Motion Planning for Mobile Robots -
A Guide

S.A.M. Coenen
CST2012.108

Master’s thesis

Coach(es): drir. M.].G. van de Molengraft
ir.].J.M. Lunenburg
drir. G.J.L. Naus

Supervisor: prof.dr.ir. M. Steinbuch

Eindhoven University of Technology
Department of Mechanical Engineering
Control Systems Technology

Eindhoven, November, 2012

Contents

[List of Notations]
[Introduction|

.1 The RoboCup Project]
[r.2 Problem Description|.

I. Outlinel e e e

[2 The Motion Planning Problem|
|2.1 The Basic Motion Planning Problem|,
[2.2 Representingthe World| L o
[2.3 Searchingthe World|
[2.4 Global Versus Locall
[2.5 Extensions of the Basic Problem|
[3 Requirements|
[3.1 Motion Planner Requirements| oo
3.2 Relevance of Requirements| Lo L
3.3 Howto Use Requirements?!|. L L o
[4 Representation Methods|
...
4.2 Cell Decomposition|
l4.3 Sampling-Based Method|. L
4.4 Potential Field|
la.5 Conclusions|
[5 Search Algorithms|
[5.1 Uninformed Search|
[5.2 Informed Search|
[5.3 Local Search|
5.4 Conclusions|
[6 Planning Approaches|
[6.1 Dealing with Constraints|
|6.2 Robustness Against a Dynamic Environment|
|6.3 Robustness Against Uncertainty]
[6.4 Reactive Planners|
[6.5 Other Methods and Issues|.
[6.6 Conclusions|

iii

WOW -

II
I2

14

17
7
21
21

51
51
53
54

57
58

CONTENTS

[7 Motion Planning for RoboCup| 63
7.1 The RoboCup Environment| 63

7.2 Current Motion Planners| L o (3

3 CurrentProblems| 67

4 DProposed New Motion Planning Approaches].o 68
Bibliographyj 75

ii

List of Notations

The following notations are used throughout this literature survey. The far most of them are intro-
duced in Chapter 2. For some notations the reference to the accompanying equation is included. Most
of the time calligraphic letters, e.g., S, denote a set.

A
w

WO,

wo

CO;

co

Cfree

cl (Cfree)

G(N, E)

CT

ST

The robot is called .A. Multiple robots are denoted as A;.

The robots’ workspace is denoted by W and is modeled as a Euclidean space R¢, with the
dimension d = 2 or d = 3. R is the set of real numbers.

Obstacles in W are referred to as WO;. A particular obstacle is denoted with its index
i=1,2,...

The union of all obstacles WO, is the obstacle region and is denoted as WO.

The configuration space of A is referred to as C. An element of the set C (i.e., a configu-
ration) is denoted by ¢. The subset of WW occupied by A at ¢ is denoted as A(q).

Obstacles in C are denoted as CO;. A particular obstacle is denoted with its index i =
1,2,..., see Equation 2.1

The union of CO; is the configuration space obstacle region and is denoted as CO, see

Equation

The free configuration space, Ce., is the complement of CO, see Equation 2.3

The closure of Cp. is referred to as ¢l (Cgee) and consists of Cgee and the configurations at
which the robot contacts CO, denoted as Ceontact, S€€ Equation [2.5

A path is denoted as ¢, see Equation It is defined as a function of a parameter s that
usually takes a value in [0, 1]. If ¢ € Cge itis a free path and if ¢ € ¢l(Cpee) it is a semi-free
path. When c is time-dependent it is called a trajectory and denoted as c(¢).

A roadmap is a network of curves that are in Cge. and is defined as R.

A search graph is denoted as G and consist of a set of nodes N and a set of edges E that
connect nodes.

The configuration space extended with a time dimension is called the configuration-time
space and is denoted as CT.

A state s encodes the robot’s configuration and velocity. The space of all states, or state
space, is denoted as S.

The state space extended with a time dimension is called the state x time space and is
denoted as ST.

iii

Chapter 1

Introduction

Moving from one place to another is a trivial task, for humans. One decides how to move in a split
second. For a robot such an elementary and basic task is a major challenge. In autonomous robotics
motion planning is one of the most significant challenges. There is a fundamental need to specify
a task in a high-level language, that is automatically translated into low-level descriptions of how the
robot should move. The typical problem is to find a motion for a robot, whether it is a vacuum cleaning
robot, a robotic arm, or a magically flying object, from a starting position to a goal position whilst safely
avoiding any obstacles in its way.

1.1 The RoboCup Project

Eindhoven University of Technology participates in the RoboCup project (Kitano et al.l 1997} RoboCup,
2012), an international research and education initiative, that fosters artificial intelligence and robotics
research. RoboCup provides a standard problem where a wide range of technologies can be integrated
and researched, as well as being used for integrated project-oriented education. For this purpose, at its
start in 1997 RoboCup chose to use the soccer game as its primary research platform. The RoboCup
Soccer League was formed. Its goal concerns cooperative, fully autonomous multi-robot and multi-
agent systems in dynamic, adversarial environments. Its aim is to

“develop a team of fully autonomous robots that can win against the human world champion team in
soccer by 2050”(RoboCupl), [2012).

In 2000 also the @Home League and the Search & Rescue League were set up. The goal of the
RoboCup @Home League is to develop autonomous service and assisting robot technology with high
relevance for domestic applications. The intention of the RoboCup Rescue League is to promote re-
search and development in the disaster rescue domain. Eindhoven University of Technology competes
in the RoboCup project under the flag of team Tech United Eindhoven (Tech United Eindhoven| 2012)
against other universities over the world in the Soccer League and @Home League. Tech United Eind-
hoven participates in the RoboCup Soccer Middle Size League (MSL) with its TURTLE (Tech United
RoboCup Team Limited Edition) soccer robots, depicted in Figure[r.1ajand in the RoboCup Soccer Hu-
manoid League with its humanoid soccer robot TUlip, depicted in Figure In the @Home League
Tech United Eindhoven participates with its service robot AMIGO (Autonomous Mate for IntelliGent
Operations), depicted in Figure

CHAPTER 1. INTRODUCTION

(a) The TURTLE soccer robot.

b
e

(c) The AMIGO service robot.

(b) The TUlip humanoid soccer robot.

Figure 1.1: Team Tech United of Eindhoven University of Technology competes in the RoboCup Soccer Middle Size League with
its Tech United RoboCup Team Limited Edition (TURTLE) robot and in the RoboCup Soccer Humanoid League with

its humanoid soccer robot TUlip. In the RoboCup @Home League it participates with its Autonomous Mate for
IntelliGent Operations (AMIGO) service robot.

1.2. PROBLEM DESCRIPTION

1.2 Problem Description

The goal of this work is two-fold. First of all it attempts to give a summary of the motion planning
problem and the most recent techniques to solve it for an autonomous, mobile robot. Secondly, it
provides a framework for the selection of an appropriate motion planner, given the problem and the
robot. This framework consist of the formulation of a set of requirements and the comparison of the
available motion planners with respect to those requirements. To summarize, the following subgoals
are defined:

> Perform a thorough literature study to order the vast amount of available motion planners.

>> Formulate requirements to obtain a basis for the selection of an appropriate motion planner,
given the problem and a robot.

> Compare the discussed motion planners with respect to the requirements.

The robots of Tech United that compete in the RoboCup are examples of autonomous, mobile robots.
They serve as a demonstrator that will show how to select a new motion planner given a problem and a
set of requirements. The TURTLE robot and AMIGO currently use a motion planner. For now there is
no necessity for a motion planner for the TUlip robot as its development concerns stable walking and
kicking of the ball. Although the currently used motion planners for the TURTLE robot and AMIGO
have been implemented, tested and used successfully (de Best et al., [2010} |Dirkx, [2011), the selection
of these planners is mainly based on best practices and common knowledge of motion planning al-
gorithms. For both robots, various points for improvement are identified, which are difficult or even
impossible to solve using the current motion planners. A new motion planner must be selected and
implemented that solves the current problems. Hereto, the following subgoals are identified:

> Formulate the requirements for the TURTLE robot and AMIGO.

>> Propose a new motion planner implementation based on the requirements and the comparison
of motion planners.

> Implement this new motion planner and compare it to the existing implementation.

1.3 Outline

This study starts with the introduction of the motion planning problem in Chapter [2] Besides the
problem statement, the general framework to tackle the problem is presented. To solve the motion
planning problem a search must be conducted in a complex world. Therefore a representation of this
world is necessary. Given a certain representation, the motion planning problem transforms to the
problem of searching this represented world.

In Chapter 3| requirements are formulated to form a basis for the selection of an appropriate motion
planner. These requirements will be a guideline in the search for a motion planner that solves a
particular motion planning problem. In Chapter [4] the different classes of representations will be
discussed and compared based on the requirements. The same is done in Chapter [s| for algorithms
that can search the represented world.

Motion planning problems are not just solved by choosing a representation method and a search
algorithm. The combination and use of both makes a motion planner that solves a motion planing
problem. This part is called the planning approach and it is discussed in Chapter[6]

Chapter [will introduce the motion planning problem for both the TURTLEs and AMIGO. The prop-
erties of the robots and their environment will be addressed. Furthermore, the current motion plan-
ners are introduced. Next, their shortcomings will be shown. Based upon the shortcomings and
requirements a new implementation for both robots in proposed.

Chapter 2

The Motion Planning Problem

This chapter elaborates the problem statement. Also, the general framework to tackle the problem is
presented.

Finding a motion from a starting position to a goal position whilst safely avoiding any obstacles is
referred to as a motion planning problem. A widespread view is that this motion planning problem
merely consists of some sort of collision checking or obstacle avoidance. In fact, motion planning
encompasses a whole lot more than just that. It involves the planning of a collision-free path in
an environment that can be (partly) unknown with moving obstacles that have arbitrary geometries
and for a robot that can have a complex geometry and has dynamics of its own. Hence, the motion
planning problem has to deal with temporal, geometrical and physical constraints.

Algorithms that solve a motion planning problem, from here on referred to as motion planners, are
part of the navigation system of a robot. A navigation system translates a specified high-level task into
low-level descriptions of how the robot should move, i.e., a motion. In order to plan these low-level
descriptions a robot needs a representation of the environment, i.e., a map. This map is constructed
through perception of the environment using sensors. Obstacles must be mapped into this map and
the robot needs to localize itself in this map. Summarizing, a robot needs to accomplish three tasks to
navigate:

> localization
> mapping

> motion planning

The system in a robot that accomplishes these tasks and provides directions to a destination is called
the navigation system. This general and simplified version of the architecture of a navigation system
is depicted in Figure The focus of this survey is solely on motion planning. From here on it is
assumed that when a robot navigation system is described it has a localization and mapping module.

A motion planner can solve the motion planning problem in multiple ways. How the problem is
solved is explained with an unconstrained and simplified version of the motion planning problem:
the basic motion planning problem as introduced by [Latombe| (1990). In Section [2.1] this basic problem
is defined. To solve the motion planning problem a search must be conducted in a complex world. The
representation of this world is discussed in Section Given a certain representation, the motion
planning problem transforms to the problem of searching this represented world. Search algorithms
are introduced in Section The motion planning problem is commonly divided into a global and
local planning problem. This distinction is defined in Section Finally, as the basic problem is
oversimplified and therefore limiting the practicality of the solutions to the problem, in Section
extensions of the basic problem are treated.

CHAPTER 2. THE MOTION PLANNING PROBLEM

Task
Mapping
Motion . Map
Planning [¢

Motion Perception

Figure 2.1: Simplified representation of a navigation system of a robot. The three tasks the robot must accomplish (highlighted
in cyan) are in between a high-level layer and a low-level layer.

2.1 The Basic Motion Planning Problem

The general motion planning problem can be relaxed to form a basic problem. A static environment
is assumed in which a single, rigid body is the only moving object. The dynamic properties of this
body are not accounted for and no position or velocity constraints are involved. In a more formal,
mathematical sense this basic problem can be defined as a single, rigid body .4 that moves in a n-
dimensional Euclidean space represented as W = R? , with d = 2 or d = 3, called the workspace.
Let O, fori = 1,...,n, be a number n, of static, rigid obstacles in V. These are referred to as W-
obstacles or WO,. The union of all obstacles is called the obstacle region and is denoted as WO. Both A
and WO, are subsets of W. It is assumed that both the geometry and position of A and O; is known.
The problem can now be defined as:

Given an initial position and orientation and a goal position and orientation of A in W, find a path
c in the form of a continuous sequence of positions and orientations of A that do not collide or contact
with O;, that will allow A to move from its starting position and orientation to its goal position and
orientation and report failure if such a path does not exist.

This problem is known as the basic motion planning problem 1990). For a single body mov-
ing in R? this is also referred to as the piano movers’ problem, as it captures the difficulties faced by

movers when maneuvering a piano (without lifting it) among obstacles. For a single body moving in
R3, so if the piano is magically free-flying, it is known as the generalized movers’ problem
[1983). The basic motion planning problem is also referred to as the path planning problem,
as the assumptions basically transform the physical motion problem into a purely geometric prob-
lem. Basic motion planning has evolved through the years to address more complex problems. This
evolution allows for the application of motion planning in many different fields such as gaming and
entertainment, transportation, autonomous navigation, planetary exploration, demining, industrial
production lines, surgery and biological molecular structure analysis 2006). Many solutions
of the basic motion planning problem have a straightforward extension into more advanced motion
planning problems. Some mobile navigation problems can even be realistically represented in the
form of a basic motion planning problem.

6

2.2. REPRESENTING THE WORLD

Fw z

Figure 2.2: A robot A moves in a W = R, with d = 2 or d = 3. A configuration of A specifies the position and orientation
of the body-fixed frame F 4 with respect to workspace frame Fyy. A configuration g of A is denoted as A(g). In
similar fashion, a point a in A(g) in W is denoted as a(q).

2.2 Representing the World

To solve the motion planning problem a search must be conducted in the workspace. Thereto, first
the position of the robot is to be specified in an appropriate space. More specifically, every point
on the robot must be specified in the space in order to ensure that no point on the robot collides
with an obstacle. Hereto, the configuration space (Lozano-Pérez, [1933) is introduced. The underlying
idea is to represent the robot’s configuration as a single point and to map the obstacles in this space.
The problem of planning the motion of an arbitrarily shaped robot is transformed to the problem of
planning the motion of a point. This level of abstraction allows more explicit constraints on the robot
motion. Furthermore, the uniform framework allows for a large range of different motion problems
in terms of geometry and kinematics to be tackled by the same planning algorithms.

2.2.1 Concept of the Configuration Space

Consider a single, rigid body .A moving in W, represented as a Euclidean space R?, with d = 2 or
d = 3, as illustrated in Figure W has a fixed Cartesian coordinate frame, Fyy. A is represented
at a reference position and orientation as a subset of R%. A body-fixed frame F 4 is attached to .A. A
configuration, denoted as ¢, of A is a specification of the position and orientation of F 4 with respect
to Fyy. The configuration space, denoted as C, is the space of all configurations of the robot. A
configuration is simply a point in this abstract configuration space. The subset of the workspace
W that is occupied by a configuration ¢ of A is denoted as A(g). In similar fashion, a point a in
A(q) is denoted as a(q). The coordinates that describe a configuration ¢ are generally of two types.
Cartesian coordinates are used to describe the position of a body, while angular coordinates are used
to represent the rotation of that body. Cartesian coordinates take a value in the Euclidean space R.
Angular coordinates take a value in the Special Orthogonal Group SO(m), where m = 2 for a planar
rotation and m = 3 for a spatial rotation. The configuration space of a robot is then obtained in general
as a Cartesian product of these two spaces. For example:

> If the robot is a single point translating in W = R?, C is a plane, and a configuration can be
represented using two parameters (z, y).

> If the robot is a 2-dimensional shape that can translate and rotate, still W = R2. However,

C = R? x SO(2), and a configuration can be represented using three parameters (x,, 6).
> Ifthe robot is a 3-dimensional shape that can translate and rotate, WW = R3 and C = R?® x SO(3),
and a configuration requires six parameters: (x, y, z) for translation, and, e.g., three Euler angles

(¢, 0,1) for rotation.

> If the robot is a fixed-base manipulator with n revolute joints, C is n-dimensional.

CHAPTER 2. THE MOTION PLANNING PROBLEM

Figure 2.3: A free path connecting g; to g4 by a curve on the free configuration space Cee.

2.2.2 Obstacles in the Configuration Space

With C defined, the task is to find a path ¢ in the form of a continuous sequence of configurations of
A, from an initial configuration ¢; to a goal configuration g, that do not collide or contact with O;.
Hereto, the space of configurations for which a collision or contact occurs is defined, by mapping the
obstacles in the configuration space. A W-obstacle in C is called a C-obstacle and is defined as

CO; ={qeClA(q)NO; # 0}. (2.1)

The union of these configuration space obstacles,

CO = DC(’)i, (2.2)

i=1
is called the configuration space obstacle region. Its complement is
Cree =C\ CO (2-3)

and is called the free configuration space. The basic motion planning problem can now be defined as
finding a path from g¢; to ¢4 in Cgee. A path is defined as a continuous function ¢ that maps a path
parameter s (usually taken in unit interval [0, 1]) to a curve in C. So a path is defined as continuous
function

¢:[0,1] = C where ¢(0)=g¢q;, c(1)=¢q, and ¢(s)€eC Vse][0,1]. (2-4)

Analogously a free path is defined as a continuous function ¢ : [0, 1] = Ceee, as illustrated in Figure[2.3|
That is, if ¢(0) and ¢(1) belong to the same connected component of Cgee. With Ce. defined as the
complement of CO, configurations that belong to both spaces are excluded. The space that contains
configurations that represent the robot touching an obstacle is called the contact space and is denoted
as Ceontact- As this might be allowed or could even be desired these configurations must be represented
in Cgee as well for some problems. This space is referred to as the closure of Cgee 07 ¢l(Cpree) =
Chree U Ceontact- Indeed it holds that

Crree C cl(Crree) C C. (2.5)

Analogously to the definition of a free path, a continuous function ¢ : [0, 1] — ¢l(Cee) is defined as a
semi-free path.

Obstacles can be modeled in W = R? as convex polygonal regions and in YW = R3 as convex polyhe-
dral regions. A polygon or polyhedral consists of a finite sequence of straight line segments. In some
motion planning problems obstacles are better modeled as generalized polygons, i.e., regions bounded
by straight segments and/or circular arcs. For the sake of simplicity mostly convex (generalized) poly-
gons in W = R? are treated. Obstacles shapes can also be approximated.

8

2.2. REPRESENTING THE WORLD

Ay © @
wo u @ @

Ccontact Y ——
. ¢ . .
cO
Cfree & \ /
(@) (b) (©)

Figure 2.4: The workspace W (top row) and configuration space C (bottom row) for a robot A at two points, represented as a
point (a), a circle (b) and a larger circle (c). W is populated by obstacles that make up the obstacle region, WO.
This region is mapped into C as the configuration space obstacle region, CO. In subfigure (a) the contact space
(Ccontact) and free configuration space (Cgee) are also visualized, as well as the two robot configurations ¢ and g».
In subfigure (b) and (c) these annotations are omitted.

2.2.3 Construction of the Configuration Space

Lets consider the example of a mobile robot base with a circular geometry moving on a plane, so
W = R2. A configuration of this robot is described by two translations, x and y, and one rotation, .
The robot’s geometry is the same for every rotation as the geometry of the base is circular and thus
the rotation is not necessary to describe a configuration. The dimension of C is therefore equal to that
of W, as illustrated in Figure WO is however not identical to CO. To construct CO the robot is
to be slid past WO. As the center of the circular base is chosen for a configuration it suffices in this
case to inflate the obstacles with the radius of the circle. The construction of configuration space for
three circular geometries is shown in Figure[2.4}

Now consider the mobile base A is modelled as a rectangle (e.g., a car). This rectangle might still be
approximated by a circle that circumscribes the rectangle. As a result Cge. Will be smaller and thus
a path in Cge Will be more conservative in terms of distance to obstacles. At some point a free path
might not be available anymore as can be seen in Figure[2.4¢ ¢; can not be connected to g,. Therefore
the rotation can be included in the configuration space as a third dimension. The construction of CO
is now not so obvious anymore. CO has to be determined for every increment of rotation of A and then
stacked along the axis perpendicular to the plane, as depicted in Figure CO is then represented by
a volume generated by orientation slices for every increment. For complex geometries and even more
degrees of freedom, such as a robotic arm, CO is not conceivable anymore.

2.2.4 Representation of the Configuration Space

The configuration space transforms the problem of planning the motion of an arbitrarily shaped robot
into the problem of planning the motion of a point. To be able to search for possible motions of that
point in the configuration space, it must be represented in a way that connects configurations: the
connectivity of the free configuration space must be captured. This representation can be of differ-
ent forms. Examples of these methods to represent the connectivity of the configuration space are
illustrated in Figure [2.0|for a general problem in a workspace with arbitrary obstacles.

A first way is to capture the connectivity in a network of curves that are in Cge, called a roadmap.
Another representation is a cell decomposition, where C is decomposed into discrete, non-overlapping

9

CHAPTER 2. THE MOTION PLANNING PROBLEM

Figure 2.5: For a circular base, asin Figure CO isidentical for every orientation. For a non-circular base, here the rectangular
shaped robot A, CO depends on the orientation of A. It is constructed by parameterizing each configuration ¢ by
(2,y,0) € R?2 x [0,27]. At7m = Oand 77 = %ﬂ' two rotation increments of A are shown together with the
accompanying CO for 6 ranging from 0 to 7. The representation of CO is a volume consisting of CO per increment

of orientation.

7 A T
” A i

N

-~ ST 1A

.) =

W WE O

(0 4 G i

(a) Roadmap (b) Cell decomposition (c) Sampling-based (d) Potential field

Figure 2.6: Different representations of the connectivity of a configuration space with arbitrary obstacles (shaded objects). The
potential field method does not capture the connectivity, but the potential field resembles the ‘structure’ of the
configuration space.

cells that are subsets of C. The union of those cells makes up Cge.. A third way is to represent the
space in a stochastic manner, with a sampling-based method. The idea behind this is to represent the
connectivity of Cge without explicitly constructing the space itself. It can be noticed that the example
in Figure[2.6dlooks like a roadmap method. The emphasis is however on the stochastic character and
therefore it is treated as a sampling-based method. A final method of representing the configuration
space is using a potential field. The point in C that represents the robot then moves under the influence
of a potential field obtained by superposing an attractive potential towards the goal and a repulsive
potential from CO.

Roadmap, cell decomposition and sampling-based methods capture the connectivity of Cgee into an
abstracted graph that can be searched for a path, as will be explained in the next section. A poten-
tial field method is based on a different idea, as it suggests that robot moves under the influence of
attractions and repulsions. The local variations in the potential field reflect the ‘structure’ of Cpee. A
potential field methods therefore does not need a graph search to return a path, but instead guides the
robot though the workspace in the continuous world. More detailed classifications of configuration
space representations are treated in Chapter

I0

2.3. SEARCHING THE WORLD

Figure 2.7: A directed graph (left) and an undirected graph (right) with nodes n and edges e.

