fixed frame. The
component then uses the current tip positions from the FK to calculate JFM as in 3.11, and a
distribution of leg tip forces to compensate for the gravitational force acting on the robot body.

This component may also be used to calculate tip forces needed for acceleration and deceleration
during walking or jumping. It could use the acceleration data provided by the reference generation
component to calculate the necessary forces on the body using Newton’s second law. These forces
can then be added to the gravitational force and also converted to tip forces.

4.3.13 Jacobian

The Jacobian component receives the tip positions from the FK to calculate the Jacobian matrix
in the leg frame. Then it uses the calculated optimal tip forces from the gravity compensation
component to calculate joint torques as explained in equation 3.13.
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Chapter 5

Hopping and jumping

As stated in the introduction, the Hexapod is designed as a hopping, jumping and eventually
running robot. To achieve this, the idea is to store energy in the torsional springs between the
actuators and the joints. The maximum amount of energy is stored in the springs when it is
excited at the resonance frequency. Therefore, this frequency is first determined. Then, using this
information, a trajectory is planned for the center of mass (CoM). Finally, this CoM trajectory is
converted to a leg trajectory. As a hopping Hexapod is a new phenomena, this chapter aims to
highlight the progress that was made on this subject.

5.1 Resonance frequency

To get the Hexapod off the ground at once, the tip speed of the legs is not enough. Energy needs
to be stored in the torsional springs of the Hexapod legs to gradually make higher jumps. To store
and release the maximum amount of energy, the resonance frequency is utilized. To do this, the
reference frequency needs to be found. Let us first approach the Hexapod as a single degree of
freedom (DoF) mass-spring system. For such a system, the resonance frequency typically follows
from

fr =

√
c

m
, (5.1)

where c is the spring constant and m is the mass. On the Hexapod, support of the legs provides
the spring stiffness. If each of the legs is modeled as a spring, the robot’s body is supported by
k parallel springs. The total spring stiffness of parallel springs is the sum of the stiffnesses of the
springs:

ctotal =

k∑
i=1

ci, (5.2)

where k is the number of springs. Substituting 5.2 into 5.1 results in

fr,k =

√∑k
i=1 ci
m

, (5.3)

with k the number of feet on the ground. If we now assume the spring stiffnesses of the legs to be
equal to one another, the resonance frequency of the robot should generally equal

fr,k =

√
kc1
m
, (5.4)

where c1 is the stiffness of one leg.
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5.1.1 Experiment setup

To obtain the resonance frequency of the robot standing on six legs, an experiment is performed
on the robot. In this experiment the robot’s leg tips are set to a reference position

rl = (0.26, 0.26,−0.16)T , (5.5)

where rl is the leg tip vector in the leg frame. Furthermore, the robot is put on the ground,
standing on its leg tips and an external impulse function is applied to the robot by giving it a
slight, but sudden push on the top, exciting it in its vertical mode.

The robot is expected to attain a damped vertical oscillation in its natural frequency. This
frequency is recorded by reporting data from the IMU. Since no vertical position data is available,
the acceleration data is used. As the response is expected to be a damped sinusoid, and the second
derivative of a sinusoid is a sinusoid with the same frequency (but different phase and amplitude),
the acceleration data should contain the same frequencies as the position data. The vertical ac-
celeration data from the IMU driver is reported to a data file to be processed with Matlab.

5.1.2 Results

In Matlab, both a time plot and a single sided amplitude spectrum of the measurement are con-
structed, which can be found in figures 5.1. The Matlab function that was written to make these
figures can be found in Appendix A. As can be seen in figure 5.1a, three impulses were applied to
the robot to obtain a longer measurement. Data before the first impulse and after the last visible
vibrations, which are approximately zeros, are removed to avoid bucketing.

Both the time plot and the frequency spectrum show a clear presence of a 4.0 Hz signal for the
experiment with six legs on the ground. This is consistent with visible and audible observations
of the robot during the measurement. Therefore it is concluded that the resonance frequency of
the Hexapod standing on all six legs is fr,6 = 4.0 Hz.

After this experiment it would be interesting to also do a measurement on the robot standing
on only three or four legs to verify whether equation 5.4 holds or not. This may be of interest in a
later stage, when one may want to influence the resonance frequency of the robot. This experiment
is not yet performed because of the time limitation and a broken leg cable.

