Motion Planning and Control for Domestic Service Robots

J.J.M. Lunenburg

Where innovation starts

Motion Planning for Domestic Service Robots

- Sensors:
 - Laser scan
 - Odometry
- Motor cmd
 - Velocity in x, y and ϕ direction
- Move towards a desired pose
- Don't crash into the wall!

Moving to a desired pose

- Feedback control!
- Carrot planner
 - P(D)-controller
- Dynamic Window Approach:
 - Search for a translational and rotational velocity
 - Optimization over a finite horizon
 - MPC-controller

Moving to a desired pose

- Feedback control!
- Carrot planner
 - P(D)-controller
- Dynamic Window Approach:
 - Search for a translational and rotational velocity
 - · Optimization over a finite horizon
 - MPC-controller
- What about obstacles?

- ► Line collision checks
- Forward simulation: rejects inputs

- Line collision checks
- Forward simulation: rejects inputs
- Alternative: potential fields
 - Goal and obstacles form attractive and repulsive forces

- Local methods
 - · Vicinity of the robot
- Completeness: 'getting stuck'
- Optimality: 'the shortest path'

- Local methods
 - · Vicinity of the robot
- Completeness: 'getting stuck'
- Optimality: 'the shortest path'
- Global connectivity information required

The Basic Motion Planning Problem

With:

- Pose (position and orientation)
- Single rigid body A
- n-dimensional Euclidean space $\mathcal{W} = \mathbb{R}^n$
- Static, rigid obstacles \mathcal{O}_i in W

Given an initial pose and a goal pose of \mathcal{A} in \mathcal{W} , find a path c in the form of a continuous sequence of poses of \mathcal{A} that do not collide or contact with \mathcal{O}_i , that will allow \mathcal{A} to move from its starting pose to its goal pose and report failure if such a path does not exist.

Specifications and properties

Six specifications and properties

- Completeness: finding a path if one exists
- Optimality: finding the optimal path
- Computational complexity
- Robustness against a dynamic environment
- Robustness against uncertainty
- Kinematic and dynamic constraints

Specifications and properties

Six specifications and properties

- Completeness: finding a path if one exists
- Optimality: finding the optimal path
- Computational complexity
- Robustness against a dynamic environment
- Robustness against uncertainty
- Kinematic and dynamic constraints

So how do we approach this problem?

Six specifications and properties

- Completeness: finding a path if one exists
- Optimality: finding the optimal path
- Computational complexity
- Robustness against a dynamic environment
- Robustness against uncertainty
- Kinematic and dynamic constraints

So how do we approach this problem?

Representation and searching!

- The configuration space
 - Simplifies the problem: search for a solution for a single point
 - Generic
 - Computationally efficient

- The configuration space
 - Simplifies the problem: search for a solution for a single point
 - Generic
 - Computationally efficient
- Representation methods:
 - Exact
 - Roadmaps
 - Exact cell decomposition
 - Approximate
 - Approximate cell decompositions
 - Sampling-based methods
 - Potential fields

- The configuration space
 - Simplifies the problem: search for a solution for a single point
 - Generic
 - Computationally efficient
- Representation methods:
 - Exact
 - Roadmaps
 - Exact cell decomposition
 - Approximate
 - Approximate cell decompositions
 - Sampling-based methods
 - Potential fields
- Common assumption: localization

Constructing the configuration space

Exact: Roadmaps

Visibility graph

- Two nodes are connected if the straight line between them is collision-free
- b dim(€) < 2</p>
- Optimal w.r.t. distance traveled

Deformation retracts

- 'Shrink' a space into a subspace
- (Generalized) Voronoi diagram
- Optimal w.r.t. distance to obstacles

Exact and approximate: Cell decompositions

Exact decomposition

- Trapezoidal decomposition
- Sweep line algorithm
- Non-optimal

Approximate decomposition

- Obstacle boundaries do not coincide with cell boundaries
- Free cells, mixed cells and occupied cells
- Resolution complete

Approximate: Sampling-based methods

Probabilistic roadmap

- Learning phase: sample configuration q_{rand} and check for collisions
- Query phase: connect q_i and q_g to roadmap \mathcal{R}
- Probabilistically complete

Single-query planner

- Explore relevant subset of C_{free}
- (Bidirectional)Rapidly-exploring Random Tree
- No search algorithm required
- Probabilistically complete, non-optimal

- Graphs and costmaps
- Graph search algorithms:
 - Uninformed
 - Informed
 - Local