T HEH B

Figure 2.8: A graph search on a grid. The frontier (white nodes) separates the explored set (black nodes) from the unexplored set
(grey nodes). In the first iteration the root node is expanded. Then one leaf node is expanded. Finally the remaining
children nodes from the root are expanded in clockwise order.

2.3 Searching the World

Most representation methods transform the continuous problem of finding a path in Cge into a dis-
crete problem of searching a graph. A graph is a collection of nodes N (also referred to as vertices in
literature) and edges E, denoted as G(N, E). An edge connects two nodes and therefore defines a
relationship between these two nodes. This could be for example two nodes in cells that are adjacent.
Edges can be directed and undirected. A graph that consists of edges that can only be traversed in one
direction is a directed graph. An edge that connects two nodes is undirected if a robot can move back
and forth on that edge and the collection of those nodes and edges is an undirected graph. A directed
and an undirected graph are illustrated in Figure[2.7] An edge in a graph can be annotated with a non-
negative value, called a weight, that represents the cost of traversing that edge. A graph with weights
is a called a costmap.

A graph is searched like a tree. For a grid a graph search is depicted in Figure The first node at
which the search of a graph starts is called the root. From the root the search is expanded. A node is
called a parent if that node has subsequent nodes that can be expanded, which are called children. A
node that has no children (yet) is a leaf and a series of nodes connecting the root to a leaf is a branch.
At every search step, a leaf node is expanded, making it a parent of the expanded children nodes.
The set of all leaf nodes available for expansion at a search step is called the frontier. The process of
expanding nodes on the frontier continues until either the goal configuration is found or there are no
more nodes to expand. All graph search algorithms share this basic tree search structure. The vary
primarily according to how they choose which node to expand next: the search-strategy. This order of
expansion is determined by a function f(n). Which nodes can be chosen depends on the adjacency
relation. In Figure [2.3| the nodes are 4-connected, i.e., every node has four neighbors. If the diagonal
nodes are also expandable it is 8-connected.

A graph search keeps track of the nodes it visited in a explored set or closed list. This is what distin-
guishes a graph search from a tree search. In a graph search the frontier separates the explored set
from the unexplored set of nodes. A tree search does not remember an explored set and thus it can
create redundant paths in a search. For example, in the graph of Figure [2.7]a tree search might result
in paths containing loops. The behavior of tree and graph search methods can be generalized to the
same basic steps as summarized in Figure 2.9

Graph search algorithms can be divided into three categories:

II

CHAPTER 2. THE MOTION PLANNING PROBLEM

function TREE_SEARCH (problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH_SEARCH (problem) returns a solution, or failure

initialize the frontier using the initial state of problem

loop do

initialize the explored set to be empty
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

Figure 2.9: An informal description of the general tree search and graph search algorithms. The parts of GRAPH_SEARCH marked
in bold italic are the additions needed to handle repeated states. This part is the difference between a TREE_SEARCH
and a GRAPH_SEARCH.

> uninformed
> informed

> local search

Uninformed search algorithms move through the graph without any preference for the location of
the goal node. If the direction of the goal node is known, the search can be directed towards this
node. A search that includes information about the goal is called informed. To this cause a heuristic
can be formulated. This is defined as a function of nodes that hypothesizes a cost towards the goal
node. The choice for the next node to explore is then based on this heuristic cost. This could be for
example the Euclidean distance towards the goal. A heuristic is applied to speed up a search. However,
there is no guarantee that the path that is found is the shortest. Both uninformed and informed search
algorithms explore search spaces systematically, as they keep one or more paths in memory and record
which alternatives have been explored at each point along the path. If the path to the goal does not
matter, a different class of algorithms might be considered, ones that do not worry about paths at all.
These local search algorithms operate using a single current node (rather than multiple paths) and
generally move only to neighbors of that node. Typically, the paths followed by the search are not
retained. Local search methods also apply to a search in the continuous space as for the potential field
method. In Chapter s]all these different strategies are discussed in more detail.

2.4 Global Versus Local

As mentioned, roadmap, cell decomposition and sampling-based methods capture the connectivity of
Cree- The potential field approach does not capture the connectivity in a initial processing step, but at
each instance the robot moves from one configuration to the other it computes the potential field. As

I2

2.4. GLOBAL VERSUS LOCAL

Figure 2.10: The motion problem of driving a car from A to B that can be abstracted to global planning on a map and local
planning on the highway.

was illustrated in Figure the forces in the field that move the robot depend on obstacles that are
near the robot’s own configuration. Therefore, potential field methods are often referred to as local
methods, while roadmap, cell decomposition and sampling-based methods are called global methods.

However, the distinction between local and global is often intuitive. E.g., a potential field method can
be combined with graph searching techniques that use the whole C, which makes them as global as
any roadmap. On the other hand, a roadmap method could be restricted to a subset of C around the
current configuration of the robot. It is then used to plan subpaths and can be regarded as a local
planner.

A more formal definition of global and local is desired. A global planner is defined as a planner that
can use the complete workspace to return a solution. A local planner is defined as a planner that uses
a subset of that same workspace.

2.4.1 An Example: a Global and a Local Planner

Consider the problem of driving a car from Eindhoven University of Technology to Amsterdam Schiphol
Airport. A human approach to this problem would likely begin with specifying some high-level sub-
tasks:

1. Drive to highway leading out of Eindhoven.
2. Plan a route from Eindhoven to Amsterdam.

3. Drive from the incoming highway in Amsterdam to Schiphol Airport.

Low-level decisions such as on what lane to drive on the highway are not even considered until they are
moments away. It does not make sense to plan this ahead as these decisions depend on the current
situation on the highway. A human therefore first solves a global problem and then deals with the
local problem of driving safe on the highway. Therefore, the motion problem is abstracted to a global
planning problem and a local (motion) planning problem as is visualized in Figure This level of
abstraction is also used for solving motion planning problems for robots.

13

CHAPTER 2. THE MOTION PLANNING PROBLEM

2.5 Extensions of the Basic Problem

The basic motion planning problem is a relaxed version of the motion planning problem. The robot is
a single, rigid body that can move freely and has no dynamics. It acts in a static, known environment.
Due to these assumptions the problem is simplified, limiting the practical implementations of the
solutions to the problem. Therefore, to meet with the conditions of the actual problem three extensions
of the basic motion planning problem are regarded:

> planning in a dynamic environment
> planning with uncertainty

> planning with constraints

The way to deal with extensions that encompass the actual problem is called a planning approach. A
planning approach views the motion planner as a whole. So at this point the representation method
and the search algorithm come together. This section discusses the subproblems of the three extended
problems and introduces necessary additional terminology. How different planning approaches tackle
the motion planning problem is discussed in Chapter [6]

2.5.1 Planning in a Dynamic Environment

In the basic motion planning problem the environment is considered to be completely static as the
robot A is the only moving object in the environment. The environment can also be dynamic, when
it contains moving objects. Another type of environment occurs when not only the motion of the robot
A, but of multiple robots A; is to be planned (Erdmann and Lozano-Pérez, 1986} |Latombe, 1990). This
case differs from an environment with moving objects, as now the motion of more than one robots is
under control. Finally, a special case arises when manipulation (Choset, 2005} |Li et al.l 1989) is con-
sidered. In this case, the ability to alter the environment during movement, by moving objects itself,
must be taken into account by the motion planner. Planning for manipulation is such a broad topic
in itself that it is also been addressed with techniques that are outside the scope of motion planning.
This study will therefore not go into depth on this subject.

In the presence of moving obstacles, the configuration space changes over time. To solve the motion
planning problem the configuration space can be extended with a time dimension. This space is called
configuration-time space (Erdmann and Lozano-Pérez, 1986) and is denoted by CT. W-obstacles map
in the CT-space to static regions called C7T -obstacles. A cross-section through C7 at time ¢ represents
the configuration space of the robot at time instance t. For W = R? with a piecewise linear moving
obstacle C7 and three time instances ¢ € [0,7] are depicted in Figure Motion planning now
entails finding a path among C7-obstacles in C7".

2.5.2 Planning with Uncertainty

The basic motion planning problem is based on assumptions about the robot and obstacles in the
workspace. It assumes exact knowledge of the workspace and the obstacles’ location and geometry.
Furthermore, it is assumed that the planned path is executed exactly. Such assumptions are generally
not realistic and therefore uncertainty must be considered in: a priori knowledge on the workspace;
in sensor information that is acquired during the execution of planning; and in the execution of the
plan itself.

This problem with uncertainty is illustrated in Figure A robot A has no exact position informa-
tion, due to a localization error, and therefore its initial and goal configuration are now respectively an
initial region 7 and a goal region G in C. Due to uncertainty in execution it assumes movement along a

14

2.5. EXTENSIONS OF THE BASIC PROBLEM

[—
| ‘dg “dyg "9
C(t1) C(t2) C(ts)

Figure 2.11: A configuration-time space, CT = R? x [0, T, for a workspace with a piecewise linear moving obstacle. On the
bottom row three time instances or ‘slices’ of the space are depicted.

Figure 2.12: Two instances of a motion planning problem with uncertainty. The initial and goal configuration are represented
by regions, respectively Z and G. Furthermore, robot A has no exact localization and moves along a direction
contained in a cone centered along the commanded direction. As the robot moves along the planned path it can
encounter previously unknown, static obstacles.

direction contained in a cone centered along the commanded direction of motion. During execution it
can encounter previously unknown, static obstacles. In some literature suddenly appearing obstacles
are regarded as a dynamic environment. In this study it is however regarded as uncertainty in a priori
information on the workspace.

2.5.3 Planning with Constraints

The basic motion problem or path planning problem is purely geometrically constrained. For some
problems however it is desired to impose additional constraints to the robot’s motion. The most com-
mon are differential constraints, which restrict the motion of the system represented by the evolution
of configurations ¢ € C over time. A configuration is described by a vector of generalized coordinates.
Differential constraints can be considered as local constraints, on the robot, in contrast to constraints
that arise due to obstacles. The solution of a motion problem is a feasible trajectory that is parame-
terized by time. To be feasible at each time instant differential constraints must be satisfied that arise
from the kinematics and dynamics of a robot. The distinction between kinematic and dynamic con-
straints in the scope of this study is clarified using the configuration space. Kinematic constraints act
on the space of all possible configurations of a system at one time, while dynamic constraints act on

15

CHAPTER 2. THE MOTION PLANNING PROBLEM

%amamtz qa . . .
T v e | e e
amamt{ ° . . .
(11117 : ~—
‘\ . L] . L] . L] L] . L] . L[] .

(a) A planned motion for a car that faces the problem (b) A motion planning problem for a double-integrator

of parallel parking. The car is subject to a non- system that moves over a line with discretized bang-

holonomic constraint (no-slip sideways). bang control. The system incorporates the equation
of the motion and a bound on the velocity and accel-
eration.

Figure 2.13: An example of non-holonomic planning (left) and kinodynamic planning (right).

how configurations can change as a function of time.

Planning with only kinematic constraints is often referred to as non-holonomic planning. A simple
example of a system in W = R? that is subject to a non-holonomic constraint is a car. It is able
to access any configuration in C, but it can not instantaneously move sideways as its wheels can not
slip sideways. A non-holonomic constraint is a velocity constraint on C. This constraint becomes
important when a car needs to park parallel for example, as illustrated in Figure

Finding a trajectory that is feasible requires the robot to obey its dynamics. This includes dynamic
laws and bounds on velocity, acceleration, and applied forces. This means that there are second-order
constraints on C. Planning with such constraints is known as kinodynamic planning (Donald et al.,
1993). The state space, S, is introduced to deal with constraints. A state s encodes a position and a
velocity, s = (g, q).

An example of such a constraint for a double-integrator system § = « is illustrated in Figure
The system is modeled as a point mass moving on a line, hence ¢ is one-dimensional. The control is
bang-bang and discretized to {—amaz, 0, @Gmaz }- The configuration space is represented together with
the set of admissible velocities. A state is represented as s = (g, ¢). Starting at the initial state (0, 0) the
system can at each step either attain its velocity, accelerate or decelerate. The equation of motion limits
the admissible velocity and acceleration at each time step. Furthermore the bound on the position and
velocity is given by the admissible states in Figure[2.13b] The bound on the acceleration is given by the
discretized control set.

The state space can also be extended with a time dimension. This approach can be used to solve
motion planning problems with kinodynamic constraints and moving obstacles. The combined state
x time space was introduced by |Fraichard| (1993) and is denoted as ST

16

Chapter 3

Requirements

In this chapter requirements are formulated to form a basis for the selection of an appropriate motion
planner, that solves the problem as defined in Chapter[2] These requirements will be a guideline in
the search for a motion planner that solves a motion planning problem. In Chapter [4] the different
classes of representations will be discussed and compared based on the requirements that are formu-
lated in this chapter. The same is done in Chapter [5|for search algorithms. Finally, different planning
approaches are discussed in Chapter [0] In the first section of this chapter the requirements are for-
mulated. In the second section it will be discussed how the requirements need to be interpreted
for representation methods, search algorithms and planning approaches. Finally, the requirements
will be formulated for the specific problem of a car that needs to navigate from one place to another,
exemplifying how the requirements can be used.

3.1 Motion Planner Requirements

The simplified representation of the navigation system of a robot, introduced in Chapter [2] is shown
in Figure The Figure is the same as Figure but the highlighting is different. The four high-
lighted blocks in this flowchart characterize the motion planning problem. These characteristics are
the starting point to formulate requirements on a motion planner:

>> High-level control: The motion planner must fulfill the specific task that is given to the robot.

>> Environment: The motion planner needs to perceive an environment with different characteris-
tics, e.g., it can be dynamic or static.

> Properties of the robot: The properties of the robot determine how it can sense the environment
and how it moves in the environment.

>> Properties of the motion planning method: The motion planner can solve the motion problem
in many ways. For example, it can be tailored to return the fastest or shortest path.

Based upon these four characteristics the following seven requirements are formulated.

3.1.1 Task

The task that is given to the motion planner naturally implies a requirement. Three kinds of tasks are
distinguished:

> navigation

17

CHAPTER 3. REQUIREMENTS

X
[High-level control
J
Task
A 4
a R ()
Motion . Map .
Planning [¢ Environment
- J . J
A
Motion Perception
A 4
a)
Robot
\ J

Figure 3.1: The motion planning problem is characterized by four aspects (highlighted in cyan): a task specified in the high-level
control layer; the environment that is to be perceived; the properties of the robot; and the properties of the motion
planner method.

> coverage

> mapping

The most general task is to navigate. Navigation is a very diverse term and has a variety of meanings.
Generally it means ‘getting from here to there’. Coverage of the whole environment could also be
a task. Instead of moving towards one goal configuration the robot has to cover the whole map of
the environment. A vacuum cleaning or lawn mowing robot are examples. Mapping is a task that
is related to an unknown environment. A robot that has the task to map an unknown environment
should explore the whole environment to be able to cover or navigate it. The idea behind mapping is
that the resulting map can be used for more instances of the motion planning problem.

The far most motion planning methods aim at navigation. Coverage is less addressed in literature.
Motion planners that allow coverage rely on a specific class of methods that are used for navigation.
Therefore it is not taken into account as a requirement in this study. A good overview of coverage in
robotics is given by (2001). Mapping is necessary when the environment is completely un-
known. This tends to be outside the scope of motion planning and deals more with exploration of the
workspace instead. The more incomplete the prior knowledge, the less important the role of motion
planning is. Therefore this is not investigated in this literature study and mapping is not considered
as a requirement. For more information on mapping the reader is referred to a good overview given
by|Thrun et al| (2005).

This study thus only considers navigation as a task. Therefore it is not taken into account as a require-
ment.

3.1.2 Completeness

If a problem can be solved, one wants a problem solver that guarantees this solution, if one exists. This
seems rather trivial, but in case of motion planners this is not. The guarantee of returning a solution
is of course very desirable, but also very powerful in terms of computing. This requirement is known
as completeness. A motion planner can be:

18

3.1. MOTION PLANNER REQUIREMENTS

> complete
> resolution complete
> probabilistic complete

> incomplete

A complete motion planner guarantees to find a solution if one exists and reports failure otherwise.
On the other hand, a planner is incomplete if it is not able to guarantee to find a solution if one exists.
A deterministic approach that samples densely is said to be resolution complete. This only guarantees
a solution, if one exists, at some level of resolution or discretization of the configuration space. A
stochastic approach that samples densely is said to be probabilistic complete, meaning that if a solution
exists the probability of finding a solution converges to one as the number of samples tends to infinity.

3.1.3 Optimality

The notion of optimality can be interpreted in many ways. Generally it is defined in terms of a cost,
defined by a costmap. A costmap defines a cost for traversing from one configuration to another. It
serves as a heuristic to the search in the configuration space. Optimality is divided into:

> optimal
>> optimal only in some sense

> non-optimal

Defining an appropriate cost allows a motion planner to find motions that are optimal in for example
the distance traveled, the energy use or the safety in distance with respect to obstacles. It is optimal
only in some sense, if the motion planner is not optimal in any sense, but can be optimal in one of
those. If there is no possibility to guarantee that the motion planner is optimal in any sense it said to
be non-optimal.

3.1.4 Computational Complexity

The complexity of a motion planning problem depends on the complexity of the obstacle space O and
dimension D of the configuration space. If a continuous space is approximated, the finite number of
nodes used is denoted as N. This is a measure of the resolution of discretization, and also influences
the complexity.

To classify the computational complexity, one is interested in proving upper and lower bounds on the
minimum amount of time required by the most efficient algorithm solving a given problem. The
complexity of an algorithm is usually taken to be its worst-case complexity, unless specified otherwise.
To show an upper bound T'(n) on the time complexity of a problem for a number of inputs n, one
needs to show only that there is a particular algorithm with running time at most T'(n). However,
proving lower bounds is much more difficult, since lower bounds make a statement about all possible
algorithms that solve a given problem. The phrase ‘all possible algorithms’ includes not just the
algorithms known today, but any algorithm that might be discovered in the future. To show a lower
bound of T'(n) for a problem requires showing that no algorithm can have a time complexity lower
than T'(n). Providing lower bounds for motion planning methods is outside of the scope of this study.
For more information on this topic the reader is referred to the work of [LaValle| (2006). The upper
bound is still useful as it indicates the worst-case complexity of a planner.

The upper bound or worst-case complexity is typically expressed in the big O notation, which hides
constant factors and smaller terms. This makes the bounds independent of the specific details of the
computational model used. For instance, if T'(n) = 7n? + 15n + 40, in big O notation one would write
T(n) = O(n?).

19

CHAPTER 3. REQUIREMENTS

3.1.5 Robustness Against a Dynamic Environment

Solving the motion planning problem in a dynamic environment is an extension of the basic motion
problem, introduced in Section A motion planner is required to be robust against this dynamic
environment. A method is classified as:

> robust against a dynamic environment

> not robust against a dynamic environment.

The classification depends on the planner’s ability to deal with multiple moving obstacles. A method
is said to be not robust if the overall performance of the motion planner is less in presence of moving
obstacles. This can be qualified when a planner sacrifices optimality or completeness or increases in
computational complexity. A motion planner is robust if it deals well with moving obstacles.

3.1.6 Robustness Against Uncertainty

Just as for robustness against a dynamic environment, a motion planner is required to be robust
against uncertainty that is present. A method is classified as:

> robust against uncertainty

> not robust against uncertainty

The classification depends on the planner’s ability to deal with uncertainty. A method is said to be not
robust if the overall performance of the motion planner is less in presence of uncertainty. A motion
planner is robust if it deals well with uncertainty.

3.1.7 Dealing with Constraints

If the robot executes its path it is required to deal with the constraints that arise from the kinematics
and dynamics of the robot. A motion planner is classified as:

> able to deal with constraints

> not able to deal with constraints

It is able to deal with constraints if it does not sacrifice performance in the sense of completeness or
optimality or results in an increase in computational complexity. On the other hand a motion planner
is said to be not able to deal with constraints if incorporating constraints is at the expense of increasing
computational complexity or the sacrifice of completeness or optimality.

3.1.8 A Note on Safety

Safety is a very important requirement for motion planning and robots in general. In fact the first
law of the The Three Laws of Robotics by science fiction author Isaac Asimov states: “A robot may
not injure a human being or, through inaction, allow a human being to come to harm” (Asimov,
1963). If this law is translated to a motion planner it can be concluded that the planner must yield
safe motions, i.e., motions that do not collide with obstacles. It is argued that safety is closely related
to the requirements of being robust to a dynamic environment and uncertainty and dealing with
kinodynamic constraints. For example, maintaining the speed limit on the highway (regarded as
safe), is a dynamic constraint. Hence, this study does not regard safety as a separate requirement. If a
motion planner satisfies the three requirements stated above it is regarded as safe.

20

3.2. RELEVANCE OF REQUIREMENTS

3.2 Relevance of Requirements

The requirements of robustness against a dynamic environment, robustness against uncertainty and
dealing with constraints relate to the extensions of motion planning problem, as discussed in Sec-
tion To compare representation methods (Chapter[4) and search algorithms (Chapter|[s), the basic
motion planning problem is used. Therefore, only the requirements of completeness, optimality and
complexity are valuable to discuss for these methods. These algorithms are however the basis of meth-
ods that are able to deal with extensions of the basic motion planning problem. A planning approach,
discussed in Chapter[6] deals with these extensions and so all requirements are treated. An overview
of the treated requirement per chapter is given in Table

Table 3.1: An overview of which requirement is treated per chapter.

Requirement Chapter E Chapter[5| Chapter
Completeness v v v
Optimality v v v
Computational complexity v v v
Robustness against a dynamic environment v
Robustness against uncertainty v
Dealing with constraints v

3.3 How to Use Requirements?!

How to interpret the requirements discussed in Section [3.1) depends on the specific motion problem
that must be solved for a robot. To illustrate the formation of such requirements an example is con-
sidered, where a car must drive from the campus of Eindhoven University of Technology to Schiphol
Airport near Amsterdam. The motion problem is now defined as finding a collision-free trajectory
from the initial configuration ¢;, a parking spot on the campus, to the goal configuration ¢, a parking
spot at the airport. This problem will be solved in general using a GPS navigation system and a local
‘human’ travel planner. Hence, the motion problem is subdivided into a global path planning prob-
lem and a local motion planning problem (see also Section[2.4). Therefore there is a clear distinction
between a global and a local planner. To discuss the requirements on a motion planner that solves this
exemplary problem, first the workspace and configuration are defined.

The car is modeled as a rectangular object A that moves in WW = R? as illustrated in Figure
A is represented by three coordinates (x,y, §), where x and y are the coordinates of the object fixed
frame F 4 and 6 € [0, 2) is the angle between the z-axis of 7 4 and the z-axis of the workspace frame
Fw. Solving the global path planning problem simplifies to the planning of a single point on a plane.
Therefore the global configuration space is Cgiobat = R?. The orientation of the car is not of interest
at this point. The representation of that space is illustrated by the highways (in red) and provincial
roads (in yellow) in Figure The highways and provincial roads show how configurations within
the space are connected in the form of a roadmap. Locally, on the road, the driver should be able
to avoid obstacles and therefore the rotation of the car is necessary. The configuration space is then
three-dimensional and described as Ciocs = R? x SO(2).