It should be noted that the experiment is done using tip position control, implying that the
controller stiffness has an influence on the results. This means that when the controller is changed,
or parameters are tuned differently, the experiment should be repeated, possibly resulting in a
significantly different resonance frequency. Also the tip position and leg configuration may have
influence on the resonance frequency.
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Figure 5.1: Results of a resonance frequency measurement of the Hexapod standing on 6 legs

5.2 Trajectory generation

For the generation of the center of mass trajectory for the support phase, part of the approach of
[7] was adopted. In this article, a CoM trajectory is generated for the support phase of a biped
moving in the sagittal plane. Using that trajectory, joint trajectories are calculated. The flight
phase trajectory is then generated using a quintic polynomial method.

5.2.1 Support phase

Part of the method in [7] can be applied directly to the Hexapod, using the results for the X and
Z position of the CoM in the world frame

XCoM (t̂) = (X0 −Xzmp) coshωt̂+
Ẋ0

ω
sinhωt̂+Xzmp, (5.6)

and

ZCoM (t̂) =
(
Z0 −

g

ω2

)
coshωt̂+

Ż0

ω
sinhωt̂+

g

ω2
. (5.7)

Here the X position of the zero moment point is

Xzmp =
XCoM,0 +XCoM,d

2
, (5.8)

with the horizontal starting position X0 and the horizontal end position Xd = vmTs + X0, the
mean velocity multiplied by the support time. if the acceleration strategy is chosen such that the
horizontal velocity profile is symmetric.

As the Hexapod has a large base when it has six legs on the ground, and considering only
vertical hopping, this trajectory can be used for a primitive proof of concept. If we assume that
the leg tips will remain on the ground in the support phase, without slippage, and the robot body
stays upright, the system only has one degree of freedom. The trajectory of the CoM with respect
to the world frame can then easily be converted to leg tip trajectories in the direction oriented
reference frame by inverting it and giving it an offset in the z direction.

ξx,CoM (t̂) = − (ξx,0 − ξx,zmp) coshωt̂+
ξ̇x,0
ω

sinhωt̂+ ξx,zmp, (5.9)

and

ξz,CoM (t̂) = ξz,0 + 1−
(

1− g

ω2

)
coshωt̂+

ξ̇z,0
ω

sinhωt̂+
g

ω2
. (5.10)
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This trajectory is to be followed in the support phase of every jump cycle. It is shown in the white
parts of figure 5.2a, which corresponds to the part of the curve with positive ξz in 5.2b.

5.2.2 Flight phase

The tips now only need to be returned to their original position and velocity (and preferably
acceleration) during the flight phase to enter the next support phase. This may be done using a
quintic polynomial trajectory, as explained in [6]. This is done in Cartesian space in both the ξx
and the ξz directions.

ξx,f (t̂) =a0 + a1t̂+ a2t̂
2 + a3t̂

3 + a4t̂
4 + a5t̂

5, (5.11)

ξz,f (t̂) =b0 + b1t̂+ b2t̂
2 + b3t̂

3 + b4t̂
4 + b5t̂

5, (5.12)

of which the coefficients can be determined equating the first and second derivatives to the bound-
ary conditions. These conditions are a starting velocity and acceleration equal to the ending
velocity and acceleration of the support phase trajectory and an ending velocity and acceleration
equal to the starting velocity and acceleration of the support phase. In short, for the ξx direction,
this means

ξx,f (0) = ξx,s(Ts), (5.13a)

ξ̇x,f (0) = ξ̇x,s(Ts), (5.13b)

ξ̈x,f (0) = ξ̈x,s(Ts), (5.13c)

ξx,f (Tf ) = ξx,s(0), (5.13d)

ξ̇x,f (Tf ) = ξ̇x,s(0), (5.13e)

ξ̈x,f (Tf ) = ξ̈x,s(0), (5.13f)

which results in the linear system

1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
1 Tf T 2

f T 3
f T 4

f T 5
f

0 1 2Tf 3T 2
f 4T 3

f 5T 4
f

0 0 2 6Tf 12T 2
f 20T 3

f




a0
a1
a2
a3
a4
a5

 =



ξx,s(Ts)

ξ̇x,s(Ts)

ξ̈x,s(Ts)
ξx,s(0)

ξ̇x,s(0)

ξ̈x,s(0)

 (5.14)

which is solvable for Tf 6= 0, so in all practical cases. In the ξz direction polynomial, the coefficients
are determined in the same way. Note that the time variable t̂ goes from 0 to Ts in the support
phase and from 0 to Tf in the flight phase. In other words, it is reset to zero after switching states,
which simplifies expressions and decreases risk of bugs in programming. The quintic part of the
reference signal is shown in the gray part of figure 5.2a and the negative part of the curve in figure
5.2b, completing the full trajectory.
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Figure 5.2: Jumping reference trajectory in the direction based reference frame for a frequency of
4.0 Hz, a flight time equal to the support time, an initial height of 0, a descent depth of 1 cm and
a mean forward velocity of 0.1 m/s. The gray area in the time plot signifies the flight phase.