- Nodes (vertices) and edges
- Including weights: costmap
- Parent: node with subsequent nodes (children)
- Branch: series of nodes connecting the root to a leaf
- Frontier: set of all leaf nodes available for expansion
- Closed list (explored set): nodes that have been visited
- Expansion is determined by function f(n)

ni

- f(n) = g(n), with g(n) a FIFO queue
- All nodes at a certain depth are expanded before going to the next level
- Complete (if 'branching' factor is finite)
- Optimal: only if all edges have equal costs

- f(n) = g(n), with g(n) a FIFO queue
- All nodes at a certain depth are expanded before going to the next level
- Complete (if 'branching' factor is finite)
- Optimal: only if all edges have equal costs

- f(n) = g(n), with g(n) a FIFO queue
- All nodes at a certain depth are expanded before going to the next level
- Complete (if 'branching' factor is finite)
- Optimal: only if all edges have equal costs

- f(n) = g(n), with g(n) a FIFO queue
- All nodes at a certain depth are expanded before going to the next level
- Complete (if 'branching' factor is finite)
- Optimal: only if all edges have equal costs

- f(n) = g(n), with g(n) a FIFO queue
- All nodes at a certain depth are expanded before going to the next level
- Complete (if 'branching' factor is finite)
- Optimal: only if all edges have equal costs

- f(n) = g(n), with g(n) a FIFO queue
- All nodes at a certain depth are expanded before going to the next level
- Complete (if 'branching' factor is finite)
- Optimal: only if all edges have equal costs

- f(n) = g(n), with g(n) a FIFO queue
- All nodes at a certain depth are expanded before going to the next level
- Complete (if 'branching' factor is finite)
- Optimal: only if all edges have equal costs

ni

- f(n) = g(n), with g(n) a LIFO queue
- ► The most recent expanded node is put the beginning of the stack
- Completeness: if search space is finite
- Not optimal

- f(n) = g(n), with g(n) a LIFO queue
- The most recent expanded node is put the beginning of the stack
- Completeness: if search space is finite
- Not optimal

- f(n) = g(n), with g(n) a LIFO queue
- The most recent expanded node is put the beginning of the stack
- Completeness: if search space is finite
- Not optimal

- f(n) = g(n), with g(n) a LIFO queue
- ▶ The most recent expanded node is put the beginning of the stack
- Completeness: if search space is finite
- Not optimal

- f(n) = g(n), with g(n) a LIFO queue
- The most recent expanded node is put the beginning of the stack
- Completeness: if search space is finite
- Not optimal
- goal at node 5 TU/e Technische Universiteit Inindoven Universiteit I

- f(n) = g(n), with g(n) a LIFO queue
- The most recent expanded node is put the beginning of the stack
- Completeness: if search space is finite
- Not optimal

- f(n) = g(n), with g(n) a LIFO queue
- The most recent expanded node is put the beginning of the stack
- Completeness: if search space is finite
- Not optimal

Uninformed search: Dijkstra's Algorithm

- f(n) = g(n), with g(n) a priority queue
- The node with the lowest cost is expanded
- Completeness: if search space is finite
- Optimal

- f(n) = g(n), with g(n) a priority queue
- The node with the lowest cost is expanded
- Completeness: if search space is finite
- Optimal

▶ $6 < 8 \rightarrow \text{expand } n_2$

- f(n) = g(n), with g(n) a priority queue
- The node with the lowest cost is expanded
- Completeness: if search space is finite
- Optimal

- ▶ $6 < 8 \rightarrow \text{expand } n_2$
- ▶ $8 < 6 + 12 \rightarrow \text{expand}$ n_3

- f(n) = g(n), with g(n) a priority queue
- The node with the lowest cost is expanded
- Completeness: if search space is finite
- Optimal

- ▶ $6 < 8 \rightarrow \text{expand } n_2$
- $8 < 6 + 12 \rightarrow \text{expand}$ n_3
- n_g reached, but 8 + 22 > 6 + 12

- f(n) = g(n), with g(n) a priority queue
- The node with the lowest cost is expanded
- Completeness: if search space is finite
- Optimal

- ▶ $6 < 8 \rightarrow \text{expand } n_2$
- $8 < 6 + 12 \rightarrow \text{expand}$ n_3
- n_g reached, but 8 + 22 > 6 + 12

- f(n) = g(n), with g(n) a priority queue
- The node with the lowest cost is expanded
- Completeness: if search space is finite
- Optimal

Why not use knowledge of the goal location?