Requirements on the Motion Planner

All requirements are discussed for the motion planner as a whole, so local and global. However, it will
be clear that some requirements are only meaningful to discuss for either of the planners.

21

CHAPTER 3. REQUIREMENTS

)
/
/
/ |
/ |
. p |
/'/\ I
Vi 1 >
Fw @
(a) A car-like object A in W = R2. (b) Cglobal = R2 and its connectivity.

Figure 3.2: The workspace and the global two-dimensional configuration space of a car that must drive from the campus of
Eindhoven University of Technology to Schiphol Airport near Amsterdam. The local configuration space is three-
dimensional as the orientation of the car is also necessary to plan its motion.

Completeness When navigating a car, the motion planner is required to be complete. At all times,
the motion planner must guarantee that a motion to the airport exists, if that motion exists. If there
is no possible solution to the problem, which is very unlikely, this must be reported. Such a situation
can however be encountered when one forbids the planner to plan a path including a ferry crossing.
If the only solution is to use the ferry crossing, the planner must report this.

Optimality When navigating a car one typically wants to get from A to B in the shortest time possi-
ble. The path planner is therefore required to be optimal in the sense of execution time of the generated
path. This implies that some notion of time must be incorporated into the configuration space and
thus more complexity. The local motion planner is generally required to generate smooth motions.
Changing lanes on the highway for example is a smooth motion which is not achieved by jerking at
the steering wheel.

Computational complexity A global path towards the airport should be planned as fast as possible
and therefore the planner must be of low computational complexity. The path planner must deal with
a dim(C) = 2. This path planning problem is nowadays solved within seconds by a GPS navigation
system. However, it is still required to get a solution as fast as possible as a driver is generally impa-
tient to start driving. The local motion planning is dealt with by the driver. From a driver it is required
that it can react quickly to changes in the environment. It must deal with a configuration space that is
far more complicated than for the global problem as it also consist of a time dimension.

Robustness against a dynamic environment The global configuration space seems static, but can
change over time. In case of a traffic jam, a driver requires a quick re-plan to avoid the jam. When
navigating a car the local planner is required to deal with a highly dynamic environment, containing
loads of moving obstacles and static obstacles. A driver on a highway is consequently estimating the
speed of near vehicles, and predicting their future motions. The planner is required to be robust to
their behavior as these vehicles are obstacles to the car’s motion.

Robustness against uncertainty The sensed information during execution of the path is subject to
a great deal of uncertainty. Starting with the GPS, its localization is inaccurate in the order of meters
in Cglobal. For the local planner the human inaccuracy is in the order of decimeters in Cioca. Within

22

3.3. HOW TO USE REQUIREMENTS?!

the local configuration space there is also inaccuracy in estimating the speed and future movements
of obstacles. A driver generally becomes robust against these uncertainties by keeping more distance
from obstacles. Due to the high risk of collision the motion planner is required to be robust to uncer-
tainty.

Dealing with constraints Since a car is a non-holonomic platform, the driver of the car is required
to deal with this constraint. Beside the non-holonomic, kinematic constraint a car is also subject to
dynamic constraints. The local motion planner is required to satisfy those constraints. Due to inertia
and momentum a car can not accelerate or brake infinitely fast. The driver of the car must take this
into account.

23

Chapter 4

Representation Methods

The basic motion planning problem, introduced in Chapter |2} can be represented by a large number
of methods. In Section [2.2.4] four classes of methods were introduced:

1. roadmaps
2. cell decompositions
3. sampling-based methods

4. potential fields

An example for each of these methods is illustrated once more in Figure [4.1| (same as Figure in

Section [2.2.4).

In this chapter the classes will be discussed in detail. The methods are described for a mobile robot
moving in a plane, so W = R2. To ease visualization the mobile base is represented as a point and
C = R% For each method its properties are discussed with respect to the relevant requirements,
defined in Section[3.2} completeness, optimality and computational complexity. Finally, in Section|[4.5}
all methods are compared to each other and conclusions will be drawn based on this comparison.

4.1 Roadmap

A roadmap is a network of curves that are in Cge. and is defined as R. The roadmap is completed by
connecting an initial and goal configuration ¢ to R. This procedure is called retraction and is achieved
by a free path, ¢ : [0, 1] = Cee, with ¢(0) = ¢ and ¢(1) = r(q), where r(g) is called the retraction of ¢
onto R. A roadmap has to satisfy two properties:

dg 4qi

wNE/ QD Y
qi qg .o

(a) Roadmap (b) Cell decomposition (c) Sampling-based (d) Potentia

Figure 4.1: Different representations of the connectivity of a configuration space with arbitrary obstacles (shaded objects).

25

CHAPTER 4. REPRESENTATION METHODS

dg

qi

(a) Visibility graph. (b) Reduced visibility graph.

Figure 4.2: A visibility graph (a) and a reduced visibility graph (b) that is solely constructed from supporting and separating
lines, connecting g; to ¢q.

1. Accessibility: From any configuration ¢ € Cge. it is possible to compute a free path to a ¢ €
R. This condition ensures that the initial configuration ¢; and goal configuration g, can be
connected to respectively (g;) and r(g,) on R.

2. Connectivity: If there exists a free path between ¢; and g, then there also exists a free path
between r(g;) and r(g,). This ensures that no solution is missed because R fails to capture the
connectivity of Cpee.

The roadmap can be constructed using different methods. Here, the two methods that are most
relevant for this study are introduced: the visibility graph and the deformation retract. Other methods
exist, but are only mentioned.

4.1.1 Visibility Graph

The visibility graph V' is a non-directed graph. Its nodes are ¢;, ¢, and nodes of CO. Two nodes of V'
are linked together if the line connecting the two nodes is an edge of CO, or if that line lies entirely
in ¢l(Cgee). After the construction of V' it is searched for a path from g; to g,, and finally that path is
returned or failure is reported otherwise. An example of visibility graph is illustrated in Figure
The connectivity is represented using a few lines, but still the graph consist of many almost the same
lines. Hereto, the graph can also be built solely using supporting and separating lines. A supporting
line is tangent to two obstacles such that both obstacles are on the same side of that line. A separating
line is also tangent to two obstacles, but such that both obstacles are on opposite sides of the line.
Therefore there are four and only four tangent lines between two convex disjoint obstacles. The graph

that results is a reduced visibility graph and depicted in Figure

The visibility graph has been rarely used for planning paths for dim(C) > 2. Higher-dimensional
solutions exist, but they are at the cost of either optimality or completeness. For a robot that moves in
W = R3 with a fixed translation, so C = R?, the generated paths may not be the shortest anymore.
And a translating and rotating robot in W = R2?, with C = R? x SO(2), can be planned with a
visibility graph, but it is incomplete (Lozano-Pérez and Wesley, 1979). All visibility graphs need a
polygonal representation of CO.

With respect to the requirements in Chapter [3] the visibility graph has the following characteristics:
Completeness From the connectivity property of a roadmap method it is guaranteed that a path can
be found if one exists (Lozano-Pérez and Wesley, 1979), thus the method is complete.

Optimality As paths in a visibility graph graze obstacles the set of paths will include the shortest one
(Rohnert, [19806) and therefore it is optimal in the sense of distance traveled. This is of course dependent
on the search algorithm and distance criterion used as the shortest path still has to be returned from
the graph.

Computational complexity ~As discussed, the visibility graph is typically only applied for C = R2.

26

4.1. ROADMAP

7(q;)
*q;

T(Qg

Q
x

dg®

(a) An original Voronoi diagram, where each site is rep- (b) A generalized Voronoi diagram, where ¢; and g4 are
resented by a node and equidistant boundaries be- retracted onto the Voronoi diagram in Cgee.
tween two sites by edges.

Figure 4.3: Deformation retracts using an original Voronoi diagram (a) and a generalized Voronoi diagram (b).

The complexity of the visibility graph depends on the number of nodes in the graph V. A visibility
graph can be computed in O(N?log N) time (LaValle, 2006).

4.1.2 Deformation Retracts

A deformation retract is a map that results from continuously shrinking or ‘retracting’ a space into a
subspace. It is analogous to eroding Cge. into a subspace shaped like a skeleton. This skeleton can
then be used to plan the robot’s motion. The most well-known method to construct such a skeleton is
using a Voronoi diagram of Cgee, denoted as Vor(Cge). Consider a finite set of nodes in the Euclidean
plane as illustrated in Figure Each node is a Voronoi site, and its corresponding Voronoi cell
consists of all points whose distance to this site is not greater than their distance to any other site.
Each cell is obtained from the intersection of half-spaces, and hence it is a convex polygon. The edges
of the Voronoi diagram are all the points in the plane that are equidistant to the two nearest sites. The
Voronoi nodes are the points equidistant to three (or more) sites. For higher order site geometries the
diagram turns into a generalized Voronoi diagram (GVD), which is depicted in Figure[4.3D The higher
order character is visible as the diagram also contains arcs besides the straight line segments. In case
of a GVD the path is the product of the retractions of ¢; and ¢, on R, respectively r(g;) and r(¢,) and
a path between these two in R.

The concept of the GVD is also applicable in higher dimensions. The hierarchical generalized Voronoi
graph (HVGV) (Choset and Burdick} [199s5abl |2000) is an extension to WW = R®. This method is not
considered in this study, as it is not relevant to mobile bases. Besides the Voronoi diagram, other
deformation retracts methods are the Freeway method and the Silhouette method. The Freeway method
is not limited to two dimensions, but it is incomplete and non-optimal. The Silhouette method is
proven to be complete for an arbitrary number of dimensions with arbitrary obstacle geometries.
Both have no advantage over the GVD for mobile robots and thus they are not considered. A short
introduction on these other methods is given by|Latombe| (1990) and |Choset| (2005). The application
of the GVD is limited to a polygonal CO.

A deformation retract has the following characteristics:

Completeness Whatever the search strategy that is used to search the roadmap, the retraction method
is complete, which follows from the connectivity property of a roadmap method.

Optimality Deformation retract are optimal in the sense of distance to obstacles. The construction of
the diagram ensures a maximum distance to obstacles. This means however that it almost always
excludes the shortest path in the configuration space.

Computational complexity The construction of the GVD depends on the number of edges that it
contains. It runs in O(E log F) time (LaValle, [2000).

27

CHAPTER 4. REPRESENTATION METHODS

cs C12 y
C2
Ce
cr Co C16
C1 C11
1 °q
9
G1
Cs
C3 .
qi C10

(@)

Figure 4.4: A trapezoidal decomposition using a vertical line sweep (a) and its connectivity graph (b).

4.2 Cell Decomposition

C can also be represented by decomposing it into discrete, non-overlapping cells that are subsets of
C and whose union makes up Cge.. The shape of these cells can be arbitrary, but is such that a path
between any two configurations within a cell is possible. Therefore, the cells can be represented as
nodes that can be connected by edges based on an adjacency relation. The connectivity of the nodes
is captured in a non-directed graph that represents the adjacency relation between the cells, called the
connectivity graph or adjacency graph. By searching the connectivity graph for a path starting with the
cell containing the start configuration ¢; and ending with the cell containing the goal configuration gy,
a sequence of adjacent cells, called a channel, can be obtained, if one exists. From this channel of cells
a path can be extracted that connects g; to g, in Cgee. Cell decomposition methods are further broken
down into exact and approximate decomposition methods. An exact decomposition derives its name
from the fact that the union of the cells of its decomposition exactly forms Cgee. An approximate de-
composition on the other hand consists of cells of a predefined shape whose union is strictly included
in Cfree-

4.2.1 Exact Decomposition

In an exact cell decomposition the shape and size of the cells ¢ depends on the workspace and the
location and shape of obstacles within this space. Based on the dimension of the workspace and the
geometry of the obstacles multiple methods exist to decompose the robot’s free space Cgee. The most
popular cell decomposition is the vertical cell decomposition or trapezoidal decomposition as illustrated
in Figure[4.4a} This method relies on a 2-dimensional C and a polygonal CO. The sweep line algorithm
is used to decompose C.. into trapezoids. This algorithm sweeps the configuration space in a vertical
or horizontal direction with a line and makes a slice when the line detects a node of an obstacle. From
the decomposition that arises, a connectivity graph C' as shown in Figure can be built, that is
searched for a channel. From this channel a motion can be planned from g; to g,.

The extraction of a motion from the channel can be done in various ways. A common way is to select
the midpoints of two joint boundaries to connect g; to g,.

Exact cell decompositions have the following characteristics with respect to the requirements:
Completeness An exact decomposition is a complete method, as CO is represented exact.

Optimality An exact cell decomposition method is non-optimal. As the cells of an exact decompo-
sition are typically fairly large (depends on CO) assigning a cost to a cell might not have the desired
effect of an optimal path in the sense of that cost.

Computational complexity The complexity of an exact cell decomposition depends on the number
of nodes in CO. It runs in O(N log N) time (LaValle, [2000).

28

4.2. CELL DECOMPOSITION

e e

qi

%

(a) Approximate decomposition. (b) Adaptive cell decomposition.

Figure 4.5: An approximate and adaptive cell decomposition with free (white), mixed (dashed) and occupied (bold dashed) cells.
The adaptive cell decomposition uses a higher resolution in tight spaces and is therefore in this case able to resolve
a sequence of free cells, whilst an approximate decomposition is not.

By recursively applying a sweeping algorithm an exact cell decomposition could essentially solve any
motion planning problem, regardless of the dimension of C and the geometry of CO. This method is
called the cylindrical algebraic decomposition. It is also complete and non-optimal but the computational
complexity is double exponential in the dimension of C.

The task, introduced in Section is not considered as a requirement in this study. It is how-
ever meaningful to mention it in the context of the exact cell decomposition, because this method is
typically preferred when coverage of the workspace is required. This is necessary for a vacuum or
lawnmower robot for example. An efficient decomposition to cover each cell is the Morse cell decompo-
sition (Acar et al.l|2002). More on the topic of coverage is treated in the work of|Choset| (2005).

4.2.2 Approximate Decomposition

Contrary to the exact cell decomposition, the approximate variant has obstacle boundaries that do
not necessarily coincide with predefined cell boundaries. C is decomposed into a grid of cells with a
predefined shape and size. Square and rectangular cells are the most dominant methods to represent
C. Rather than identifying objects or shapes, the approximate cell decomposition simply samples the
workspace. The connectivity graph C is marked up accordingly to three types of cells:

> free cells, whose interior is completely within Cge;
> mixed cells, that are partly in Cgee and CO;

>> and occupied cells, whose interior is completely within CO.

An example of an approximate decomposition is depicted in Figure A connectivity graph is built
based on the decomposition with free and mixed cells as nodes, which is searched for free or mixed
channels connecting ¢; to g4. The size of the cells could also be locally adapted. Such methods are
referred to as adaptive cell decompositions and operate in a hierarchical fashion. Starting with a coarse
grid, it is locally refined. The most common method is using a quad-tree, where mixed cells are divided
into four cells. This is done in an iterative way: the algorithm divides mixed cells until a free channel
is found or a minimum admissible size of cells has been reached.

The concept of an approximate decomposition is general and can be applied to a C of arbitrary dimen-
sion. In R3 for example, a tree with eight leafs called an octree can be used. It can deal with arbitrary
shapes of CO as it approximates the obstacles.

29

CHAPTER 4. REPRESENTATION METHODS

The characteristics of an approximate decomposition are as following:

Completeness Figure shows that an approximate decomposition is not complete; there is no
solution, i.e., a channel of free cells, although it does exist. Figure on the other hand, shows that
when the resolution of the decomposition increases a solution arises. A planner using an approximate
decomposition is therefore resolution complete, as it guarantees to return a solution whenever one ex-
ists for a decomposition with a small enough admissible size of cells.

Optimality An approximate cell decomposition method is optimal, if costs are defined for each cell
based on a heuristic. It has to be remarked that the optimality depends on the resolution of the grid.
Especially for an adaptive cell decomposition where large open spaces will result in large cells.
Computational complexity The construction of an approximate decomposition may seem notably
simpler than an exact decomposition. It merely consists of a division of cells, followed by a collision
check with CO. However, the complexity of an approximate decomposition is exponential in the di-
mension of C: O(NP). The number of nodes N depends on the resolution of the grid.

4.3 Sampling-Based Method

Representing C by a roadmap or an exact cell decomposition requires an explicit representation of
Cfree- These methods become computationally cumbersome when the dimension of the configuration
space increases. To decrease the complexity, the connectivity of Cgee can also be constructed without
explicitly constructing C itself. Sampling-based methods have different strategies for sampling C and
connecting those samples to resolve the motion planning problem. A subdivision is made between
probabilistic roadmaps and single-query planners. The concept of sampling-based methods is general
and can be applied to a C of arbitrary dimension. As it is an approximate method it can also deal with
arbitrary shapes of CO.

4.3.1 Probabilistic Roadmap

Probabilistic roadmap (PRM) methods, introduced by |[Kavraki et al|(1990), are closely related to the
roadmap methods discussed in Section As the name says, a PRM also constructs a roadmap,
resulting in a network of edges and nodes in Cge.. The difference is however that a probabilistic
roadmap is constructed by sampling C with a probability distribution, instead of explicitly constructing
it based on obstacles. A sample is a node of the roadmap and represents one configuration of a robot
inC.

The construction of a PRM consists of two phases, a learning phase and a query phase.

1. Learning phase: A sampling distribution (generally a uniform probability distribution) samples
a configuration ¢ in C. Each random sample, ¢4, is checked for collision with obstacles and
if it is feasible it is added to the roadmap R. Next, it is attempted to connect ¢unq to a ‘near’
sample, gnear, according to some distance metric (generally the Euclidean distance). A typical
strategy is to connect grang t0 gnear in a straight line, just as in Figure When successful grang
and the connecting edge are added to R. The learning phase is terminated when a predefined
maximum number of sampled nodes or connecting edges is reached.

2. Query phase: During the query phase it is attempted to connect ¢; and ¢4 to R. If the connection
is successful a path can be found by a search algorithm. If no connection can be made, because
there is no solution or when R does not capture the connectivity of Cg.. sufficiently, the planner
could return to its query phase or use a special strategy to enhance R. If does not lead to success
the planner returns failure.

There are many variations on this approach. These variations first of all originate from the choice for a
sampling distribution. As mentioned, generally a uniform sampling approach is chosen. Examples of

30

4.3. SAMPLING-BASED METHOD

. discarded sample
(Grand
C\]ﬁear_(

(a) The learning phase of a PRM. A sample that collides (b) In the query phase it is attempted to connect ¢; and
with an obstacle is discarded. The uppermost sample gg to the PRM. If successful the PRM can be searched
is not connected to R with the distance metric 4. for a path.

Figure 4.6: The construction of a probabilistic roadmap (PRM) consists of a learning phase (left) and a query phase (right).

other strategies are mentioned further on. Secondly, the strategy to connect grang t0 gnear can vary. In
the example in Figure [4.6]a straight line was used, but other options exist. [Choset| (2005) references
multiple discussions on the choice of this connection strategy. Different sampling distributions are
also highlighted in this work.

A PRM has the following characteristics with respect to the requirements:

Completeness As the roadmap is stochastic a PRM is probabilistic complete: if a solution exists, the
probability of finding a solution converges to one as the number of samples tends to infinity. The effect
of the sampling distribution on the completeness is visible in Figure The PRM in this example
is constructed using a uniform random sampling. A well-known problem is that this method has poor
performance in presence of narrow passages as illustrated in the top right corner of Figure The
uniform distribution must be very dense to connect samples inside the passage. If the only existing
solution was a path through that narrow passage, the PRM is almost certainly incomplete. Hereto,
different sampling strategies can be used to increase the probability of being complete. Sampling near
obstacles, known as an Obstacle-Based PRM (Amato et al.}[1998), is a solution. Another efficient so-
lution is to use a Voronoi diagram of the workspace, as discussed in and to sample conform to
this diagram (Holleman and Kavrakil 2000).

Optimality A PRM can be informed with a cost such that a search algorithm can yield a cost optimal
path, just as for the roadmaps discussed in Section[4.1 But as the roadmap is based on sampling there
is a chance that this path is not even near optimality. It is concluded that a PRM is optimal, but with
the note that this depends severely on the sampling distribution.

Computational complexity Just as for an approximate cell decomposition the complexity of a PRM
depends on the level of discretization of C. The complexity is exponential in the dimension of C:
O(NP). Typically, a PRM is of lower complexity than an approximate cell decomposition as the level
of discretization is higher.

4.3.2 Single-Query Planner

Roadmaps can answer multiple queries: the same roadmap can be used to solve multiple motion plan-
ning problems in the same workspace. A single-query planner aims at quickly solving one particular
instance of a motion planning problem, as they only answer one query. Instead of representing Cee
exhaustively in the form of a roadmap or a cell decomposition, only a subset of Cg. that is relevant to
the motion problem is explored. Single-query planners explore the space with a tree structure. The
tree is rooted at ¢; and the planner tries to connect random, biased samples to the tree. Many different
single-query planners exist, but their principle is to try to connect the random sample directly to tree.
In a roadmap the new random configuration gyanq is added to the roadmap if ¢rang € Cree, While in a
single-query planner it is only added if it can also be connected to an existing configuration. Therefore,

31

CHAPTER 4. REPRESENTATION METHODS

.
.
*ve Qrand

(a) Adding a new configuration to a RRT. Note that only (b) A bidirectional RRT rooted at g; and g4 is merged at
gnew and the edge connecting it to ¢ are added to the Gnew-
tree.

Figure 4.7: A single-query method using a bidirectional rapidly-exploring random tree (RRT).

it follows that there is path from the root of the tree to every configuration in that tree.
It is important to realize that a single-query planner does not require an additional search to find the
goal configuration.

The most used and well known single-query planner is a rapidly-exploring random tree (RRT). Other ex-
amples are very familiar to this approach. Its first step is to uniformly sample a random configuration,
Grand € Crree. Next, an attempt is made to proceed from the nearest configuration gnesr towards grang as
is illustrated in Figure A new candidate configuration gnew is produced on the line connecting
near and ¢rang at a predefined step size § from gpe,r- This is followed by a collision check to verify that
both ¢new and the new edge are in Cge. Periodically it can be checked if the tree can be connected to
the goal configuration ¢, by for example inserting this configuration instead of a new random sample.
Other connection strategies exist. An extensive overview of RRTs is given by LaValle and Kufiner Jr
(2001).

A solution can be acquired faster by growing two RRTs, by means of a so called bidirectional rapidly-
exploring random tree. This method uses two trees that are rooted at ¢; and ¢,. After a certain number
of expansion steps of both trees, the algorithm enters a phase where it tries to connect the two trees
by extending each one of them towards the other. An example is shown in Figure[4.7b] This type of
single-query planner is not effective when ¢, changes over time.