5.3 Results

So far, switching between the flight and support phase is coordinated by a simple time delay. The
support phase takes a calculated support time, but the flight phase is given a parameter as flight
time. This is a very primitive feed forward implementation and only suitable for first tests. For
more flexible behaviour, suitable for real-life situations, a measure for being in either the flight or
the support phase should be implemented. This may be done using IMU data. As acceleration is
always gW = [0, 0,−9.81]T during the flight phase, this may be accurate enough.

The assumption that the robot is a one, or two DoF system may be too simple in practice. The
differences in leg length, spring constants or other real-world issues may have a non-neglectable
influence on the body’s orientation. A controller should then be designed to compensate for these
differences and stablize the (switching) system.

Due to the time limitation to this project, no experiments were done while recording data.
A simple test of the reference however, was done. This showed that the reference trajectory is
followed and the frequency can be recognized when the robot feet are in the air. However, when
the robot is placed on the ground, it cannot follow the trajectory any more. This is most likely
caused by the lack of compensation for the robot’s weight and the acceleration of the robot body.
These forces are effectively a time-varying disturbance to every leg tip, resulting in bad tracking
behaviour. A well-tuned feed forward component using the acceleration from the reference trajec-
tory component could compensate for this disturbance, possibly giving better results.

During walking, but also during jumping tests, the cable between the coxa and the femur
tends to break often. Breaking of cables may become an even bigger problem when jumping au-
tonomously, as this causes the accelerations of the body, and thus the joint torques, to increase,
so a solution must be found to reduce or resolve this problem. One possible solution may be to
use stronger cables or another mechanism to transfer the torque from the torsional spring to the
joint itself. Before redesigning the hardware, the leg configuration can best be chosen such that
the joint torques are spread more evenly. A sketch of this is shown in figure 5.3. However, as said
before, one should keep in mind that this could influence the resonance frequency.

In the future it may be interesting to try jumping on only three legs, which would imply a
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(a) Joint torque centered at second joint (b) Joint torques distributed over joints 2 and 3.

Figure 5.3: Joint torque distributions with different leg configurations. The configuration in (a) is
similar to the one used for the jumping so far. A better option may be configuration (b).

resonance frequency of 1√
2
fr,6. This can then be extended to running by alternating the set of legs

in support phase. This results in a reference trajectory that has a typical frequency of 1
2
√
2
fr,6 or

lower, depending on the jump height, which is less demanding for the controllers.
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Conclusions and recommendations

The goal during this project was to revive the Hexapod, bringing it back to its old capabilities,
and to explore further possibilities and limitations of the robot. In the beginning, the only docu-
mentation on the Hexapod was the report written by Willems [8], which is very abstract on the
software part. Also the Wiki page was empty apart from outdated installation instructions. This
made it difficult to get started without the introduction of a senior member of the Hexapod team.
As no team existed at the start of this project, the lack of documentation was a problem. This
added another goal to the project: documenting both the hardware and the software such that
others, continuing work on the Hexapod, are able to get started quickly.

6.1 Results

To revive the robot, the software was updated such that it runs with a newer version of ROS:
Fuerte. Problems with the hardware startup such as not having a large enough supply of cur-
rent were solved and documented on the Wiki page. The recovered software was tested on the
robot and also documented on the Wiki page. Fundamental improvements were made on the
communication between Orocos components and the communication between Orocos and ROS
was fixed. The safety component was rewritten such that the robot can now recover from a safety
switch-off and all components were given an assertion to check whether they were given valid pa-
rameters or not. The theory behind the body dynamics was corrected as well as its implementation
in the gravity compensation component. All of this made it possible to make the robot walk again.

Finally, also a start was made on making the Hexapod jump. The resonance frequency at a
certain leg configuration was determined and a center of mass trajectory was generated. From
this trajectory, a trajectory for the legs was generated to do a basic proof of concept. This proof
of concept was not yet performed with succes, but with an additional feedforward on the forces
needed to accelerate the body, the Hexapod may be able to jump. The results from this proof
of concept should point out if it is necessary to control the jumping motion using an additional
switching body controller.