- ▶ $6 < 8 \rightarrow \text{expand } n_2$
- $8 < 6 + 12 \rightarrow \text{expand}$ n_3
- n_g reached, but

8 + 22 > 6 + 12

- f(n) = h(n), with h(n) a heuristic (distance) function
- Expands the node closest to the goal
- Complete
- Non-optimal (see figure)

- f(n) = g(n) + h(n), with g(n) costs to reach a node and h(n) heuristic to reach the goal
- Takes both costs into account
- Complete
- Optimal if the heuristic function is consistent:
 - $h(n) \leq c(n \rightarrow n') + h(n')$

 The path resulting from searching the representation is not yet suitable for execution

- The path resulting from searching the representation is not yet suitable for execution
- Kinodynamic constraints

- The path resulting from searching the representation is not yet suitable for execution
- Kinodynamic constraints
- Dynamic environments

- The path resulting from searching the representation is not yet suitable for execution
- Kinodynamic constraints
- Dynamic environments
- Uncertainty

Decoupled trajectory planning

- Path planning: collision free path c in C_{free}
- ▶ Transform c into c', satisfying non-holonomic constraints
- Compute timing function such that c'(t) satisfies kinodynamic constraints

Kinematic and dynamic constraints

Decoupled trajectory planning

- Path planning: collision free path c in C_{free}
- ightharpoonup Transform c into c', satisfying non-holonomic constraints
- Compute timing function such that c'(t) satisfies kinodynamic constraints

Direct trajectory planning

- Searching on a lattice
- Sampling based methods: select input at random from set of admissible controls

Kinematic and dynamic constraints

Decoupled trajectory planning

- Path planning: collision free path c in C_{free}
- ▶ Transform c into c', satisfying non-holonomic constraints
- Compute timing function such that c'(t) satisfies kinodynamic constraints

Direct trajectory planning

- Searching on a lattice
- Sampling based methods: select input at random from set of admissible controls

Motion primitives

Re-planning (of an entire path)

- Re-planning from the current situation
- Reuse information of previous searches (incremental search)
- ► The planner can return an (approximate and suboptimal) plan at any time (anytime planning)

- Reduction of complexity: divide the planning problem into global and local planner
 - · Global planner: computes a path from start to goal
 - Local planner: satisfy kinodynamic constraints

- Reduction of complexity: divide the planning problem into global and local planner
 - · Global planner: computes a path from start to goal
 - Local planner: satisfy kinodynamic constraints
- Topological maps
 - Abstract representation that describes relationships between features of the environment
 - Compact and stable w.r.t. sensor noise and uncertainty

- Reduction of complexity: divide the planning problem into global and local planner
 - · Global planner: computes a path from start to goal
 - Local planner: satisfy kinodynamic constraints
- Topological maps
 - Abstract representation that describes relationships between features of the environment
 - Compact and stable w.r.t. sensor noise and uncertainty

How is motion planning applied in TU/e?

- Soccer pitch
- ▶ 12 m × 18 m
- Known environment
- Dynamic obstacles (hostile)
- ▶ 3 m/s

- House/care environment
- Arbitrary size
- Partially unknown
- Static and dynamic obstacles
- ▶ 1 m/s

- Voronoi diagram representation, searched with Dijkstra's algorithm
- Shortcut algorithm to cut-off sharp turns
- Time-optimal trajectory through waypoints using Bézier curves

- Use Octomap for 3D navigation
- Project columns to 2D costmap and inflate costs and uncertainty for navigation
- Certainty decays over time instead of known/unknown
 - A wall never moves
 - · People are likely to move

- Global planner
 - A* Planner
- Local planner
 - Line collision check
 - Velocities based on safety
 - Assumptions on moving obstacles
 - Desired: DWA/MPC

- Global planner
 - A* Planner
- Local planner
 - Line collision check
 - Velocities based on safety
 - Assumptions on moving obstacles
 - Desired: DWA/MPC

- Global planner
 - A* Planner
- Local planner
 - Line collision check
 - Velocities based on safety
 - Assumptions on moving obstacles
 - Desired: DWA/MPC

- Global planner
 - A* Planner
- Local planner
 - Line collision check
 - Velocities based on safety
 - Assumptions on moving obstacles
 - Desired: DWA/MPC

- Local planning methods
- Global planning methods
 - Representations
 - Searching
- Implementations
- Further reading: "Motion Planning for Mobile Robots A Guide"

Finally

Questions?

30/30