A single-query planner has the following characteristics with respect to the requirements:
Completeness The principle of a single-query planner is to explore Cge minimally. To ensure prob-
abilistic completeness however, the sampling must be able to potentially cover the entire space. Under
certain assumptions it can be shown that Cg.. will be covered and therefore a single-query method is
probabilistic complete (Hsu, 2000; [LaValle and Kuftner Jr| [2001).

Optimality A single-query planner is non-optimal. As the representation of Cp.. is minimal there is
no guarantee that a path will be optimal in any sense. The search could be informed with a heuristic
however. Typically the search is guided towards the goal and will yield a shortest path, but this cannot
be guaranteed.

Computational complexity ~ Just as a PRM, single-query planners run in O(N) time. As the repre-
sentation of Cpe is typically less exhaustive, i.e., the number of nodes N lower, its computational cost
lower is generally lower than a PRM or an approximate cell decomposition.

4.4 Potential Field

All methods discussed so far try to capture the global connectivity of Cgee, hence they are referred to
as global methods (see Section [2.4for the definition of global and local). Before the search for a path

32

4.4. POTENTIAL FIELD

+ -

Figure 4.8: The attractive potential can be defined as a parabolic or conical function. Typically both are combined to a potential
with a conical shape away from the origin and a parabolic shape near the origin.

can actually start, a precomputation step is required to construct Cgee. These methods are classified as
offline methods as this precomputation generally prevents a real-time implementation.

A method that is developed for online motion planning is the potential field method. It does not
capture the global connectivity and needs no precomputation step. Therefore it is a local method.
Initially it was intended as a real-time obstacle avoidance method (Khatib| 19806). It treats the robot
as a point in a potential field U that combines attraction to the goal, and repulsion from obstacles,
as explained in Section for a robot with C = R?. The planning of that point is determined
iteratively, which shows its online character. For every iteration the force Fi(q) = —VU(q) that is
induced by the potential function at configuration g is regarded as the most promising direction of
motion, and executed for some time increment. Section discusses the potential field in the
general case, where C is n-dimensional.

Local methods need powerful heuristics to guide the search as they have no global information. The
drawback is that such a heuristic can lead the search to a local minimum of the potential field. The
existence of local minima is explained in Section

Potential field methods can be subdivided into analytical potential field methods (Section [4.4.4), nu-
merical potential field methods (Section [4.4.5), navigation functions (Section [4.4.6), and finally grid-
based navigation functions (Section [4.4.7]

4.4.1 Attractive and Repulsive Potential

The potential field U is constructed as the sum of an attractive and a repulsive potential function,

U(q) = Uan(q) + Urep(Q)7 (4.1)

with Uy (¢) the attractive potential towards the goal configuration ¢, and Uyep(q) the repulsive potential
from the obstacles. The force F is the sum of the two negative gradients vectors

ﬁatt = _6Uatt(q) and F:rep = _ﬁUrep@)a (4-2)

which are called the attractive and repulsive forces respectively.

The attractive potential is typically defined as a parabolic function to guide the robot to its goal, i.e.

1
Uatt(q) = ikadz(% QQ)7 (43)

where k, is a positive scaling factor and d?(q, q,) is a quadratic distance criteria, typically chosen as the
Euclidean distance ||¢ — g,4||. The force this potential creates converges linearly to zero when the robot
approaches ¢4, but tends to infinity when d(q — ¢;) — co. An alternative is to define the attractive
potential as a conical function:

Ua(q) = kad(q,qq)- (4-4)

The attractive force is now constant, but indefinite in g,. Therefore the advantages of the above two
potentials are usually combined, as visible in Figure[4.8] The attractive potential is thereto defined as
a conical surface away from ¢, and as a parabolic surface in the vicinity of g,.

To keep the robot away from obstacles while it is attracted towards its goal a repulsive potential is
defined. The closer to the obstacle, the stronger the repulsive force should be. The main underlying

33

CHAPTER 4. REPRESENTATION METHODS

(a)C = R2 (b) Uatt (€) Urep

(d) Usot (e) F(C) (f) 2(C)

Figure 4.9: For a C = R? with three C-obstacles (a), the attractive potential Uy towards the goal (b) and repulsive potential Urep
to obstacles (c), sum up to a total potential U field as shown in Figure d. The gradient vector orientations over
the field F(C) are displayed in Figure e. The equipotential contours of the total potential ®(C) and a path that is
generated by following the negative gradient of the combined potentials is depicted in Figure f.

idea is to create a potential barrier around obstacles that can not be traversed by the robot. On the
other hand the robot’s motion should not be influenced when it is sufficiently far away. A potential
function defined for the convex components CO;, with i = 1,...,n,, of CO that satisfies these two
requirements is

2
ki (1 1 . .
Urep,i(q) = 2 (di(Q) do,i) fordi(q) < do.i, (4-5)
0 for dl(q) > d(),i,

where: k,; is a positive scaling factor; d;(¢) = mingeco d(g, ¢') is the minimal distance between ¢
and ¢’ = CO,(q); and dy ; is a positive constant that defines to what range an obstacle influences the
motion of the robot. The total repulsive potential field is then the sum of the individual potentials
associated with the convex components of CO, Urep(q) = D) Usep,i(q). An example of a motion
planning problem that is solved by potential field method is illustrated in Figure[4.9]

The total force F'(q), defined as the negative gradient of the combined potentials, can be used as a
feedback that guides the robot’s motion towards the goal while avoiding obstacles. It can be used in
three ways:

> directly as a control input 7 for the robot in the form 7 = F(q);
> by interpreting the force field as a desired velocity ¢ = F(q) in a kinematic control scheme;
> or the robot could be considered as a mass point moving under the influence of j = F(g). This

requires the substitution of ¢ in the robot’s dynamic model in order to compute the generalized
forces 7.

34

4.4. POTENTIAL FIELD

4.4.2 Potential Fields in General Case

For all methods discussed up to this point a robot is considered, without loss of generality, in W = R?
with C = R?. For potential field methods in the general case, where C is n-dimensional, the imple-
mentation is different. For the exact implementation the reader is referred to the work of [Latombe
(1990) or|Choset| (2005), but to give an idea, the general approach consist of the following steps:

1. The attractive and repulsive potential function are defined in W = R", withn = 2 or n = 3,
instead of defining a potential in C.

2. A number of control points is selected on the robot .A.
3. The W-potential is computed for each of the control points on .A.

4. The C-potential is constructed from the W-potentials for all control points.

This approach is very useful for manipulators. A control point is defined at the end-effector (to which
the goal of the motion planning problem is assigned) and at least one point for each body of the
linkage. While the attractive potential only influences the end-effector control point, the repulsive
potential acts on all control points. As a consequence, the potentials used in this scheme are actually
twofold: an attractive-repulsive field for the end-effector, and a repulsive field for the other control
points distributed on the manipulator link. The potential for each link is computed at the point where
the link is closest to obstacles, and a repulsive force is applied to the link at this point. The end effector
moves in the direction minimizing the sum of the obstacle potential and the goal attraction potential.

4-4.3 Local Minima

The force field F(q) = —VU(q) guides the robot’s motion. This is typically implemented as a gradient
method or an algorithm of steepest descent to minimize U(q). The main drawback of using a potential
field method is the possible occurrence of local minima; a problem that plagues all gradient descent
methods. A gradient descent algorithm will converge to a minimum, where —VU (¢*) = 0. Such a
point ¢* is a critical point of U. This point is a minimum, a maximum or a saddle point. For a potential
field with two obstacles these critical points occur as illustrated in Figure The type of point can
be determined by investigating the second order derivative, for real-valued functions, known as the
Hessian matrix

22U . a%U
aq? 9q10qn
HU)=| ... (4.6)
d*U L 3*U
0q19qx Jq;,

A critical point ¢* at which the Hessian is non-singular, is non-degenerate, which implies that this point
is isolated. For a positive-definite Hessian the critical point is a local minimum and for a negative-
definite Hessian it is a local maximum. If the Hessian has both a negative and a positive eigenvalue
at a critical point, it is a saddle point. The latter two are both unstable, as any perturbation from such
a point will move the robot away from this point. A local minimum however is stable, as perturbing
the robot will return the robot to this minimum. This problem is inherent to gradient methods, but it
can be overcome in two ways:

> by including appropriate techniques for escaping or evading local minima;

> or in the definition of the potential function, by attempting to specify a function that has no local
minima.

The two methods discussed in Section [4.4.4] and Section [4.4.5| construct potential fields with local
minima and apply techniques to escape or evade these minima. A function that has no local minima

is called a navigation function and is treated in Section[4.4.6]and Section[4.4.7]

35

CHAPTER 4. REPRESENTATION METHODS

global maximum

local minimum

saddle point '/

global minimum

Figure 4.10: A potential field with the three types of critical points: a minimum, maximum and a saddle point. Close to the
obstacles a local minimum occurs, which is a stable critical point. A robot that is close to this point will be drawn
into this local minimum.

4-4.4 Analytical Potential Field Method

The most promising direction of motion is determined by F(q) = —VU(q). The determination of
the gradient of the potential field requires that the attractive and repulsive force, Uay(q) and Urep(q)
respectively, are differentiable for every ¢ € Cee. Analytical functions satisfy this property as they are
smooth, i.e., infinitely differentiable.

An example of an implementation of an analytical potential field method is depicted in Figure
The forces in Figure follow from (4.2), which can be analytically derived. In Equation [4.5] the
shortest distance to an obstacle is chosen to determine the repulsive potential. This distance can be
computed using a laser range sensor and does not require any distance calculations. However, this
potential is difficult to use for asymmetric obstacles or if obstacles are partially occluded by another. In
such cases the separation between an obstacle’s surface and its equipotential surface can vary widely.
For example, if obstacles are representable as circles with a certain radius, the potential is directly
computed based on the distance measurements. If the obstacles have an arbitrary shape they are best
modeled by the composition of primitive shapes such as a point, line, plane, ellipsoid, parallelepiped,
cone and cylinder. This requires a description by analytic functions as described in the work of|Khatib
(19806), but increases complexity. Superquadric potentials (Khosla and Volpe, [1988} [Volpe and Khosla)
1990) have been proposed to deal with arbitrary shapes, but this is also at the cost of increasing
complexity.

The complexity of tasks that can be implemented with this approach is limited. In a cluttered envi-
ronment, local minima can occur in the resultant potential field. This can lead to stable positioning of
the robot before it reaches it goal. Escape or evade techniques can be used to circumvent this major
issue. One of those techniques is the escape force proposed by [Vadakkepat et al| (2000). When it
detects that Fiy and F}ep are in opposite direction it applies a perpendicular escape force F., as shown

in Figure

An analytical potential field method has the following characteristics with respect to the requirements:
Completeness A robot can get trapped in a local minimum. An escape or evade strategy can be used,
but there is no guarantee that this works. Therefore an analytical potential field is incomplete.
Optimality Itis clear that the presence of local minima will cause non-optimal motions. Methods do
exist that generate smaller and less local minima, by gradually transforming the shapes of attractive
and repulsive potentials. The most well-known examples are elliptical potentials (Volpe and Khosla,
19387). Such potentials however have a major drawback: obstacles must be distant from each other so
that the potential of one obstacle does not influence another. The bottom line is that local minima will
still be present and thus the method is non-optimal.

Computational complexity As the analytical potential field method is local, it is computationally
much less expensive than the global approach and therefore suited for real-time implementation
(Khatib}, 1986).

36

4.4. POTENTIAL FIELD

P > dg

(a) The resultant direction of the force £ on the robot A (b) The effect of the escape force Fi on the direction of
influenced by the attractive force Fy and the repul- the resultant force F on the robot A.
sive force ﬁrep.

Figure 4.11: An example of resulting forces from the potential field method. A local minimum can be evaded using an escape
force.

4-4.5 Numerical Potential Field Method

The potential field can also be defined over a grid of cells, i.e., using an approximate cell decomposition
as introduced in Section Potential field methods that rely on a cell decomposition are called
numerical potential field methods. A search on the grid is used rather than using a gradient descent.
Therefore these planner are also referred to as search-based planners.

A numerical potential field is a grid based version of a gradient method in the sense that the direction
of movement is determined by the neighbor cell with the least cost. The cost of a cell is determined by
the value of the total potential at the centroid of the cell. The descent is continued until a minimum is
reached. Numerical potential field methods also suffer from local minima. Barraquand et al.| (1992)
shows multiple techniques to escape these minima. The most effective approach is the randomized
path planner (RPP) (Barraquand et al.l[19906), that uses random walks to escape a local minimum.

Contrary to the analytical potential field, the numerical methods do have a precomputation step, but its
complexity is limited. The precomputation is aimed at the construction of a local minimum free W-
potential. This occurs in a space with a fixed and small size, i.e., 2- or 3-dimensional. This WW-potential
acts a heuristic to construct a C-potential that allows faster escape strategies.

A numerical potential field method has the following characteristics with respect to the requirements:
Completeness A numerical potential field method is resolution complete as the guarantee that a solu-
tion exists is dependent on the resolution of the grid that is used. In the case of the randomized path
planner (RPP) (Barraquand et al.|[19906) the planner is resolution and probabilistic complete because of
the random strategy to escape local minima.

Optimality This method also suffers from local minima. The robot can get trapped by these minima
yielding non-optimal motions.

Computational complexity Because the numerical potential field is based on a grid, obstacles of ar-
bitrary size can be used. This makes the method applicable to a much wider range of problems than
the analytical variant. The complexity of these methods depends on the method used to escape the
local minima. The randomized path planner (RPP) is the most efficient.

4.4.6 Navigation Function

Potential fields can also be specified by functions that are free of local minima. Such a potential field
is called a navigation function and was pioneered by [Koditschek] (1987). A function is said to be a
navigation function in the sense of Rimon and Koditschek if it is smooth, i.e., infinitely differentiable,
and has only one minimum, that occurs at the goal configuration (Koditschek and Rimonl [199o). The
approach gradually transforms the shape of the attractive and repulsive potentials in order to construct

37

CHAPTER 4. REPRESENTATION METHODS

a potential field without the generation of local minima. The existence of an analytical navigation
function is proved, but is only applied to a circular world with circle-shaped obstacles (Koditschek and
Rimon, 1990).

Another approach is to build the potential using harmonic functions (Connolly et al., 1990} |Connolly
and Grupen, 1993). This class of functions is based on solving a partial differential equation with a
Laplacian term:

= 02U
VU =3 e 0, (4-7)
=1 g

with i the number of configurations. These equations include Laplace’s equation, Poisson’s equation,
the conduction heat flow equation, approximations to Navier-Stoke’s equation, and other partial differ-
ential equations of this type. They are important in many fields of science, notably electromagnetism,
fluid dynamics and heat transfer. The analogy of these fields of science and planning led to some
interesting applications.

A navigation function is defined by imposing constraints on U along the boundary of Cgee. A Dirichlet
boundary condition keeps the boundary at a constant value. This condition ensures that a harmonic
navigation function can be developed that guides the state into a goal region from anywhere in Cgee. In
the presence of obstacles a Neumann boundary condition forces the velocity vectors to be tangent to the
obstacle boundary. By solving with both boundary conditions, a harmonic navigation function
can be constructed that avoids obstacles by moving parallel to their boundaries and reaches the goal.

A navigation function has the following characteristics with respect to the requirements:
Completeness A harmonic potential field that satisfies and the Dirichlet and Neumann bound-
ary conditions is complete (Connolly and Grupen, [1993).

Optimality The resulting path of a harmonic potential field can only be influenced by a linear combi-
nation (superposition) of the solution to the Dirichlet and Neumann boundary conditions. This allows
a variation between paths that graze obstacles and paths that are repelled from obstacles. There is
however no other way to specify a cost to be optimal. Therefore this method’s paths are regarded as
non-optimal.

Computational complexity The Laplace equation can be solved in two ways, numerically (Connolly,
et al., 1990} |Connolly and Grupen, 1993; Masoud, |2010} |[Ryu et al.| |2011) or analytically (Daily and
Bevly, 2008} [Feder and Slotine| [1997; (Guldner and Utkin| |1993; [Keymeulen and Decuyper, 1994).
Numeric solutions are solved using finite-difference methods, for example Gauss-Seidel iterations as
used by|Connolly and Grupen|(1993). The advantage of numerically solving is that any shape obstacle
can be defined. Its disadvantage is the time required to numerically solve the Laplace equation, which
is exponential in the dimension: O(N D).

The main advantage of an analytic solution is the fast solution for the potential field, by superposition
of relatively analytical shapes. The shortcoming is that it cannot deal with arbitrary shapes.

4-4.7 Grid-Based Navigation Function

A grid-based navigation function is a method that constructs a navigation function on a grid. So in
fact it is a form of an approximate cell decomposition. It is however treated as separate, because it
results in a navigation function.

A grid-based navigation function is computed by a wavefront expansion. It starts by assigning the value
o to goal configuration g,. Next, its neighbor nodes are assigned with the value 1. This continuous
until all cells in Cge. are reached, resulting in a measure of distance from every cell to the goal. The
exploration is analogous to a wave that rolls through the workspace, starting at the goal. This procedure
is known as NF1 (Latombe} 1990). Using a search algorithm the shortest path to the goal can be found.
A drawback of this method is that it induces paths that generally graze obstacles.

An improved grid-based navigation function, NF2 (Latombe, 1990), is formed by computing the dis-
tance from every ¢ € Cgee to the obstacles. In two dimensions, this procedure is analogous to a

38

4.5. CONCLUSIONS

Voronoi diagram (see Section [4.1.2). This navigation function induces paths that lie as far as possible
from obstacles.

For a detailed description of the NF1 and NF2 the reader is referred to the work of|[Latombe| (1990).

A grid-based navigation function has the following characteristics with respect to the requirements:
Completeness The grid-based navigation function is resolution complete due to the grid representa-
tion of C.

Optimality The definition of an attractive and repulsive potential allows a variation between paths
which graze obstacle surfaces, and paths which are repelled from obstacles. Such variation can be
used to optimize performance. Furthermore, this navigation function do not have local minima. This
allows motions that are optimal.

Computational complexity The complexity of both the NF1 and NF2 procedure is O(N + N log N)
(Latombe, 1990).

4.5 Conclusions

The properties of the representation methods with respect to requirements are summarized in Ta-
ble Blank table cells correspond to properties of algorithms that cannot be determined from the
literature.

The requirement of completeness is very strict. Requiring completeness requires an exact representa-
tion of CO, which proves to be difficult if obstacles are of arbitrary shape. Roadmap methods and the
exact cell decomposition are typically only used for dim(C) = 2, because they sacrifice completeness
and/or optimality for a higher order C. Furthermore, obstacles must be represented as polygons or by
analytical functions. This is at the cost of computational complexity. Weaker notions of complexity,
that relate to an approximate representation of C, have been introduced (resolution and probabilistic
completeness) to reduce computational complexity and to deal with arbitrary shaped obstacles. This
is achieved in two ways:

1. Approximate cell decomposition. This grid representation is a discretization of C. It can deal
with arbitrary shaped obstacles and is applicable to problems with arbitrary numbers of dimen-
sion. The complexity is however exponential in the dimension.

2. Sampling-based methods. Cge. can also be constructed by random sampling of C. Similar to
a grid representation it can deal with arbitrary shaped obstacles and it is applicable to arbitrary
dimensional problems.

The higher the resolution and respectively the denser the sampling, the closer the method is to com-
pleteness. Computational speed is gained by lowering the resolution or sampling density but the ap-
proximation may obscure a path (for example in Figure[4.5a). Sampling-based methods typically need
less nodes to find a solution. The probabilistic completeness of sampling-based methods is dependent
on the sampling distribution and strategy that is used.

A representation method determines the connectivity of Cgee. It can exclude possible optimal motions.
Roadmap methods reduce Cge. to a set of standardized paths. They can be optimal in either the sense
of the shortest path (visibility graph) or in the sense of a maximum distance to obstacles (deformation
retracts).

The probabilistic roadmap is an exception as its optimality depends on the sampling and strategy
that is used. Just as an approximate cell decomposition it can represent Cgee more extensively, without
excluding possible optimal paths. By applying a cost to the nodes of these methods they can be optimal
in any sense.

Roadmap, cell decomposition and sampling-based methods capture the global connectivity of Cgee into
a discrete graph that can be searched using a search method, introduced in Chapter|s] Potential field

39

CHAPTER 4. REPRESENTATION METHODS

methods are based on a different idea, as it suggests that robot moves under the influence of attractions
and repulsions. The local variations in the potential field reflect the ‘structure’ of Cge.. The potential
field was initially intended as an obstacle avoidance module, based on local sensor information only.
This analytical potential field suffers from local minima and can only deal with obstacles that are
described by analytical functions. The numerical variant is able to deal with arbitrary obstacles, but
also suffers from local minima. Navigation functions are applied globally and create potential fields
without local minima. The analytical variant has the main drawback it can only deal with analytical
described obstacle shapes. The grid-based version is free of local minima and can deal with arbitrary
shapes but its complexity is exponential in dimension of C.

40

“A[[EILISWINY PIA[OS JT ; SI[IBISO JO IDQUINU
uo spuadap , (ddy) rouue(d yred paziwopuer 10y s3[dwod >usiyiqeqord uonippe ut , £3s3ens pue Asusp Surduwres uo spuadsp , uonnjosax uontsodwiodsp uo spusdsp , WYILLOS[E Yo1ES SIPNPUL APEI[E 4, :sidLDsIAANG
‘wa[qo1d 9} JO UOISUIWIP A} ST (7 ‘S9TPa JO I2qUINU d} SJOUP /57 ‘SIPOU JO I2qUINU U} SAJOUIP A SUOTEIOU(J

adeys

Aremiqre [eondfeue Aremiqre [eondfeue Aremiqre Aremiqre Aremqre reuo34jod reuo34jod reuo34jod o801 IPEISIO

SUOISUWIP

Areniqre Areniqre Areniqre Areniqre Aremiqre Aremiqie Aremiqie 4 4 4 10 TBqUIN

WFIN (N0 (@A)O (aA)O (@N)0 SNBINO STFIT)O SNl N) fipa1diod

|_|>>Nv© \a a a a 2 [0] o\ [d)O ol N ﬁmz 0] ﬁmQOﬁB.SQEOU

Sa[oBISqO

&mgﬂgo rewndo-uou rewndo-uou rewndo-uou rewndo-uou ofewndo ﬁmEumo rewndo-uou 03 SouESTp yred 1sa1101s Arewndo

UOonNJ0SaI a1ardurod pUOLM[0S31 aeidwioour onsiiqeqoid onsiiqeqoid UONNJOSaI a1arduod a1arduod a1arduod ssauajaduo)
9SEg-PLI uonaung BOLISWIN BONIATEU »A1omD dewpeoy orewurxoxdd JBX SPERY yde:n SOTIST.