6.2 Recommendations

Keeping in mind the goal of having the Hexapod play football on a real pitch, there are many
things that remain to be done. In the future it would be practical if the Hexapod could replace
an omni-wheeled TechUnited robot. For this to be realized, it is necessary to run parts of the
software from these TURTLEs on the Hexapod. To do this, input from ROS should be received
and interpreted by Orocos. The Orocos level software could then decide whether it is best to walk
slowly, with a tripod gait, jump or run. Also the transition between these gaits should be handled.
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Before testing jumping reference trajectories on the robot, it may be useful and safer to first
test on the Gazebo robot simulator. To do this, the communication between Orocos and the
simulator needs to be restored. Also improving safety when testing, the safety component may be
improved with a dynamic limit to the coxa joints, ensuring that the legs do not hit each other.

To walk with a stable and regular gait, the trajectory generation, which is now separate for each
leg, should either be centralized or coordinated by a central component. Also the implemented
reference trajectory itself must be changed to make the robot walk more smoothly by reducing
impact forces when getting in contact with the ground.

To jump and/or run, suitable joint feed forward needs to be designed. Also the ground contact
perception should be improved for the robot to be able to distribute the forces to compensate for
its own weight over its supporting legs. Finally, the hardware should be redesigned such that the
robot is able to withstand the large joint torques arising from jumping and running.
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Appendix A

Matlab

To process the data from the resonance frequency measurements, the Matlab code below was used.

1 f unc t i on [ f ,X] = f f t p l o t a (x , t , Fs , a , b , name , c , f c )
2

3 % f f t p l o t a
4 %
5 % SYNTAX
6 % [ f ,X] = f f t p l o t a (x , t , Fs , a , b , name , c , f c )
7 %
8 % X: frequency spectrum vecto r
9 % x: s i g n a l vec to r

10 % t : time vec to r
11 % Fs: sample f requency
12 % a: t ogg l e time p lo t
13 % b: t ogg l e f requency p lo t
14 % name: s i g n a l name
15 % c : p l o t t i n g c o l o r s t r i n g
16 % f c : c u t o f f f r equency
17 %
18 % DESCRIPTION
19 % f f t p l o t a r e tu rn s the f requency spectrum of and p l o t s a d isp lacement
20 % s i g n a l vec to r x ver sus a time vec to r t and i t s f requency spectrum
21 % using sample f requency Fs .
22 % The name o f the s i g n a l i s used in the t i t e l s o f the f i g u r e s .
23 % Axis l a b e l s may be a l t e r e d to f i t the needs o f the user .
24 % The func t i on r e tu rn s the amplitude vec to r and i t s cor re spond ing
25 % frequency vec to r . The p l o t t o g g l e s turn on or o f f d i s p l ay i ng the time
26 % and frequency p l o t s .
27 % The spectrum i s p l o t t ed at l e a s t up to the user de f ined cu t t o f
28 % frequency . When t h i s f requency i s chosen h igher than the sampling
29 % frequency , the base o f the spectrum ( the spectrum up to the sampling
30 % frequency ) i s mirrored
31

32 T = 1/Fs ; % Sample time
33 L = length (x ) ; % Length o f s i g n a l
34 i f L ˜= length ( t )
35 e r r o r ( ' Input arguments x and t must be o f same l eng th s ' )
36 e l s e
37 i f a
38 p lo t ( t , x )
39 t i t l e ( [ 'Time p lo t o f ' ,name ] )
40 x l ab e l ( 'Time [ s ] ' )
41 y l ab e l ( ' Acce l e r a t i on [m s ˆ{−2}] ' )
42 i f b
43 f i g u r e
44 end
45 end
46
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47 NFFT = 2ˆnextpow2 (L) ; % Next power o f 2 from length o f x
48 n = c e i l ( f c /Fs ) ;
49

50 X = f f t (x ,NFFT) /L ;
51 f = Fs* l i n s p a c e (0 , n , n*NFFT) ;
52

53 % st r e t c h f requency spectrum by mir ro r ing the spectrum in the sampling
54 % frequency . Enough to p l o t the r equ i r ed f requency f c .
55 Xm = f l i p l r (X) ;
56 Xo = X;
57

58 f o r i = 1 :n
59 i f rem( i , 2 )
60 X = [X Xm] ;
61 e l s e
62 X = [X Xo ] ;
63 end
64 end
65

66 % Plot s i n g l e−s ided amplitude spectrum .
67 i f b
68 semi logx ( f (1:end/2) ,2* abs (X(1 : (n*NFFT) /2) ) , c )
69 t i t l e ( [ ' Sing le−Sided Amplitude Spectrum of ' ,name ] )
70 x l ab e l ( 'Frequency (Hz) ' )
71 y l ab e l ( 'Amplitude [m s ˆ{−2}] ' )
72 end
73 end
74 end
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