POSEAPHD gopeguey PPN TRRAERY oBwls omsmqeqorg bV P uonewropq AN[IqISIA HEHERETED

PRI Tenu10d paseg-durdures uonisoduod’(oD dewrpeoy

SPOTIo]A UoTjeIudsaIday

‘spopiow uonejuasaidar jo uostreduio) 1Y 9[qey,

Chapter 5

Search Algorithms

The representation method of a space, introduced in Chapter [4] needs to be searched for a solution to
the motion planning problem. Search algorithms are divided into three categories, as introduced in

Section

> uninformed
> informed or heuristic

> local search

This chapter will address the functioning of the most well-known and most used search algorithms
within these three categories. These algorithms are then discussed with respect to the relevant require-
ments, defined in Section [3.2} completeness, optimality and computational complexity. The require-
ment of complexity is typically addressed by investigating the time complexity and space complexity.
The former indicates how long it takes to find a solution and the latter about how much memory is
needed to perform the search. For finite graph searches the worst case time complexity of most algo-
rithms discussed in this chapter is equal. In the worst case these methods need to store every node in
the search space: O(N). The only exception in this chapter are local search methods. The time com-
plexity for this method will be addressed separately. The methods with O(V) time complexity can be
adjusted such that they use bounded memory, without sacrificing any performance. These methods
are not treated here, but for an introduction on such algorithms the reader is referred to the work of
Russell and Norvig| (2010).

In Section [5.1 uninformed search algorithms are discussed by means of the breadth-first and depth-
first search and also Dijkstra’s algorithm. Section [5.2|explains the informed or heuristic search using
the greedy best-first search and the A* algorithm. In Section [5.3|local search algorithms are treated.
Finally, in Section the algorithms will be compared against each other and conclusions will be
drawn based on this comparison. There exist many more algorithms than the ones treated here. The
discussed algorithms however give a general impression as they form the basis of all algorithms. The
terminology that is used in this chapter has been introduced in Section [2.3]

5.1 Uninformed Search

Uninformed searches cover search strategies that have no additional information about the goal.
Therefore they are also sometimes referred to as blind search strategies. All they can do is generate
successors and distinguish a goal node from a non-goal node.

43

CHAPTER 5. SEARCH ALGORITHMS

Figure 5.1: An example of a bread-first search on a 4-connected grid (left). At the beginning of the search a tree (right) is rooted
at initial node n;. The solution is found by backtracking the nodes in the tree from the goal node n.

5.1.1 Breadth-First

In a bread-first search the root node is expanded first, then all the successors of the root node are
expanded, next their successors, and so on. At every expansion the node is tested whether it is the
goal node or not, until the goal node is found. In general, all the nodes at a given depth in the search
tree are expanded before any node at the next level is expanded. Consider the example of a BFS in
Figure[5.1 The robot starts at n; and can move either up, down, left or right. The search starts at the
root node n = 1 (in pink) and begins looking for the goal by expanding all of the successors (in cyan)
of the root node, node 2 and 5. These successors are not the goal, thus BFS generates each of these
nodes and expands their successors, as visible in the search tree. This loop continues until the goal
node ¢, = 14 (in purple) is reached. When the goal node is reached the solution can be found by
backtracking the nodes in the search tree.

The function f(n) that determines the order of expansion of nodes for a BFS is

f(n) = g(n),

where g(n) is determined by a FIFO (first in, first out) queue. Thus new nodes (which are always
deeper than their parents) go to the back of the queue, and old nodes, which are shallower than the
new nodes, get expanded first.

A BFS has the following characteristics with respect to the requirements:

Completeness A BFS will eventually find it after generating all shallower nodes (provided that the
branching factor b is finite). Therefore a BFS is complete.

Optimality As soon as the goal node is generated, it is guaranteed that this is the shallowest goal
node because all shallower nodes failed the goal test. This means that the solution will be optimal.
Note however that the shallowest goal node is not necessarily the optimal one. BFS is only optimal if
the step costs between all nodes are equal.

Time complexity In the worst case a BFS has explore every node and edge in search space and
therefore its running time is O(N + E).

5.1.2 Depth-First

A depth-first search (DFS) always expands the deepest node in the frontier of the search tree. Figure|s.2]
shows how this search proceeds for the same example as the BFS. The search expands the same two
nodes, 2 and 5, but then immediately proceeds to the deepest level of the search tree, where the nodes
have no successors. This is the case at node 4. The search then ‘backs up’ to the next deepest node that

44

5.1. UNINFORMED SEARCH

Figure 5.2: An example of a depth-first search on a 4-connected grid (left). At the beginning of the search a tree (right) is rooted
at initial node n;. The solution is found by backtracking the nodes in the tree from the goal node n.

still has unexplored nodes. Exploration continuous until the goal node ¢, = 14 is discovered. Like a
BFS the same solution is found but not all nodes are explored (in grey).

Whereas a BFS uses a FIFO queue, a DFS uses the same function,

but based on a LIFO (last-in-first-out) stack for expansion. A stack is a similar structure to the queue of
the BFS. It contains the list of expanded nodes. The most recent expanded node is put at the beginning
of the LIFO stack. The next node to be expanded is then taken from the beginning of the stack and all
of its successors are added to the stack.

A DFS has the following characteristics with respect to the requirements:

Completeness A DFS could continue down an unbounded branch forever even if the goal is not
located on that branch. Therefore it only complete if the search space is finite. A well-known technique
that stops a DFS from continuing down an infinite branch is called iterative deepening which sets a
limit for the depth that a DFS will search down a branch before switching to another node. This
approach is the preferred uninformed search method when there is a large search space and the depth
of the solution is not known.

Optimality A path is returned as soon as the goal is reached, however, this path is not always the
shortest path but a path generated by the result of going down a long branch. If in this case of the
example in Figure[s.2]the goal was at node 5, the resulting path would have been 2—3—6—-9—8—7—5,
which is far from optimal.

Time complexity Similar to a BFS in the worst case the DFS has to explore every node and edge in
search space and therefore its running time is O(N + E). The complexity however severely depends
on the order in which nodes are explored. Consider the example once more, where the goal is located
at node 5 again. The algorithm tries to explore nodes in clockwise order starting with the node in
northern direction. Thus the first node that is explored is node 2. If it starts by exploring the southern
node first it would have directly found the goal.

5.1.3 Dijkstra’s Algorithm

When all steps costs are equal a BFS is optimal because it always expands the shallowest unexpanded
node. Dijkstra’s algorithm is a method that finds an optimal solution for any step cost function.
Dijkstra’s algorithms expands the nodes n also using the same function as a BFS and a DFS:

45

CHAPTER 5. SEARCH ALGORITHMS

n; 8 ng 99
6 g
N2
12 7
Ty
6<8 (6+12) > 8 (6+1247) < (8422)
— ng is expanded — ngis expanded — n; — ng — Ny — Ny is best path

Figure 5.3: A Dijkstra algorithm always expands the node with the lowest cost first.

(a) A search without an obstacle (b) A search with a concave obstacle

Figure 5.4: Two examples of Dijkstra’s algorithm on a 4-connected grid. The pink cell is the start, the purple is the goal and the
cyan cells represent the explored area.

But instead of expanding the shallowest node, it expands the one with the lowest path cost. This is
done by storing the frontier as a priority queue, ordered by g. A priority queue can by implemented
in such a way that the cost of inserting nodes, sorting them and popping nodes off the queue is
O(log(@®)), where @ is a measure of nodes in the queue (which is N worst case). The algorithm
was initially intended to find the path with the lowest cost (i.e., the shortest path) between the root
node and every other node. It can also be used for finding costs of shortest paths from a root node
to a goal node by stopping the algorithm once the shortest path to the destination node has been
determined. A significant difference with the BFS is that a test is added in case a better path is found
to a node currently in the frontier. The results comes into play when considering the example depicted
in Figure [5.3} where the problem is to get from n; to ny. Node ns is expanded first as this node has
a lower cost than ns. Next ny is added with cost 6 + 12 = 18. Now node nj3 is the least-cost node,
and so ns is added with a cost of 8 + 22 = 30. This is the goal node, but Dijkstra’s algorithm keeps
exploring, by expanding n4. This adds a second path to the goal node with cost 6 + 12 + 7 = 25. The
algorithm now checks whether this path is better and returns the solution n; — ngy — nqy — ny. Now
consider an example on a grid in Figure[5.4] Just as for the examples of a BFS and a DFS, the pink cell
is the starting point, the purple cell is the goal, and the cyan tiles show what areas are explored. The
lightest cyan areas are the farthest from the starting point, and thus form the frontier of exploration.
In this example the step cost are chosen equal to 1. The exploration is now equal to a BFS, as is visible
in Figure [5.4al The frontier expands like a ripple until it reaches the goal node. At this point the
algorithm is terminated. In case of a concave shaped obstacle, as in Figure[5.4D] Dijkstra’s algorithm
needs to explore a large amount of the workspace but succeeds to find to the shortest path.

Dijkstra’s algorithm has the following characteristics with respect to the requirements:

Completeness A Dijkstra search does not care about the number of steps a path has, but only about
their total cost. Therefore, it could get stuck in an infinite loop if there is a path with an infinite se-
quence of zero-cost nodes. But if the search graph is finite, the search will eventually cover all nodes
and thus it is complete. For infinite graphs completeness can be guaranteed by ensuring that the cost
of every step exceeds some small positive constant 7.

46

5.2. INFORMED SEARCH

Optimality Nodes are expanded in order of their optimal path cost. Hence, the first goal node se-
lected for expansion must be the optimal solution.

Time complexity The queue of Dijkstra’s algorithm needs to be sorted based on the priority of nodes.
The time complexity is therefore greater than those of a BFS and DFS. The priority queue is typically
implemented using a heap. A heap is a specific data structure that is very efficient for priority queues
as it orders the nodes by their cost. A Dijkstra’s algorithm using a so-called Fibonacci heap has the
lowest complexity known to date: O(NN log N + E) (Barbehenn, 1998).

5.2 Informed Search

The uniformed search has no information about the goal. Strategies that know whether one non-goal
node is ‘more promising’ than the other are called informed search or heuristic search strategies.

5.2.1 Greedy Best-First

Greedy best-first search tries to expand the node that is closest to the goal. Therefore it evaluates the
nodes based on a heuristic, i.e.,

F(n) = h(n).

Contrary to the uninformed search algorithms a greedy best-first search does not work with g(n), a
cost to reach a node. It is expected that a solution is found faster solely using the heuristic. In the case
of the example in Figure [5.3]a heuristic could be used that estimates the straight line distance from
every node to the goal node n,. Dijkstra’s algorithm first expands ny because it has a lower cost than
ns3. A greedy best-first search would first expand n3 because this node is closer to n, than ny. At each
expansion step it tries to get as close to goal as possible. Therefore it called greedy.

Now consider the same grid example as for Dijkstra’s algorithm in Figure[5.5] Yellow represents those
nodes with a high heuristic value (high cost to get to the goal) and black represents nodes with a
low heuristic value (low cost to get to the goal). Figure shows that a greedy best-first search can
find paths exploring less space compared to Dijkstra’s algorithm. However, this example illustrates
the simplest case, when the map has no obstacles and the shortest path is a straight line. In case
of the concave obstacle in Figure [5.5b] the greedy best-first search explores less space than Dijkstra’s
algorithm, but its path is clearly longer. Since a greedy best-first search only considers the cost to get
to the goal and ignores the cost of the path so far, it keeps going even if the path it is on has become
really long.

A greedy best-first search has the following characteristics with respect to the requirements:
Completeness A greedy best-first search will eventually find the goal as long as the graph to be
searched is finite. Consider the example in Figure[5.5b} the search seems trapped, but it continuous
exploring even if the nodes are further away from the goal node.

Optimality It is clear that as a greedy best-first search tries to get as close to the goal as it can, it is
non-optimal. This becomes clear for the concave obstacle example in Figures.5b]

Time complexity For a greedy best-first search, the priority queue is sorted by a different function
than for Dijkstra’s algorithm. The complexity remains the same however, O(N log N + E), depends
severely on the heuristic. In workspaces with no obstacles for example the greedy best-first search will
explore a minimum of nodes yielding a low computational complexity.

5.2.2 A*

The most popular choice for search algorithms is A* (Hart et al., 1968). Like Dijkstra’s algorithm it
can be used to find a shortest path. Like BFS it can use a heuristic to guide itself. It combines the cost

47

CHAPTER 5. SEARCH ALGORITHMS

[T P T PP T T
(a) A search without an obstacle (b) A search with a concave obstacle

Figure 5.5: Two examples of a greedy best-first on a 4-connected grid. The pink cell is the start, the purple is the goal and the
cyan cells represent the explored area.

(a) A search without an obstacle (b) A search with a concave obstacle

Figure 5.6: Two examples of an A* search on a 4-connected grid. The pink cell is the start, the purple is the goal and the cyan
cells represent the explored area.

function to reach a node, g(n), and the cost function to get from the node to the goal, h(n):

f(n) = g(n) + h(n).

By expanding the node with lowest value of g(n) + h(n) the A* algorithm finds the solution with the
lowest cost. Figure [5.6] shows the same example as for Dijkstra’s algorithm and BFS. The heuristic
cost h(n) is represent by yellow, showing nodes far from the goal. The cost to reach a node g(n) is
represent by cyan and shows nodes far from the starting point. A* balances the two as it moves from
the starting point to the goal. For the case with no obstacles, depicted in Figure[5.6a] the A* performs
equal to a BFS. For the case with concave obstacle in Figure [5.6b] however it finds the same path as
Dijkstra’s algorithm, but with only exploring less than half of the nodes. Because A* also takes into
account the cost to reach each node, it does not get trapped within the concave obstacle as a BFS.

Completeness An A* search will always find a solution if that solution exists. It keeps expanding
nodes until the goal node is reached, making it complete.

Optimality The search expands the node with lowest cost g(n) + h(n). This strategy is not only
complete, but if the heuristic function h(n) satisfies the consistency condition it is also optimal. A
heuristic h(n) is consistent for every node n and every successor n’ of that node if the estimated cost
¢ of reaching the goal from n is no greater than the step cost of getting to n’ plus the estimated cost of
reaching the goal from n':

h(n) < c(n —n') + h(n').

48

5.3. LOCAL SEARCH

This resembles the triangle inequality, which states that each side of a triangle cannot be longer than
the sum of the other two sides. The triangle is formed by n, n’ and the goal node n.

Time complexity The A* search algorithm works in exactly the same way as Dijkstra’s algorithm.
The only difference is the function used to sort the priority queue. The time complexity is equal to that
of Dijkstra’s algorithm, i.e., O(Nlog N + E). Just as for the greedy best-first search the complexity
depends severely on the heuristic. Worst-case the complexity is higher than that of a BFS or a DFS,
but on average the complexity can be several orders of magnitude lower. For information on the ef-
fect of the heuristic on the performance the reader is referred to the work of[Russell and Norvig|(2010).

5.3 Local Search

Uninformed search methods have no information on the goal node. Informed search methods may
have access to a heuristic function h(n) that estimates the cost of a solution from node n. Both
uninformed and informed search algorithms explore the search space systematically. This is achieved
by keeping one or more paths in memory and by recording which alternatives have been explored at
each point along the path.

If the path to the goal does not matter, a different class of algorithms can be considered, one that do
not worry about paths at all. Local search algorithms operate using a single current node (rather than
multiple paths) and generally move only to neighbors of that node. Typically, the paths followed by the
search are not retained.

In order for a local search to reach the goal, the workspace is required to be represented as a potential
field. The potential field reflects the structure of the workspace such that a search is guided towards
the goal. As mentioned in Section[4.4} the potential field can be defined as a continuous and a discrete
space. Local search methods can be implemented for both cases. In the discrete version the neighbor-
ing node with the lowest cost is selected for expansion. In the continuous version the most promising
direction of exploration is determined by the gradient as discussed in Section

A local search has the following characteristics with respect to the requirements:

Completeness Local search algorithms often fail to find a goal when one exists as they can get stuck
at local minima. It is only complete if the goal is the only local minimum in the search space.
Optimality Because a local search does not retain any path it is non-optimal. It does not know
whether one path is more optimal than the other.

Time complexity The time complexity of a local search is O(1) as the number of nodes that is con-
sidered is constant.

Space complexity Because no path is retained only a constant number of nodes is in memory, hence
a constant space complexity: O(1).

5.4 Conclusions

The properties of the search algorithms with respect to the requirements are summarized in Table[5.1]
A breadth-first search (BFS) and depth-first search (DFS) are the two most basic search algorithms.
A BFS is preferred over a DFS as it is optimal for constant step costs. If the step costs are not equal
Dijkstra’s algorithm is advised, as this guarantees optimality. Its time complexity is higher, because it
is implemented with a priority queue for expansion of the lowest cost node.

By informing the search with a heuristic the space and time complexity can be reduced. The most-
used heuristic is the straight line distance to the goal. A greedy best-first search expands nodes with
the lowest heuristic cost only. This is very effective if no obstacles are present, but in case of concave
obstacles it can get trapped easily (see example in Figure [s5.5b), thus it is not optimal. An A* search
expands nodes based on a heuristic and the step costs as well. If the heuristic is consistent it is optimal.

49

CHAPTER 5. SEARCH ALGORITHMS

Table 5.1: A comparison for graph search algorithms on a finite graph.

Completeness ~ Optimality Time complexity? conslgflgxeityl

Uninformed search

Breadth-first yes yes? O(N +E) O(N)

Depth-first yes® no O(N + E) O(N)

Dijkstra’s algorithm yest yes O(log(Q)* (N +E)) O(N)
Informed search

Greedy Best-first yes no O(log(Q)*(N+E)) O(N)

A* yes yes® O(log(Q)* (N +E)) O(N)
Local search

Steepest-descent no® no O(1) O(1)

Denotations: N denotes the number of node; E denotes the number of edges; Q is the average size of the priority queue.
Superscripts: 1 bounded by size of state space; ? optimal o.nll); for equal step costs; ® only for a finite search space

%4 complete if step costs > e for positive €; ° only if heuristic h(n) is consistent; ® complete if search space has no local
minima.

Generally it is concluded that if there is a criterion for selecting a good moving direction, then in-
formed searches are preferred over uninformed searches. The A* search is the most applied search
algorithm in literature as it is complete and optimal. Worst-case its complexity is higher than those of
a BES or DFS, but on average the complexity can be several orders of magnitude lower.

If the space complexity of a method is prohibitive, variants of the discussed algorithms can be imple-
mented that use limited amounts of memory. An introduction to such algorithms can be found in the
work of |[Russell and Norvig| (2010).

Local search can be applied if the search space is represented as a potential field. Due to the local
character it has a constant complexity, but it can get trapped in local minima.

50

Chapter 6

Planning Approaches

The representation methods in Chapter [g]and the search algorithms in Chapter [5| deal with the basic
motion planning problem as introduced in Chapter[2} A motion planning problem generally requires
a robot to deal with a dynamic environment, uncertainty and kinodynamic constraints, as defined in
Section These three requirements can be met by a planning approach. A planning approach
adapts the previously introduced representation methods and search algorithms to deal with the ex-
tensions of the basic problem.

A planning approach can tackle each of the three requirements separately, but it can also tackle two
or even three requirements at the same time. This is visualized in Figure where there is overlap
in the three requirements. Section [6.1] starts with approaches to deal with kinodynamic constraints
on the robot. This is necessary to actually execute a path. Next, approaches to deal with the robust-
ness against a dynamic environment are considered in Section It will become clear that there
are similarities with the methods that deal with constraints, as visualized by the overlapping part in
Figure Robustness against uncertainty will be addressed in Section [6.3] The methods discussed
here have overlap with the two previous sections. A class of methods that tackles all three require-
ments in one approach is discussed in Section [6.4] Next, other methods and issues are treated in
Section|[6.5] Finally, in Section [6.0]the discussed planning approaches are compared and conclusions
are drawn based upon this comparison. The benchmark is a motion planning problem of a mobile
robot that needs to execute a motion that satisfies kinodynamic constraints in an environment with
moving obstacles and uncertainty in priori information on the workspace, sensing and execution. For
each approach its effect on the completeness, optimality and computational complexity of the motion
planner is indicated as either positive (+) or negative (—).

6.1 Dealing with Constraints

Kinodynamic constraints, introduced in Section [2.5.3} can be dealt with in a direct way or a decoupled
way. Direct methods incorporate the constraints directly in the search for a trajectory, while decoupled
methods start with a collision free path that ignores constraints and then reform this path to obtain a
trajectory.

6.1.1 Decoupled Trajectory Planning

Methods that decouple path planning and dealing with constraints typically consist of three steps:

1. Path planning: Start with a given collision-free path ¢ in Cee.

51

CHAPTER 6. PLANNING APPROACHES

Robustness

against a dynamic

environment

Figure 6.1: A motion planning approach must satisfy three requirements: robustness against uncertainty and a dynamic en-
vironment and it must deal with robot constraints. A planning approach can tackle these three decoupled (non-
overlapping parts) but also in a coupled way (overlapping parts).

2. Plan and transform: Transform c into a new path ¢’ to ensure that non-holonomic constraints,
i.e., velocity constraints on C, are satisfied.

3. Path-constrained trajectory planning: Compute a timing function that parameterizes ¢’ with
time, such that it satisfies the kinodynamic constraints.

The path c results from any representation method from Chapter 4] combined with a search algorithm
as discussed in Chapter[s] It is transformed into ¢’ to ensure that the robot can actually follow this
path. For holonomic bases such as the TURTLEs and AMIGO this step is not necessary. In the third
step ¢’ is transformed into a trajectory, i.e., a path that is parameterized by time.

A decoupled approach divides the problem into parts that are computationally less complex to solve
than the whole problem. Solving each step constitutes a solution to the problem. However, as the
decomposition can introduce a problem in a preliminary step that cannot be solved by the following
steps, completeness can be lost. This is especially the case for non-holonomic constrained robots,
e.g., a very sharp turn that can not be made by a car. Furthermore, optimality in the sense of time is
sacrificed. A path ¢ can be made time optimal while satisfying kinodynamic constraints, but it is not
guaranteed that this is the global time optimal path. This is inherent to the decoupled approach.

6.1.2 Direct Trajectory Planning

Direct trajectory planning methods satisfy kinodynamic constraints directly in the search for a solu-
tion. Nodes are added to the search graph by selecting a control input from the admissible set of
controls. It is then integrated over a duration of time and it is checked for collision. The edge to this
newly added node yields a trajectory from the expanded node to the new node. The order in which
nodes are expanded can be determined by search methods as introduced in Chapter[s] The creation of
an edge can be done using various strategies that are analogous to representation methods discussed
in Chapter[4]

Another choice is to relax the restrictions on control and time and use operations over discrete stages
with fixed start and end states instead. These stages, which are feasible time-parameterized curves in
the state space, are called motion primitives. This approach is typically used for car-like robots, where
the steering angle is discretized and simulated with a fixed control input over a fixed time interval.

52

6.2. ROBUSTNESS AGAINST A DYNAMIC ENVIRONMENT

Three important methods for planning directly with constraints are searching on a lattice, RRT-based
methods and PRM-based methods. The lattice search (LaValle, 20006} Pivtoraiko et al.l|20009) is anal-
ogous to performing a search on a grid acquired by an approximate cell decomposition. An equally
spaced grid is obtained by choosing a control input from a discretized set and a fixed time interval 6t
over which the equations of motion are integrated. The double integrator system in Figure isan
example of a lattice search.

For sampling-based methods such as the RRT (LaValle and Kufiner J1,[2001) and the PRM (Hsu et al.,
2002) the control input is selected at random from the set of admissible controls. The control system
is then integrated with this input over a (possibly random) time interval 6¢, from a previously generated
node.

Exact methods such as roadmaps and the exact cell decomposition are not suited for direct trajectory
planning. As their construction is dependent on obstacles, it is difficult to incorporate the kinodynamic
constraints that act on the robot.

6.2 Robustness Against a Dynamic Environment

To what extent a method must be robust against a dynamic environment depends on how dynamic the
environment is. A further subdivision is made between obstacles with either known or unknown tra-
jectories. Obstacles with trajectories that are not known are regarded as an uncertainty and robustness
against it is treated in the next section.

When the future locations of moving robots are known, the two common approaches are to add a time
dimension to the configuration space, or to separate the spatial and temporal planning problems. This
decoupling also arises when dealing with constraints. In fact, there is a major overlap in dealing with
constraints and being robust against a dynamic environment. This is due the fact that a trajectory
needs to satisfy dynamic constraints and must avoid obstacles.

6.2.1 Motion-Timing

Similar to the decoupled trajectory planning, discussed in Section[6.1.2] robustness against a dynamic
environment can be achieved by decoupling the problem in a path planning part and motion timing
part (Kant and Zucker, 1986). This approach follows the first two steps of the decoupled trajectory
planning approach, but the trajectory that is formed in the third step also has to account for moving
obstacles. To deal with obstacles that move over time the state space is extended with a time dimension
to form a state x time space (Fraichard) [1993), introduced in Section as ST. As an example
consider the circular robot A in Figure A straight path c is planned, but it is intersected twice by
an obstacle, as is visible in Figure In Figure ST is shown, in which a state s indicates the
time ¢ and the position along the path, ¢ € [0, 1]. By now timing the motion the robot can for example
cross twice before the obstacle (green path) or wait twice for it to pass (blue path). Remark that it
depends on the dynamic constraints of the robot whether it is actually fast enough to cross before the
obstacle.

If this method constrains the robot’s motion to a single path in Cge the maneuverability of the robot is
substantially decreased. Therefore, this method is typically applied to roadmaps, because they provide
a set of paths in Cge. that can be used deal with moving objects. [Van den Berg and Overmars| (2007)
introduce a method that can be applied to roadmaps and deals with multiple moving objects. In the
first step a collision-free roadmap with respect to static obstacles is built that encodes the kinematic
constraints. Given such a roadmap an approximately time-optimal path on the roadmap is planned
that obeys the dynamic constraints on the robot and avoids collisions with any of the moving obstacles.
The approach is also applicable to approximate cell decompositions.

Because motion-timing does not consider the movement of obstacles directly during the search, it has
a negative influence on the completeness and optimality of the planner.

53

CHAPTER 6. PLANNING APPROACHES

@ -------- G R

(a) A straight planned path in the workspace. (b) Two possible paths in ST .

Figure 6.2: A planned path that is intersected by an obstacle with a known trajectory (a) can be transformed to a motion that
avoids the obstacle by considering the problem in ST (b).

6.2.2 Direct: State x Time Approach

The search for a solution can also be performed directly in S7. Methods that use this approach extend
the procedure of direct trajectory planning by including a time dimension and mapping obstacles into
ST free as forbidden regions. The notion of time allows the planner to plan motions that are optimal
in the sense of time.

The effectiveness of this approach is proved by several methods. Kushleyev and Likhachev| (2009) use
the state x time approach on a grid to deal with multiple dynamic obstacles in a cluttered environ-
ment. After a certain point in time the dynamic obstacles and the time dimension are discarded from
the search space, to reduce the complexity the planner. This sacrifices optimality however.
fand Likhachev| (2011) do not prune the dynamic obstacle trajectories, but they assume that inertial
constraints (acceleration/deceleration) are negligible. The state x time approach is also combined
with sampling-based methods, e.g., in the work ofvan den Berg et al.| (2000) and [Hsu et al.| (2002).

The direct approach allows time-optimal paths in the presence of obstacles. Furthermore, it is com-
plete. The addition of a time dimension obviously increases the computational complexity.

6.3 Robustness Against Uncertainty

Uncertainty can be present in a priori knowledge on the workspace, in sensing and in the execution
of a motion. Similar to dealing with constraints and robustness against a dynamic environment, the
uncertainty can be dealt with in a decoupled way or a direct way. The direct way is typically applied
by representing uncertainty explicitly using the calculus of probability theory. This is a relatively new
approach and is called probabilistic robotics. Directly taking uncertainty into account is an effective
approach when the uncertainty is large, e.g., an unknown workspace or unknown localization. These
cases are however outside the scope of this study. For more information on this topic the reader is
referred to the work of Thrun et al| (2005).

Dealing with uncertainty in a decoupled way can still make a robot robust. Re-planning, discussed
in Section[6.3.1} is an approach that deals with uncertainty in a priori information and sensing. The
uncertainty in sensing can also be captured by bounded certainty regions as explained in Section[6.3.2}
Finally. in Section|[6.3.3|the use of feedback is discussed to deal with the uncertainty in execution.

54

6.3. ROBUSTNESS AGAINST UNCERTAINTY

6.3.1 Re-planning

A path that is planned before execution can become invalid during execution in a dynamic and uncer-
tain environment. Consider the case for example, where an obstacle suddenly moves in front of the
robot or when the robot encounters an obstacle on its path that it did not see before. A solution is
to re-plan when the executed path becomes invalid, based on acquired sensor information during the
execution. Re-planning can be done in a number of ways: complete re-planning, incremental search
and anytime search.

Re-planning When a path that is planned becomes invalid, a new solution can be acquired by initi-
ating a new search from the current configuration. Planners that use an exact representation method
for Cree, such as a Voronoi-based roadmap, also have to recompute Cpee, when it becomes invalid.

Incremental Search In an incremental search the information of previous searches is reused to find
a potential solution faster in case the path becomes invalid. The focus is on applications to approximate
representation methods, especially the approximate cell decomposition combined with an A* search
algorithm. These methods change the A* algorithm in such a way that it can deal with costs of nodes
that change during execution. The algorithms that belong to this class are known as dynamic A* or
D* (Stentz, 1997) and the computationally more efficient, and recent, D* Lite (Koenig and Likhachev,
2005). An incremental search can recalculate a plan up to two order of magnitude faster than complete
re-planning (Koenig and Likhachev 2005).

Anytime Search An anytime search has an anytime character, i.e., it can hand over a plan at any time.
This plan is approximate and suboptimal, but it is improved while time is available. So this method
allows interleaving planning with execution instead of first planning and then executing. |Likhachev
et al.| (2008) combine an incremental and anytime search and prove for a partially and completely
unknown workspace that the solution found is close to optimal. Please note that |Likhachev et al.
(2008) regard the uncertainty as a form of a dynamic environment as opposed to this study.

In general it can be remarked that the more uncertain the environment is, the higher the need is
for a planner that can recompute a plan in real-time. Re-planning algorithms suit this purpose but
guaranteeing completeness proves to be difficult. Situations can occur where a robot will oscillate
forever between two possible paths to the goal. A typical example occurs for robots that use a global
path planner and a local motion planner (Zhang et al., 2012). The local planner might encounter a
non-feasible part of the global plan (e.g., a too sharp turn or an appearing obstacle) and trigger a re-
plan. When executing the new plan the non-feasible part goes out of range of the local planner. A new
re-plan by the global planner can cause the robot to route down the initial plan again. Zhang et al.
(2012) discuss this issue and suggest a solution that is complete. Besides being complete, re-planning
methods in general are optimal, or close to optimal for anytime searches, in case of uncertainty.

Re-planning methods are also used to gain robustness against a dynamic environment. The robust-
ness is dependent on the rate of the change of the environment. A re-plan can be efficient if the
movement of obstacles is limited. But when obstacles are constantly moving, and thus re-plans are
required more often, re-planning methods can fail to reach the goal or yield non-optimal plans as they
do not take into account the movement of obstacles. Consider for example the motion planning prob-
lem that cyclists face when crossing a road, as illustrated in Figure[6.3] As the re-planning algorithm
does not take moving obstacles into account it will yield a motion that is non-optimal in the sense of
distance traveled and energy use, while a planner that does take it into account will be optimal.

It is of interest how re-planning, which computes its solution offline, relates to an online motion
planner, which is able to plan a motion in real-time. The transition area between online and offline
planners is vague. Offline planners that run at a high rate approximate an online planner.

6.3.2 Bounded Uncertainty Regions

Uncertainty can be captured in bounded uncertainty regions. A motion planner gains robustness
by inflating obstacles with a radius that is equal to the uncertainty in the position of obstacles. The

55

CHAPTER 6. PLANNING APPROACHES

.

1

1

H

1

i

i

i

i

i

H
JEOEE F.

i

1

i

1

H

i

i

i

1

i

i

i

i

i

H
mmecd e

t() tl t2 t?)

Figure 6.3: An example of a motion planning problem with two cyclist crossing, where optimality is sacrificed if the movement
is not taken into account with a time dimension. At every time step the planner interleaves sensing with execution.
At to the motion planner decides to pass on the right. At ¢3 the cyclist either has to brake and evade to the left or
still tries to pass on the right. A motion planner that accounts for the movement of the crossing cyclist would have
generated a path that went straight on.

\ R & |
e @ &

Figure 6.4: Uncertainty in obstacle trajectories can be modeled in different ways. An obstacle trajectory can be known before-
hand (left), it can be assumed static (center left), extrapolated (center right) or predicted with a worst-case model
(right).

uncertainty in the execution of a motion can also be captured by adding the maximum tracking error
to the inflation radius. In the case of moving obstacles the trajectories can be extrapolated based on a
prediction model, as depicted in Figure[6.4] The obstacle can be assumed static or its trajectory can
be extrapolated based on previous motion or a worst-case trajectory could be used based on current
position and a maximum velocity. Completeness and optimality are sacrificed when obstacles are
inflated. The more uncertainty, the ‘larger’ the obstacles become and the bigger the chance is that a
path is non-optimal or that the planner is incomplete. An example of this appeared in Figure[2.4]

6.3.3 Feedback

So far it has been assumed that a continuous path solves a motion planning problem. Future config-
urations may not be predictable during execution. Section introduced the bounded uncertainty
region to capture this uncertainty. The uncertainty can also be reduced. A traditional way to account
for this in robotics is to use a feedback control law that attempts to track the computed path as closely
as possible. This is satisfactory, but it is important to recognize that this approach is decoupled. Feed-
back and dynamics are neglected in the construction of the original path; the computed path may
therefore not even be usable. For example, overshoot during the execution of a trajectory might cause
a collision with an obstacle.

Tracking Controller A feedback control law that uses state feedback can implicitly account for the
fact that future states may be unpredictable. A strictly stable tracking controller is able to track a given
trajectory upon perturbations in the environment. Typically a PD controller is used to minimize the
error between the robot position and the prescribed trajectory.

Potential Field Control Besides being a guidance provider the gradient of the potential field can
also be used directly as part of a feedback controller. In Section such feedback methods of
feeding the gradient directly to the servo loops are discussed. It is important to note that an improper
coupling between the gradient field and the robot’s servo loops can result in undesired behavior, such
as the narrow corridor artifact (Koren and Borenstein, |1991). This is the phenomena where a robot

56

6.4. REACTIVE PLANNERS

RAV

(a) A robot A on collision course with (b) The collision cone (CC) and velocity (c) The set of reachable avoidance ve-
an obstacle O. obstacle (VO). locities (RAV) to avoid the collision.

Figure 6.5: The velocity obstacle approach for a circular robot in YW = R? (a). An obstacle can be avoided by first defining the
collision cone, i.e., set of relative collision velocities (b). Next, selecting a reachable velocity (RV) that is outside of
the set of collision velocities (VO) will avoid a collision (c).

shows oscillatory behavior when navigating through a narrow corridor. addressed the
misunderstanding in the dual role of the gradient and proposed a damping force to deal with it.

6.4 Reactive Planners

Methods that only use local knowledge of the obstacle field to plan the trajectory are called reactive
planners. Reactive planners are important in dealing with uncertainty. In the case where a global
obstacle map is not available and obstacle positions are known only within the sensor radius, a reactive
algorithm prevents collisions by stopping or swerving the robot when an obstacle is known to be in the
trajectory. This type of approach is important in many existing practical implementations in order to
deal with obstacles in uncertain and dynamic environments. However, as a reactive planner does not
consider the global planning problem it is rarely used without some global planner. In other words,
if only a reactive planner is used, there is no guarantee that the resulting trajectory will lead to the
goal, let alone it is an optimal one. Therefore a reactive planner is typically used in combination with
a global path planner.

6.4.1 First-Order Methods

Reactive planners typically rely solely on the velocity instead of the position of the robot and obstacles to
prevent collisions. Therefore they are also referred to as first-order approaches. The reactive behavior
is achieved by mapping the dynamic obstacles into the velocity space of the robot. This is known
as the velocity obstacle (VO) (Fiorini and Shiller] 1998} |Shiller et al,, 2001), i.e., the set of velocities
that would result in a collision between the robot and an obstacle moving at a given velocity. The
avoidance maneuver at a specific time is computed by selecting velocities that are not in that set. The
set of all avoiding velocities is reduced to the dynamically feasible velocities by considering the robot’s
kinodynamic constraints. An example of a velocity obstacle for a circular robot in W = R? is given in

Figure[6.5]

6.4.2 Potential Field Methods

The analytical potential field method, introduced in Section [4.4.4} is a reactive planner. It can be
extended by taking into account the velocity information on obstacles as well (Ge and Cui, 2002}
[Munasinghe et al., 2005; [Wilschut, 2011). Reactive planners have also been inspired by the biological
immune system (Luh and Liul 2007). Also fuzzy-logic is used as a basis (Mucientes et al. 2001}
Pratihar et al., 19909} Zavlangas et al.} 2000). Both latter methods provide a structure that allows a

direct collision avoiding response to the latest sensor information.

57

CHAPTER 6. PLANNING APPROACHES

6.4.3 Receding Horizon Control

Receding horizon control (RHC) or model predictive control (MPC) solves a numerical optimization
problem over a reduced time horizon. In this approach, an open-loop control policy is designed to
control the vehicle until the end of the time horizon. Optimization over a finite horizon requires
reduced computation time, however, it will not yield a globally optimal solution without using an
appropriate cost-to-go function to capture the discarded part of the trajectory.

The dynamic window approach (DWA) (Fox et al., 1997) is an example of a RHC method for mobile
robots. It is designed for a synchro-drive robot, i.e., a robot with three or four wheels where one
motor drives the wheels and one motor determines the steering angle. The approach searches for
a translational and rotational velocity directly in the space of velocities. This space is spanned by
the dynamic window: the set of reachable and admissible velocities, which are determined by a certain
time interval and dynamic constraints. A forward simulation over the time interval is performed for all
velocities in this set to check whether the trajectory is safe, i.e., if the robot can stop without collision.
The final trajectory is chosen by maximizing an objective function that for example takes into account
the distance to the goal, the forward velocity and the distance to the closest obstacle. Marder-Eppstein
et al.| (2010) show that a mobile robot using a DWA can drive a marathon distance (42.195 km) in an
office environment without collision.

6.5 Other Methods and Issues

6.5.1 Use of Heuristics

In Chapter[s]it is concluded that the use of a distance heuristic to the goal can reduce the complexity.
The heuristic can be informed with more than just the distance to the goal. Many planners (Likhachev
et al., 2008; |Phillips and Likhachev, [2011) use a search in a lower dimension as a heuristic to inform
a search in the full dimension of the problem. For example, a planner that does a search in 5D
(x,y,%,9,t) can be informed with a heuristic that does a search in only 2D (x,y). This heuristic
search ignores kinodynamic constraints and moving obstacles, but can reduce the search space of the
5D search substantially. Remark that the reduce in complexity depends on whether the heuristic path
is close the solution in the full state of the robot.

6.5.2 Hierarchical Planning

A hierarchical planning approach solves the motion planning problem in consecutive layers. Sec-
tion [2.4]introduced the notion of a global and a local planner. This is a hierarchical approach, as the
problem is decoupled in planning on a global map and a local map. Such a decoupling is typically
used for large-scale spaces, i.e., spaces that extend beyond the sensory horizon of a robot.

A robot typically uses a metric map, i.e., based on absolute geometric positions, within its sensory
horizon. The representation methods in Chapter [4] form such metric maps. If the robot has to plan a
path outside its sensory horizon other types maps are also applied.

A topological map is a more abstract representation that describes relationships among features of the
environment, without any absolute reference system. Such environmental features can be landmarks
or identifiable locations such as a room of a house or an intersection of roads. A topological map has
the advantage of being more compact and more stable with respect to sensor noise and to uncertainty
in a priori information on the workspace. The topological map does not provide a framework to control
the robot, since it does not take into account the dynamics of the robot and can not capture moving
obstacles. Therefore it is generally combined with a metric map in a hybrid approach, e.g., in the work
of|Zavlangas and Tzafestas| (2002) and [Kuipers et al.| (2004).

58

6.6. CONCLUSIONS

As robots make their way into homes, offices and other public places, there is an increasing interest to
capture the human point-of-view of robot environments in a so called semantic map. The environment
provides valuable semantic information originating from humans as designers and users. The ability
to understand the semantics of space and associate semantic terms like ‘kitchen’ or ‘corridor’ with
spatial locations, gives a much more intuitive idea of the position of the robot than a pure metric
or topological location. This semantic information can be encoded by hand, but the robot can also
reason about the semantics. This approach allows human-robot interaction and it may enable a robot
to perform in a more intelligent and autonomous manner (Galindo et al., 2008; |Pronobis) [2011).

Although the complexity can be reduced significantly, one must be aware of possible incompleteness.
A global planner that does not take into account the full state of the robot might yield a solution is not
feasible. For example, if a robot plans to move from one room to another while it does not fit through
the connecting door.

6.5.3 Optimization

Suppose a motion planner that returns a feasible trajectory. In a complementary step this trajectory
can be optimized. By perturbing the trajectory, while satisfying all constraints, the optimality of that
trajectory can be improved.

For example, trajectories can be shortened by trying to shortcut a path. Especially trajectories that are
computed by sampling-based methods, e.g., the RRT discussed in Section can be shortened.
The randomized character can result in undesirably long trajectories. Besides shortcutting a trajectory
it can also be optimized using mathematical programming methods (LaValle, |20006). The trajectory
planning problem is then treated as a numerical optimization problem, using nonlinear programming
for example. Such methods define a trajectory as a function of parameters. The space of parameters
is incrementally searched for a solution that has parameters with a lower cost. This is done by a
gradient descent. Recent examples of optimization applied to path and motion planning are given by
respectively [Ryu et al.| (2011) and Xu et al.| (2012).

A trajectory can be improved substantially in terms of optimality. However, each perturbation of a
trajectory requires a collision check and integration. Furthermore, numerical optimization methods
can suffer from local minima. Therefore, the potential benefit of a more optimal trajectory has to be
weighted against the extra required computation time.

6.6 Conclusions

The properties of the planning approaches with respect to requirements are summarized in Table
For each approach its effect on the completeness, optimality and computational complexity of the mo-
tion planner is indicated as either positive (+) or negative (—). A positive effect of an approach on the
computational complexity means that the complexity is of the same or a lower order than the basic
motion planning problem. Furthermore, it is shown with what extensions of the basic motion plan-
ning problem a specific planning approach deals. The benchmark is a motion planning problem of a
mobile robot that needs to execute a motion that satisfies kinodynamic constraints in an environment
with moving obstacles and uncertainty in priori information on the workspace, sensing and execution.

Planning approaches can be roughly divided into decoupled and direct ones. A decoupled approach
divides the problem into parts that are solved separately, while the direct approach tries the solve
the problem as a whole. Their strengths and weaknesses are orthogonal. The decoupled approach
is generally chosen as each decoupled part is computationally less complex to solve than the whole
problem. The inherent consequence is the negative influence on the completeness and optimality.
A direct approach takes into account the full state of the robot and the environment when searching
for a solution. This increases the complexity, but the solution will generally be closer to optimality
and completeness. An example is given in Figure [6.3] where a decoupled approach leads to an non-
optimal path. A direct approach in this case would have resulted in an optimal path, but it requires a

59

CHAPTER 6. PLANNING APPROACHES

time dimension and thus results in an increase in complexity.

The direct approach to deal with uncertainty is not treated in this study. This approach is effective
when uncertainty is large, e.g., an unknown workspace or unknown localization. These cases are
however outside the scope of this study. For more information on this topic the reader is referred to
the work of Thrun et al.| (2005).

Ideally one wants a planning approach that deals with a dynamic environment, uncertainty and its
own constraints, while being complete and optimal. Computational complexity however limits the
implementation of such an approach. Reactive behavior is necessary to be robust against uncertainty
and a dynamic environment. This typically requires a real-time implementation. Due to (still) limited
computational resources the complexity of the motion planning problem must be reduced to solve it
in real-time. This can be achieved in a number of ways.

>> Using a hierarchical representation. The complexity of the overall problem can be lowered by
not considering the full dimension of C in the entire workspace. A typical approach is to use
a global planner that only plans a path. Locally, within the sensor range of the robot, a motion
planner is used that does consider the full dimension of C. A topological map, introduced in
Section[6.5.2} is interesting for environments that extend far beyond the sensor range of a robot.

> By approximating the representation. By choosing an approximate representation method for C,
as discussed in Chapter [4] either the search resolution (approximate cell decomposition) or the
search coverage (sampling-based methods) can be reduced.

>> Using heuristics in searches. Information on the problem can be incorporated in the search
to substantially reduce the complexity. In Section the A* search is introduced that uses
information on the distance to the goal. Section|[6.5.1explains how a search in a lower dimension
can act as a heuristic to improve a search in a higher dimension.

> Decoupling the problem. As explained in this chapter, dealing with the extensions of the motion
planning problem can be done in a decoupled way. The problem is subdivided into parts that
each constitute a solution to the problem but are computationally less complex to solve than the
whole problem.

Lowering the complexity is generally at the cost of sacrificing completeness and/or optimality. The
question is: how important are the requirements of completeness and optimality? Both are very strict
requirements. In Chapter[4]it is concluded that in order to deal with arbitrary shapes and high-order a
C completeness must be sacrificed, using approximate representation methods. For optimality a sim-
ilar conclusion can be drawn. It turns out that complexity can be significantly lowered by sacrificing
optimality. In practice a solution can still be close to optimal.

The requirements depend on the robot, its environment and the task it is supposed to fulfill. It is
impossible to say that any method or approach is better than the other, only that it is more appropriate.
The selection of an appropriate representation method, search algorithm and a planning approach for
the TURTLEs and AMIGO will be discussed in the next chapter.

6o

“firewndo pue ssauala[durod uo 1999 aanisod e sey 11 Ajurerradun Jsurede ssausnqoi 105 pasn Auo st Suruued-a1 J1 ,, :siduosiadng
‘wajqoxd Suruueld uonow JISeq Y} JO UOISUAIXD dYIads © Yiim S[eap
yoeordde Suruuerd oymads e 1ey) smoys ¢ quatuaambaz e uo yoeoidde Suruueld >ymads e Jo 19979 aanedau e sajedtpur — quawainbai e uo yoeordde Suruuerd >yroads e Jo 1099 aantsod € S21EIIPUL + SUOIEIOUIJ

SJUTBIISUOD
, , , / / / ynm Surpesq
fureyrsoun
/ / / / 1surede ssaujsnqoy
JUSWIUOIIAUD JTWEUAP
/ / / / / e Jsurede ssouisnqoy
- - - - + + + fpojduios
- o [euonenduion
- - - = + - + - - Anrewndo
— — — o + — + — — ssauajaduo)
uoidaz Suruuerd Suruuerd
1ouuerd : Surumn ‘ i Suruuerd
YoeqpPaay Ayureyradun Buruuerd-ay QW X IS A10103(E1} A10103(e1} syuowaInbay
2ATIOBIY -UOTIOIN yred
papunog P21 pardnoossg

sayoeoidde Suruue[g

“uonNIAXa pue Sursuas ‘Odedsyrom
a1} U0 uonewrIojul trotd Ut AJUTEIIAdUN PUR SIIEISO SUTAOW U)IM JUSWIUOIIAUS UE UT 10q01 3[Iqoti & Jo wrajqoid Suruueld uonour e st yrewrydpuaq oy, ‘sfeap yoeordde Suruuerd oymads e wisjqord Suruuerd
UOTJOW JISEq AT} JO SUOISUIXD Jeym s pue ‘Touue[d uonouw ot jo Aixapdwod feuonenduiod pue Arewndo ‘ssauajarduod st uo yoeoidde ue jo 10aya ayy Sumoys saydeordde Suruuerd jo uostredwiod v :1°9 J[qey,

Chapter 7

Motion Planning for RoboCup

In Chapter [2| the motion planning has been introduced. This chapter specifies the problem for both
the TURTLEs and AMIGO.

In Section [7.1] the robot characteristics and the environment of the robot are discussed. The current
implementation is introduced in Section [7.2]and in Section [7.3]its limitations are discussed. Finally,
the requirements for a new motion planner are stated in Section The section will be concluded
with the proposition for a new motion planning implementation that satisfies the requirements.

7.1 'The RoboCup Environment

The TURTLEs compete in the RoboCup Soccer Middle Size League. Their environment is a soccer
pitch. AMIGO competes in the RoboCup @Home League. The @Home setting is a typical house-
hold/care environment. For both robots their characteristics will be described first, followed by the
characteristics of the environment. The characteristics of the robots are summarized in Table[;.1/and
of their environment in Table

7.1.1 TURTLE Versus AMIGO

The TURTLE robot, depicted in Figure is the first robot of team Tech United Eindhoven that
started competing in the RoboCup. It is actuated by three omni-wheels. An omni-wheel is a wheel
that is actuated in one direction and can roll freely in the perpendicular direction (achieved by small
wheels on its circumference). This makes the platform holonomic. It uses a so-called ‘ballhandling’
mechanism consisting of two driven wheels to control the ball. A kicker driven by a solenoid can shoot
the ball.

Each TURTLE robot relies on an omnidirectional vision system for navigation. This system consists of
a full color camera that faces a spherical mirror positioned above it. The mirror reflects a 360 degrees
view around the TURTLE into the camera. The view of its surroundings is usable up to six meters. The
team of five TURTLESs uses a world model (de Best et al, [2010). By communicating and combining
the sensor information of each TURTLE, a global view arises on all robots in the field, in particular the
knowledge on both position and velocity of both team players and opponent players and the ball. This
world model will enable more advanced strategy decisions and better cooperation between robots as it
will provide a complete view of all relevant objects in the field in terms of position and velocity.

The design of AMIGO, illustrated in Figure is based on the TURTLE (Alaerds, 2010} |Clephas|
2011). Similar to the TURTLE it is equipped with omni-wheels that make it a holonomic platform ca-
pable of navigating through wheelchair-accessible areas. A difference is that it uses four omni-wheels.
The main reason is to prevent the robot from tipping over in the case of a sudden stop (Clephas) 2011).

63

CHAPTER 7. MOTION PLANNING FOR ROBOCUP

Kinect
Lifting mechanism
a8
Mirror (under hat ¥
Camera ()
Arm
Ballhandling
S
Omni-wheel Omni-wheel Laser scanner

(a) TURTLE. (b) AMIGO.

Figure 7.1: Both robots without their covers.

The torso is equipped with two anthropomorphic arms to perform manipulation tasks in a household
environment. To extend the reach of the arms the torso is connected to the base with a lifting mecha-
nism.

AMIGO uses a Hokuyo UTM-30LX Laser Scanner for navigation purposes. It is positioned at the
base in front of AMIGO. The so-called laser range finder is used to create a 2-dimensional view of the
environment. On top of AMIGO and at the bottom (not displayed in Figure a Microsoft Kinect
camera is mounted that provides 3-dimensional information.

The fused observations from both sensors are the input of the world model. AMIGO uses this world
model to store attribute information, such as position, velocity and color, about the objects it encoun-
ters, and with which it keeps track of those attributes over time (van den Dries et al,, |2012).

The dimensions of both robots and their characteristics are combined in Table

Table 7.1: The specifications of the TURTLE robot versus AMIGO.

Specifications TURTLE AMIGO
Height 0.8m 1.0-1.4m
Weight 40 kg 70 kg
Base
Radius 25 cm 45 cm
Actuation 3 omni-wheels 4 omni-wheels
Typical speed of movement 3 m/s 1m/s
Typical acceleration 3 m/s? 1 m/s?
Sensors
Base - Hokuyo laser scanner + Microsoft Kinect
Head Omnivision module Microsoft Kinect

7.2. CURRENT MOTION PLANNERS

Table 7.2: The specifications of the Middle Size League environment versus the @Home League environment.

Specifications Middle Size League = @Home League
Workspace

Type soccer pitch house/care environment

Size 12m X 18 m arbitrary

A priori knowledge known partially unknown
Obstacles

Type dynamic static and dynamic

Shape polygonal arbitrary

Typical speed of movement 3 m/s 1m/s

Adversary yes no

7.1.2 Middle Size League Versus @ Home League

The @Home League and Middle Size League are quite different. Generally speaking, AMIGO acts in
a household or care environment that typically consists of (partially unknown) multiple rooms that are
cluttered with different kinds of obstacles. Moving obstacles are assumed to move at human walking
speed. This makes the environment diverse and complex. The Middle Size League environment is
a soccer pitch, which is much more conditioned: the obstacles have a maximum allowable size and
the pitch has a fixed dimension (defined by RoboCup competition regulations). Compared to a home
environment the obstacles move at higher speed and are adversary.

The differences between both environments are evident. The soccer pitch is dynamic but conditioned.
The household environment is less dynamic, as it is typically populated by fewer moving obstacles,
but it contains a variety of obstacles. This imposes different requirements on the motion planners.
In a home environment, for example, the representation needs to deal with arbitrary shaped obstacles
in an arbitrarily large and partially unknown workspace. The representation of a soccer pitch on the
other hand is more conditioned, but must allow the representation of faster moving obstacles.

The specifications of both environments are summarized in Table[7.2]

7.2 Current Motion Planners

The currently implemented motion planners for the TURTLEs and AMIGO are discussed in this
section.

7.2.1 TURTLEs

The TURTLESs in the Middle Size League use a decoupled approach (de Best et al.| |2010). It involves
open- and closed-loop controllers operating at a variety of rates, linked together from top to bottom.
The software is implemented with the programming language C in MATLAB (MathWorks) [2012).

The outer, open loop consists of a discrete search that produces a set of waypoints leading to the goal
while avoiding obstacles. An example is represented in Figure[;.2] The workspace is represented using
a Voronoi diagram and is searched for the shortest path with Dijkstra’s algorithm. The second open loop
level post-processes this path. A shortcut algorithm is used to cut-off sharp turns and shorten the
path. This is transformed further into a shortest, collision-free path, represented by the green path in
the example in Figure Next, the path is smoothed using Bézier curves such that the waypoints
are feasible given the robot’s velocity and acceleration limits, and such that the path is time-optimal.
This step is shown in Figure Only the beginning part of the path is post-processed. The third
open loop level generates a timing function ¢(t) along the created trajectory, and creates a setpoint

65

CHAPTER 7. MOTION PLANNING FOR ROBOCUP

LDHOOBahd | :|;|||IIIII||;|
l|||IIIlII|||

(a) A Voronoi diagram for a workspace with four obstacles. The (b) A time optimal trajectory c(t)

initial shortest path (red), obtained by Dijkstra’s algorithm, is through the waypoints, while con-
shortcutted (blue) and optimized in distance (green) resulting sidering the actuator limitations, is
in a set of waypoints (green dots). generated using Bézier curves.

Figure 7.2: The current motion planner for the TURTLES (de Best et al}[2010). A Voronoi diagram is searched for a global path.

A part of this path is post-processed to form a time optimal trajectory.

that moves through space, and finally, the inner loop is a closed-loop tracking controller that attempts
to minimize the error between the robot and the setpoint.

7.2.2 AMIGO

To solve a motion planning problem AMIGO also uses a decoupled planning approach 2011).
It uses a global path planner and a local motion planner. Both are provided by the Robot Operating
System (ROS) framework (Robot Operating System (ROS), 2012), an open-source system for robot
software development. The implementation is written in the programming language C++.

The global planner serves to plan a collision free path from a starting point to a goal. It computes its
plan offline, i.e., before execution. It uses an approximate cell decomposition, with a grid cell resolution
of 5 cm. The grid is transformed into a costmap by assigning costs to the grid cells based on the
obstacles as shown in Figure [7.33] The planner uses a bounded certainty region: the obstacles are
inflated by a fixed radius of 30 cm to be robust against the uncertainty in sensor information and
execution. A Dijkstra’s algorithm is used to search an optimal cost path, that does not take into account
the kinematics and dynamics of the robot.

The local planner computes its plan online. To be robust against a dynamic environment and to deal
with its kinodynamic constraints it uses the Dynamic Window Approach (DWA), which is a reactive
planner. It is seeded with the plan produced by the global planner and returns a velocity vector that
attempts to follow the global plan as closely as possible. It takes the kinodynamic constraints into
account as well as the obstacle information stored in the costmap. A tracking controller is used to min-
imize the error between AMIGO’s velocity and the computed velocity. The global planner is queried
for a new plan when the local planner is unable to compute a command velocity. The global planner
then does a complete re-plan. During the execution the global planner update its plan typically with a
frequency of 1 Hz.

While writing this study the original planner described here has been updated. Dijkstra’s algorithm
has been replaced by an A* search. This method returns a solution faster. The DWA approach con-
strains AMIGO’s movement, see Section B It has been substituted for a line collision check. On
a part of the global path (typically one meter ahead) a check is done whether it is still clear. If not
AMIGO stops immediately and queries the global planner for a new plan.

66

7.3. CURRENT PROBLEMS

cell cost
[o-255]

X,‘QS 255] in collision

cost =254

cost =253

discretized cost not in
decay function collision

lowest non-C.
cost=1 free

Cree
cost=o0

distance from
obstacle cell

buffer zone for
extra clearance

inflation radius X

A radius A

(a) The costmap is defined by assigning the highest cost to the (b) The DWA checks, by forward simu-
workspace obstacle. By adding the radius of robot A the CO lation (dotted lines), if a safe stop is
is obtained. The cost function decays to Cyee. possible for all admissible velocities.

obstacle

cell D

Figure 7.3: The current motion planner implementation for AMIGO. A global search is performed on a grid with costs defined
by a cost function based on obstacles. A DWA planner (see Section [6.4.3) is used locally to generate safe velocity
commands.

7.3 Current Problems

Both currently implemented motion planners have their problems and limitations, which are dis-
cussed in this section.

7.3.1 TURTLEs

A number of limitations of the current planner are identified based on discussion with members of
Tech United’s Middle Size League team and practical experience with the TURTLES.

>> The roadmap (Voronoi diagram) as a representation method is not robust against moving ob-
stacles. Moving obstacles can be accounted for by inflating them such that the area is covered
where they could go in the time that is needed to drive from the initial to the goal position.
As discussed in Section [6.3.2] this yields incompleteness. Furthermore, it can gain robustness
against moving obstacles by completely re-planning at a high rate (typically 100 Hz). This will
yield non-optimal motions.

>> The local planner also does not take into account dynamic obstacles.

> The initial velocity of the robot is only taken into account in the local planner. This can lead to
non-optimal motions as a global motion does not take into account the constraints on the robot.

>> Different robot roles impose different constraints on the robot. For example, it is desirable to
constrain a robot that needs to dribble the ball different than a robot without the ball. The
current plan does not allow to take into account such constraints.

7.3.2 AMIGO

A number of limitations of the current planner is identified based on discussion with members of
Tech United’s @Home League team and tests in a hospital room environment.

67

CHAPTER 7. MOTION PLANNING FOR ROBOCUP

>> The costmap is constructed solely using the laser scan data. The Kinect must also be included
to obtain a 3D costmap (using voxels) to safely navigate around obstacles that are not at the level
of the laser scanner, such as a tabletop or a toy on the floor.

>> In practice constantly re-planning can get AMIGO trapped in switching between two paths.
For more detail the reader is referred to Section where this general problem is reported.
Furthermore, it can occur that the implemented Dijkstra’s algorithm is unable to compute a new
plan before another re-plan is requested.

> The only robustness the planner has against dynamic obstacles is acquired by re-planning. Nei-
ther the global planner, nor the local planner takes into account moving obstacles using a time
dimension. This can result in an incomplete planner and non-optimal motions in the presence
of moving obstacles.

>> The DWA planner is designed for non-holonomic (synchro-drive) robots. This unnecessarily
constrains the movement of AMIGO as it hardly utilizes its holonomic capacities. In practice
this results in car-like movement especially when attaining the goal pose. It can take up to
several seconds before AMIGO reaches its goal pose.

7.4 Proposed New Motion Planning Approaches

The decision for a new motion planner is based upon the requirements as formulated in Chapter [3]
The requirements are dependent on the characteristics of both robots and their environment, intro-
duced in Section Also the current problems discussed in the previous section are taken into
consideration. Based upon the interpreted requirements for both cases a number of possible imple-
mentations is presented with their advantages, disadvantages and points for further research.

7.4.1 Requirements for TURTLEs

The ultimate requirement in the soccer domain is obviously to score one more goal than the opponent.
How to do this goes beyond collision-free navigation and involves a great deal of skills (e.g., dribbling,
shooting) and tactics (e.g., opponent behavior, determination of a goal configuration). This study
will not elaborate on such skills and tactics, but they do impose additional challenges that can be
incorporated into a set of requirements for the TURTLEs.

A soccer pitch is a dynamic and adversary environment. In such an environment it is important to be
ahead of opponents in order to score goals, hence time-optimal motions are desirable. This requires
that obstacle trajectory must be known, but these are difficult to predict. It is therefore desirable to
include the uncertainty in prediction in the search for a time-optimal solution. Furthermore, reactive
behavior is necessary to be robust against opponents. This requires a real-time implementation of
the motion planner. As mentioned in the conclusion on representation methods in Chapter [4] the
requirement of completeness is very strict. It increases the computational complexity which is not
desirable for a real-time implementation. Therefore, a resolution or probabilistic complete motion
planner is accepted.

The TURTLE robot also imposes requirements on the motion planner implementation. It must satisfy
its kinematic and dynamic constraints. It is important to take the velocity of the robot into account.
Additionally, the dynamic interaction with the ball when dribbling could be exploited. For example, a
motion planner can include the relation between ball and the robot to obtain plans to have less chance
of losing the ball.

68

7.4. PROPOSED NEW MOTION PLANNING APPROACHES

Approach 1 Approach 2
Motion planner Local reactive planner
Representation method Analytical potential field
D> State X time space > Bounded uncertainty region
> Bounded uncertainty region B> Velocity information on
Search method obstacles included [1]
> RRT [3,4] > Escape force [2]

> Re-planning

References: [1].Ge.and.Cui. (2002), [2] Madakkepat.etal. (2000), [3] Hsuetal. (2002), [4] Zickler. (2010).

Figure 7.4: The two proposed approaches for the TURTLE robot.

7.4.2 Suggested Approaches for TURTLEs

A time dimension must be included in the search for a solution in order to guarantee time-optimality.
As discussed in Chapter [6] and as visible in Table a state x time approach is an option. Guar-
anteeing a time-optimal solution is however difficult in the presence of moving obstacles. A second
approach is using a reactive planner. It is robust against moving obstacles and uncertainty due to its
reactivity, but it is not optimal.

Approach 1 A state x time approach can be implemented using an approximate cell decomposition
or a sample-based method such as a PRM or a RRT. All three have a worst-case complexity that is
exponential in the dimension of C, but its complexity depends on the level of discretization or the
resolution of sampling. A single-query planner like a RRT is preferred for a real-time implementa-
tion as it generally covers the reachable space the fastest, using the least nodes to obtain a solution.
Furthermore, rather than attempting to discretize the continuous space and then completely explore
a potentially large set of states, a RRT picks random samples directly from the underlying continuous
space. This is well suited to model the continuous robot kinematics and dynamics.

Previous research on the application of a RRT on the TURTLE platform has been performed, but this
approach does not consider moving obstacles and the dynamics of the TURTLE (Geerts and Naus),
2010). It must therefore be extended with a time dimension. The effectiveness of a RRT in the
state x time space depends on the uncertainty in the obstacle trajectories. The closer to reality the
prediction is, the more optimal the planned motion can be. On the other hand, a conservative, worst-
case prediction model will exclude possible optimal motions and can even lead to incompleteness
as mentioned in Section An opponent velocity estimation algorithm is already available and
implemented in the software. However, evaluation of this algorithm requires further research:

> The accuracy of the current estimation and prediction of obstacle trajectories needs to be deter-
mined.

>> Next, it must be assessed if this accuracy is sufficient to make the state x time approach robust
against moving obstacles.

> Also the limitations of the current estimation and prediction need to be defined.

> Finally, ways to improve the accuracy need to be determined.

Next, on implementation of the RRT method, the sampling strategy must be investigated. The RRT
can include kinematic and dynamic constraints by sampling directly from the underlying continuous
control space. This also allows to take the dynamic relation with the ball during dribbling into account.
Furthermore, the sampling strategy can also be integrated with skills and tactics. E.g., bias the sam-
pling towards regions with a higher probability of scoring a goal. [Zickler| (2010) adapted the RRT for
these purposes and applied it in the robot soccer domain. It has been successfully tested on a team

69

CHAPTER 7. MOTION PLANNING FOR ROBOCUP

that competes in the RoboCup Soccer Small Size League. It is interesting to implement this planning
approach in the Middle Size League. To summarize, the following points are defined for future work:

> Include robot kinematics and dynamics in the sampling strategy.

> Investigate how skills and tactics can be integrated, based on the work of |Zickler| (2010).

Approach 2 A reactive planner is also effective in dealing with moving objects. Previous research
has resulted in an analytical potential field method for the TURTLEs that has been implemented and
evaluated in a MATLAB simulation environment (Wilschut, |2011). The method is reactive as it can be
implemented in real-time and it also takes into account the initial velocity of the robot and the velocity
of opponents. The major drawback however of the method are local minima. [Wilschut (2011) solves
this using an escape force as explained in Section [4.4.4] In simulation it is shown that this escape
force can evade local minima created by multiple static obstacles. The question is whether this escape
force is also sufficient when those obstacles are dynamic and adversary. Another practical issue is the
dependence of the performance on the weighing factors of the attractive and repulsive forces. For
example, a strong attractive force can be required to pull the robot through narrow passages, but in
another situation a too strong attractive force might result in a collision. The use of variable weighing
factors can improve the performance but this needs to be investigated in practice. Future work on the
potential field method is defined as following:

> Implement the potential field method on the TURTLEs .

> Investigate the efficiency of the escape force to evade local minima and if necessary look into
better alternatives.

>> Investigate the use variable weighing factors to improve the performance.

7.4.3 Requirements for AMIGO

For robots in a care environment safety must be guaranteed. But how does safety relate to the require-
ments? Safety as a requirement can be achieved by being robust against a dynamic environment and
uncertainty, and by satisfying the robot constraints, as mentioned in Section[3.1.8] Just as in the soccer
domain this demands reactive behavior. Based on the latest sensor information the robot must ensure
collision-free navigation. In terms of optimality a motion is required that maintains a ‘safe’ distance to
obstacles. Besides safety also time-optimality is desired. But this can be rather conflicting as moving
faster lowers the reactivity.

The computational complexity of the planner must allow a real-time implementation to be reactive.
Furthermore, resolution or probabilistic completeness is required. A household or care environment
is very diverse in its obstacles. Requiring completeness, requires an exact representation of these
obstacles, which is computationally cumbersome. This would make a real-time implementation im-
possible, hence a resolution or probabilistic complete planner is necessary.

7.4.4 Suggested Approaches for AMIGO

AMIGO’s environment in the RoboCup competition is a house that typically consists of three rooms.
A global planner is used to navigate on a metric map of this environment. Based on this study it
is suggested to further abstract this map into a topological layer. Such a representation can be used
independently of the choice for an approach. The structure of rooms lends itself perfectly for a topolog-
ical representation, where nodes represent rooms and edges represent the connection between rooms
(e.g., through a door). The advantages of such a compact representation over a metric representation
are: (1) it allows faster planning, especially when the environment is upscaled; (2) it is more stable
with respect to sensor noise and to uncertainty in a priori information; and (3) it is convenient for

70

7.4. PROPOSED NEW MOTION PLANNING APPROACHES

symbolic planners and natural language (e.g., “go to living room”). The topological layer can however
cause non-optimality or even incompleteness, as mentioned in Section[6.5.2] The topological map can
be obtained from user input or by construction (e.g.,[Thrun| (1998)). Research is currently performed
within the team of Tech United that competes in the RoboCup @Home League on probabilistic rela-
tions between objects, and objects and rooms (Jansen et al., [2012) and on an efficient representation
of the world based on a specific task (Geelen et al| [2012). The former can be used to inform the
topological map with semantics, while the latter can be used to represent only that part of the world
that is relevant for a motion planning task. To obtain a topological map the following points must be
elaborated further:

> Given a map of the workspace, distinguish rooms and recognize them (either by user input or
an algorithm).

> Minimize the loss in optimality compared to the current global planner and prevent incomplete-
ness.

A topological layer reduces the global motion planning problem to the constant problem of planning
from one topological node to the other, hence it limits the complexity of the global planning problem.

For collision-free navigation of AMIGO it is strongly advised to include 3D Kinect sensor information.
This can be achieved by representing a point cloud, i.e., the set of nodes produced by the Kinect, as
a grid of cubic volumes (voxels) that discretize the mapped area. An efficient representation is to use
an octree (Wurm et al} [2010), which is equivalent to a quad-tree in 2D (see Section [4.2.2). A 2D
obstacle map can be obtained by projecting the 3D map on the ground plane as suggested by Wurm
et al|(2010). Future work to include 3D information is defined as following:

> Include 3D information from the Kinect to form a 3D map.

>> Obtain a 2D obstacle map by projecting the 3D representation on the ground plane.

A second suggestion for the costmap implementation concerns the interpretation of safe behavior. In
the current implementation safety measures are included in the costmap by inflating the obstacles.
There is however no distinction as the obstacles are inflated with the sum of all uncertainties (the
robot’s tracking error, the uncertainty in the sensor information and an extra safety margin). As a
result there is no understanding of safety in the costmap. This must be incorporated be defining
the costmap in an intuitive, semantic way. For example, the uncertainty in the position of a human
being is higher than a couch. Or maintain a certain distance from walls. This information is very
valuable and should be included in the costmap. Furthermore, safety can also be incorporated in
terms of velocity. As a robot slows down the constraint on its reactivity is less hard, allowing safer
navigation. For example, the driver of a car can respond faster to a situation ahead when it lowers its
speed. The environment can put constraints on the robot. E.g., the robot must lower its speed if it
close to an uncertain object such as a door. To summarize, the costmap must be further developed on
the following points:

> Represent obstacles semantically in the costmap.
> Include uncertainty information based on obstacles.

> Integrate safety constraints on the robot’s position and velocity.

The topological map and the 3D costmap are representation methods. They are general and can both
be used with the three following suggested approaches (in random order) to arrive a solution.

Approach 1 The first approach that is suggested resembles the current implementation. It consists
of a global path planner and the DWA as a local reactive planner. The DWA planner can be real-time

71

CHAPTER 7. MOTION PLANNING FOR ROBOCUP

Approach 1

Approach 2

Topologic Planner

v

Approach 3

A 4

v

Global path planner

Representation method

> Approx. cell decomposition
> Octomap (1]

> Semantic based costmap

> Bounded uncertainty region

Search method

Motion planner

Representation method

> State X time space

> Time-bounded lattice [3]

> Octomap [1]

> Semantic based costmap

> Bounded uncertainty region

Global path planner

Representation method

> Approx. cell decomposition
> Octomap (1]

> Semantic based costmap

> Bounded uncertainty region

Search method

> Incremental, anytime Search method > Incremental, anytime
re-planning AD* search [2] > Incremental, anytime re-planning AD* search [2]
¢ re-planning AD* search [2] ¢

> Motion primitives

Local reactive planner Local reactive planner

> DWA > Potential field

References: [1] Wurm.etal. (2010), [2] Likhachevetal (2008), [3] Kushleyevand Likhachev (2009).

Figure 7.5: The three proposed approaches for AMIGO.

implemented and ensures a reactive behavior. As mentioned in Chapter[6and as visible in Table
a reactive planner lacks in completeness and optimality. Therefore, a global path planner is suggested.
Based on the research in Chapter [5|an A* algorithm is advised to arrive at a solution with the least
cost. In the current implementation a DWA is already used. It needs to be redesigned however. As
mentioned in Section [7.3]the current implementation hardly exploits AMIGO’s holonomic capacities
as it designed for (non-holonomic) synchro-drive robots. Furthermore, AMIGO can be made more
robust to uncertainty by allowing faster re-planning. The downside of this approach is that dealing
with moving obstacles is difficult. It is non-optimal and possibly incomplete in the presence of moving
obstacles. The following number of points is identified for future work:

o> Further improve the speed of re-planning using an incremental and/or anytime search, as ex-

plained in Section

>> Adapt the DWA such that it utilizes AMIGO’s holonomic capacities.

Approach 2 A second approach is to plan in the state x time space. The advantage this approach has
over the previous one is that it can take moving obstacles into account whilst maintaining optimality
and completeness. (Phillips and Likhachev, [2011) prove that this is effective for mobile robots, but
the downside is its computational complexity. [Kushleyev and Likhachev| (2009) show that relaxing the
requirements of optimality and completeness, by disregarding dynamic obstacles after a fixed time
period, can result in a near-optimal planner that (re-)plans fast (34 ms). In the absence of dynamic
obstacles it turns from a full state planner to a kinematic planner in (z, y). Such a planning approach
is considered more realistic as uncertainty in the prediction of obstacle behavior becomes too great
to be of any use. The search in state x time space can be performed using motion primitives as
discussed in Section For the kinematic planner an anytime, incremental re-planner can be
used, as introduced in Section The following future work is identified:

> Represent the dynamic obstacle trajectories in the worldmodel.

> Determine if the accuracy of the trajectory estimation is sufficient to make the state x time
approach robust against moving obstacles.

72

7.4. PROPOSED NEW MOTION PLANNING APPROACHES

> Identify the limitations of the current estimation and determine ways to improve the accuracy.

>> Use incremental, anytime re-planning and motion primitives in the search for a solution.

Approach 3 In Section it is discussed that the potential field can be used as a local obstacle
avoidance method and as a global navigation method. The local method allows reactive behavior,
based on the latest sensor information, but is well-known to suffer from local minima that can trap
the robot. Global information (outside the sensor range) is necessary to overcome this (typically using
a global path planner) as discussed in Section Especially in a complex and diverse environment
such as a household a planner must rely on global information to navigate efficiently. This raises the
question of what the benefit from a potential field would be then.

The benefit becomes clear if we would not only consider the base in the motion planning problem
but AMIGO’s full body. For example, when AMIGO needs to pick up an item from a table it also
uses its arm and its lifting mechanism. This respectively adds 7 DOF’s and 1 DOF to the problem!
Although this problem can be solved decoupled (e.g., determine the base position first and then solve
the grasping problem) it is more elegant and intuitive to solve it in one instance using full body
control, as proposed by, e.g., [Dietrich et al|(2012). The direction of the base will then be the result
of all repulsive forces that obstacles exert on the robot and the attractive force of the goal. A potential
field is well-suited for this purpose as it can define task execution in the intuitive, low-dimensional
workspace (see Section [4.4.2). As this reduces the complexity of the problem it allows a real-time
implementation, which is elegant for such a high-dimensional problem.

The reduce in dimension for the planning of a mobile base with 3 DOF such as AMIGO is less than
for a 7 DOF arm. However, in the framework of full-body control a potential field for the base of
AMIGO is an option. As mentioned this requires a global planner that avoids local minima. This can
be a global path planner that is similar to approach 1. To successfully implement the potential field the
following future work is defined:

> Investigate how global information can be used to guide AMIGO away from local minima.

73

Bibliography

Acar, E., Choset, H., Rizzi, A., Atkar, P., and Hull, D. Morse decompositions for coverage tasks. The
International Journal of Robotics Research, 21(4):331-344, 2002.

Alaerds, R. Mechanical design of the next generation Tech United Turtle. Master’s thesis, Eindhoven
University of Technology, Eindhoven, The Netherlands, 2010.

Amato, N., Bayazit, O., Dale, L., Jones, C., and Vallejo, D. OBPRM: an obstacle-based PRM for 3D
workspaces. Robotics: the algorithmic perspective, pages 155-168, 1998.

Asimov, I. I, Robot. Doubleday science fiction. Doubleday, 1963.

Barbehenn, M. A note on the complexity of Dijkstra’s algorithm for graphs with weighted vertices.
IEEE Transactions on Computers, 47(2):263, 1998.

Barraquand, J., Kavraki, L., Latombe, J., Li, T.-Y., Motwani, R., and Raghavan, P. A random sampling
scheme for path planning. International Journal of Robotics Research, 16:759—774, 1990.

Barraquand, J., Langlois, B., and Latombe, J. Numerical potential field techniques for robot path
planning. IEEE Transactions on Systems, Man and Cybernetics, 22(2):224—241, 1992.

Choset, H. Coverage for robotics - A survey of recent results. Annals of Mathematics and Artificial
Intelligence, 31(1):113-126, 2001.

Choset, H. and Burdick, J. Sensor based planning. I. the generalized voronoi graph. In Proceedings
International Conference on Robotics and Automation (ICRA), volume 2, pages 1649—-10655, 1995a.

Choset, H. and Burdick, J. Sensor based planning. II. incremental construction of the generalized
voronoi graph. In Proceedings International Conference on Robotics and Automation (ICRA), volume 2,

pages 1643-1648, 1995b.

Choset, H. and Burdick, J. Sensor-based exploration: The hierarchical generalized voronoi graph. The
International Journal of Robotics Research, 19(2):96-125, 2000.

Choset, H. Principles of robot motion: theory, algorithms, and implementation. The MIT Press, 2005.

Clephas, T. Design and control of a service robot. Master’s thesis, Eindhoven University of Technology,
Findhoven, The Netherlands, 2011.

Connolly, C. I, Burns, J. B., and Weiss, R. Path planning using Laplace’s equation. In Proceedings
IEEE International Conference on Robotics and Automation (ICRA), pages 2102-21006, 1990.

Connolly, C. I. and Grupen, R. A. The applications of harmonic functions to robotics. Journal of Robotic
Systems, 10(7):931-940, 1993.

Daily, R. and Bevly, D. M. Harmonic potential field path planning for high speed vehicles. In American
Control Conference, pages 4609—4614, 2008.

75

BIBLIOGRAPHY

de Best, J., Bruijnen, D., Hoogendijk, R., Janssen, R., Meessen, K., Merry, R., van de Molengraft, M.,
Naus, G., and Ronde, M. Tech United Eindhoven team description, 2010.

Dietrich, A., Wimbock, T., Albu-Schaffer, A., and Hirzinger, G. Reactive whole-body control: Dy-
namic mobile manipulation using a large number of actuated degrees of freedom. IEEE Robotics
Automation Magazine, 19(2):20—33, 2012.

Dirkx, N. Robot modeling and navigation systems design for a service robot. Master’s thesis, Eind-
hoven University of Technology, Eindhoven, The Netherlands, 2011.

Donald, B., Xavier, P., Canny, J., and Reif, J. Kinodynamic motion planning. Journal of the ACM
(JACM), 40(5):1048-1066, 1993.

Erdmann, M. and Lozano-Pérez, T. On multiple moving objects. In Proceedings IEEE International
Conference on Robotics and Automation (ICRA), volume 3, pages 1419—1424, 1986.

Feder, H. J. S. and Slotine, J. J. E. Real-time path planning using harmonic potentials in dynamic
environments. In IEEE International Conference on Robotics and Automation, volume 1, pages 874—

881, 1997.

Fiorini, P. and Shiller, Z. Motion planning in dynamic environments using velocity obstacles. The
International Journal of Robotics Research, 17(7):760-772, 1998.

Fox, D., Burgard, W., and Thrun, S. The dynamic window approach to collision avoidance. IEEE
Robotics and Automation Magazine, 4(1):23-33, 1997.

Fraichard, T. Dynamic trajectory planning with dynamic constraints: a ‘state-time space’ approach. In
Proceedings IEEE/RS] International Conference on Intelligent Robots and Systems (IROS), volume 2,

pages 13931400, 1993.

Galindo, C., Fernandez-Madrigal, J. A., Gonzailez, J., and Saffiotti, A. Robot task planning using
semantic maps. Robotics and Autonomous Systems, 56(11):955-966, 2008.

Ge, S. and Cui, Y. Dynamic motion planning for mobile robots using potential field method. Au-
tonomous Robots, 13(3):207—-222, 2002.

Geelen, M., Elfring, J., Perzylo, A., and Molengraft, M. v. d. An extractable task and robot specific
world representation. 2012. Submitted for publication.

Geerts, E. and Naus, G. Path planning: Rapidly-exploring random tree. http://www.techunited.
nl/wiki/index.php?title=Path_planning:_Rapidly-exploring_ Random_Tree, 2010.

Guldner, J. and Utkin, V. I. Sliding mode control for an obstacle avoidance strategy based on an
harmonic potential field. In Proceedings 32nd IEEE Conference on Decision and Control, pages 424—

429,1993.

Hart, P., Nilsson, N., and Raphael, B. A formal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100—107, 1968.

Holleman, C. and Kavraki, L. A framework for using the workspace medial axis in PRM planners.
In IEEE International Conference on Robotics and Automation (ICRA), volume 2, pages 1408-1413,
2000.

Hsu, D. Randomized single-query motion planning in expansive spaces. PhD thesis, Stanford University,
Stanford, USA, 2000.

Hsu, D., Kindel, R., Latombe, J., and Rock, S. Randomized kinodynamic motion planning with mov-
ing obstacles. The International Journal of Robotics Research, 21(3):233-255, 2002.

76

http://www.techunited.nl/wiki/index.php?title=Path_planning:_Rapidly-exploring_Random_Tree
http://www.techunited.nl/wiki/index.php?title=Path_planning:_Rapidly-exploring_Random_Tree

BIBLIOGRAPHY

Jansen, S., Elfring, J., and van de Molengraft, M. Object appearance prediction and active object search
using probabilistic object relations. 2012. Submitted for publication.

Kant, K. and Zucker, S. W. Toward efficient trajectory planning: The path-velocity decomposition. The
International Journal of Robotics Research, 5(3):72—89, 1986.

Kavraki, L., Svestka, P., Latombe, J., and Overmars, M. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4):566—
580, 19906.

Keymeulen, D. and Decuyper, J. The fluid dynamics applied to mobile robot motion: the stream field
method. In Proceedings IEEE International Conference on Robotics and Automation (ICRA), pages

378-385, 1994.

Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. The International Journal
of Robotics Research, 5(1):90, 19806.

Khosla, P. and Volpe, R. Superquadric artificial potentials for obstacle avoidance and approach. In
IEEE International Conference on Robotics and Automation (ICRA), pages 1778-1784, 1988.

Kitano, H., Asada, M., Kuniyoshi, Y., Noda, 1., and Osawa, E. RoboCup: The robot world cup initiative.
In Proceedings 1st International Conference on Autonomous Agents, pages 340—347, 1997.

Koditschek, D. Exact robot navigation by means of potential functions: Some topological considera-
tions. In Proceedings IEEE International Conference on Robotics and Automation (ICRA), volume 4,
pages 1-6, 1987.

Koditschek, D. and Rimon, E. Robot navigation functions on manifolds with boundary. Advances in
Applied Mathematics, 11(4):412—442, 1990.

Koenig, S. and Likhachev, M. Fast replanning for navigation in unknown terrain. IEEE Transactions
on Robotics, 21(3):354—363, 2005.

Koren, Y. and Borenstein, J. Potential field methods and their inherent limitations for mobile robot
navigation. In Proceedings IEEE International Conference on Robotics and Automation (ICRA), pages

1398-1404, I1991.

Kuipers, B., Modayil, J., Beeson, P., MacMahon, M., and Savelli, F. Local metrical and global topolog-
ical maps in the hybrid spatial semantic hierarchy. In Proceedings IEEE International Conference on
Robotics and Automation (ICRA), volume 5, pages 4845-4851, 2004.

Kushleyev, A. and Likhachev, M. Time-bounded lattice for efficient planning in dynamic environ-
ments. In IEEE International Conference on Robotics and Automation (ICRA), pages 1662-1668,
2009.

Latombe, J. Robot motion planning. Springer, December 199o0.
LaValle, S. Planning algorithms. Cambridge University Press, Cambridge, UK, 2006.

LaValle, S. and Kuffner Jr, J. Randomized kinodynamic planning. The International Journal of Robotics
Research, 20(5):378—400, 2001.

Li, Z., Canny, J., and Sastry, S. On motion planning for dexterous manipulation. I. the problem
formulation. In Proceedings IEEE International Conference on Robotics and Automation, pages 775—
780, 1989.

Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., and Thrun, S. Anytime search in dynamic graphs.
Artificial Intelligence, 172(14):1613-1643, 2008.

77

BIBLIOGRAPHY

Lozano-Pérez, T. Spatial planning: A configuration space approach. IEEE Transactions on computers,
pages 108-120, 1983.

Lozano-Pérez, T. and Wesley, M. A. An algorithm for planning collision-free paths among polyhedral
obstacles. Communications of the ACM, 22(10):560-570, 1979.

Luh, G. and Liu, W. Motion planning for mobile robots in dynamic environments using a potential
field immune network. Proceedings Institution of Mechanical Engineers, Part I: Journal of Systems and
Control Engineering, 221(7):1033, 2007.

Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., and Konolige, K. The office marathon: robust
navigation in an indoor office environment. In IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 300—307, 2010.

Masoud, A. Kinodynamic motion planning. IEEE Robotics and Automation Magazine, 17(1):85—99,
2010.

Masoud, A. Solving the narrow corridor problem in potential field-guided autonomous robots. In
Proceedings IEEE International Conference on Robotics and Automation (ICRA), pages 2909—2914,
2005.

MathWorks. Website. http://www.mathworks. com, 2012.

Mucientes, M., Iglesias, R., Regueiro, C., Bugarin, A., Carinena, P., and Barro, S. Fuzzy temporal
rules for mobile robot guidance in dynamic environments. [EEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, 31(3):391-398, 2001.

Munasinghe, S., Oh, C,, Lee, J., and Khatib, O. Obstacle avoidance using velocity dipole field method.
In International Conference on Control, Automation, and Systems (ICCAS), pages 1657-1661, 2005.

Phillips, M. and Likhachev, M. SIPP: safe interval path planning for dynamic environments. In [EEE
International Conference on Robotics and Automation (ICRA), pages 5628-5635, 2011.

Pivtoraiko, M., Knepper, R. A., and Kelly, A. Differentially constrained mobile robot motion planning
in state lattices. Journal of Field Robotics, 26(3):308-333, 2009.

Pratihar, D., Deb, K., and Ghosh, A. A genetic-fuzzy approach for mobile robot navigation among
moving obstacles. International Journal of Approximate Reasoning, 20(2):145-172, 1999.

Pronobis, A. Semantic mapping with mobile robots. PhD thesis, Royal Institute of Technology (KTH),
Stockholm, Sweden, 2011.

RoboCup. Website. http://www.robocup.org, 2012.
Robot Operating System (ROS). Website. http://www.ros.org, 2012.

Rohnert, H. Shortest paths in the plane with convex polygonal obstacles. Information Processing Letters,
23(2):71-76, 1986.

Russell, S. and Norvig, P. Artificial intelligence: a modern approach. Prentice hall, 2010.

Ryu, J. C., Park, F. C., and Kim, Y. Y. Mobile robot path planning algorithm by equivalent conduction
heat flow topology optimization. Structural and Multidisciplinary Optimization, pages 1-13, 2011.

Schwartz, J. and Sharir, M. On the piano movers’ problem: II. general techniques for computing
topological properties of real algebraic manifolds. Advances in applied Mathematics, 4(1):298-351,

1983.
Shiller, Z., Large, F., and Sekhavat, S. Motion planning in dynamic environments: obstacles moving

along arbitrary trajectories. In Proceedings IEEE International Conference on Robotics and Automation
(ICRA), volume 4, pages 3716—3721, 2001.

78

http://www.mathworks.com
http://www.robocup.org
http://www.ros.org

BIBLIOGRAPHY

Stentz, A. Optimal and efficient path planning for partially known environments. Intelligent Un-
manned Ground Vehicles, pages 203-220, 1997.

Tech United Eindhoven. Website. http://www.techunited.nl/en, 2012.
Thrun, S., Burgard, W., and Fox, D. Probabilistic robotics. MIT Press, 2005.

Thrun, S. Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence,
99(1):21-71, 1998.

Vadakkepat, P., Tan, K., and Ming-Liang, W. Evolutionary artificial potential fields and their application
in real time robot path planning. In Proceedings Congress on Evolutionary Computation, volume 1,
pages 256-263, 2000.

van den Berg, J., Ferguson, D., and Kuftner,]. Anytime path planning and replanning in dynamic
environments. In Proceedings IEEE International Conference on Robotics and Automation, pages 2366—
2371, 2000.

van den Berg, J. and Overmars, M. Kinodynamic motion planning on roadmaps in dynamic environ-
ments. In Proceedings IEEE/RS] International Conference on Intelligent Robots and Systems (IROS),

pages 4253—4258, 2007.

van den Dries, S., Elfring, J., van de Molengraft, M., and Steinbuch, M. World modeling in robotics:
Probabilistic multiple hypothesis anchoring. In Proceedings IEEE workshop on Semantic Perception
and Mapping for Knowledge-enabled Service Robotics at ICRA, 2.012.

Volpe, R. and Khosla, P. Artificial potentials with elliptical isopotential contours for obstacle avoidance.
In 26th IEEE Conference on Decision and Control, volume 26, pages 180-185, 1987.

Volpe, R. and Khosla, P. Manipulator control with superquadric artificial potential functions: Theory
and experiments. [EEE Transactions on Systems, Man and Cybernetics, 20(6):1423-1436, 1990.

Wilschut, T. An obstacle avoidance algorithm for a mobile robot based upon the potential field method.
Technical Report 2011-420667, Eindhoven University of Technology, Eindhoven, The Netherlands,
2011.

Wurm, K. M., Hornung, A., Bennewitz, M., Stachniss, C., and Burgard, W. OctoMap: A probabilistic,
flexible, and compact 3D map representation for robotic systems. In Proceedings Workshop on Best
Practice in 3D Perception and Modeling for Mobile Manipulation ICRA, 2010.

Xu, W., Wei, J., Dolan, J. M., Zhao, H., and Zha, H. A real-time motion planner with trajectory
optimization for autonomous vehicles. In IEEE International Conference on Robotics and Automation
(ICRA), pages 2061 — 20067, 2012.

Zavlangas, P. and Tzafestas, S. Integration of topological and metric maps for indoor mobile robot path
planning and navigation. Methods and applications of artificial intelligence, pages 746—746, 2002.

Zavlangas, P. G., Tzafestas, S. G., and Althoefer, K. Fuzzy obstacle avoidance and navigation for om-
nidirectional mobile robots. In Proceedings of the third European Symposium on Intelligent Techniques,
pages 375—382, 2000.

Zhang, H., Butzke, J., and Likhachev, M. Combining global and local planning with guarantees on
completeness. In IEEE International Conference on Robotics and Automation (ICRA), pages 4500 —
4500, 2012.

Zickler, S. Physics-Based Robot Motion Planning in Dynamic Multi-Body Environments. PhD thesis,
Carnegie Mellon University, Pittsburgh, USA, 2010.

79

http://www.techunited.nl/en

	List of Notations
	Introduction
	The RoboCup Project
	Problem Description
	Outline

	The Motion Planning Problem
	The Basic Motion Planning Problem
	Representing the World
	Searching the World
	Global Versus Local
	Extensions of the Basic Problem

	Requirements
	Motion Planner Requirements
	Relevance of Requirements
	How to Use Requirements?!

	Representation Methods
	Roadmap
	Cell Decomposition
	Sampling-Based Method
	Potential Field
	Conclusions

	Search Algorithms
	Uninformed Search
	Informed Search
	Local Search
	Conclusions

	Planning Approaches
	Dealing with Constraints
	Robustness Against a Dynamic Environment
	Robustness Against Uncertainty
	Reactive Planners
	Other Methods and Issues
	Conclusions

	Motion Planning for RoboCup
	The RoboCup Environment
	Current Motion Planners
	Current Problems
	Proposed New Motion Planning Approaches

	Bibliography

