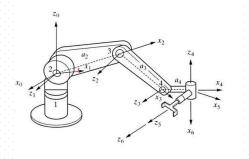
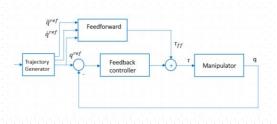
Motion control for robotics





January 29 2021

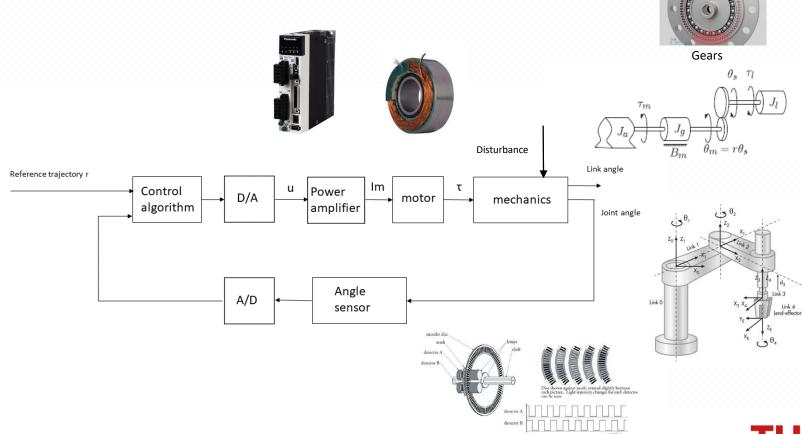
Robbert van der Kruk

Outline

Bridging the gap between theory and practise

- Analog joint control
- Digital joint control
- Feedback and Feedforward
- Tuning
- Link control
- Quantization effects
- Constraints
- Robot control
- Beyond position control
- Conclusion

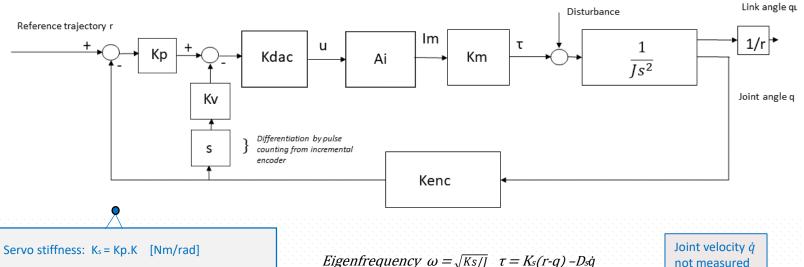
Joint control system



Joint control model

single mass, time continuous model

K = Kdac.Ai.Km.Kenc



Servo damping: D_s = Kv.K [Nms/rad]

Eigenfrequency $\omega = \sqrt{Ks/J}$ $\tau = K_s(r-q) - D_s\dot{q}$ $K_s = \omega^2 J$, $D_s = 2\zeta \omega J$

with

ω: natural frequency [rad/s]

 ζ : damping ratio, for most robot applications between 1 and 0.7

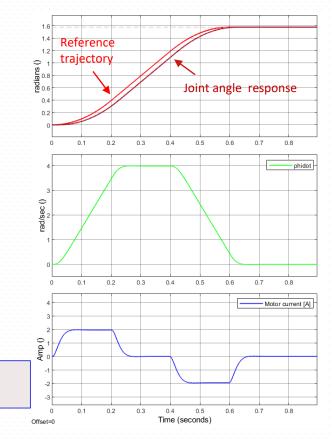
Joint control response

Stability single mass, rigid body

A closed loop position control system, consisting of only a single mass and a PD controller is always stable. Kp will act as a spring and Kv will act as a damper.

Any bandwidth can be achieved. (Kp and Kv positive)

So: When a position control system becomes unstable, it is not a linear single mass system only.



Example of a parabolic joint trajectory response

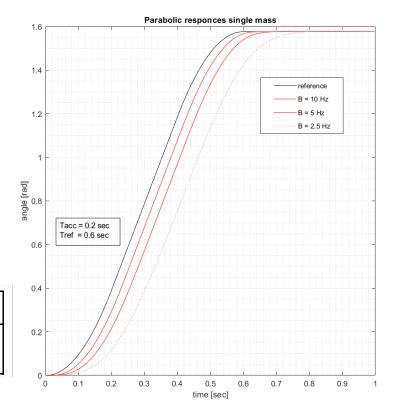
ω = 62.8 rad/sec ζ = 0.8 Bandwidth = $\frac{ω}{2π}$ = 10 Hz

Joint control

Parabolic response

The settling time and rise time decreases for increasing bandwidth B

Natural frequency ω	Bandwidth B	Proportional gain Kp	Derivative gain Kv
15,7	2,5	10,5	0,55
31,4	5	21	1,1
62,8	10	83	2,2



Three critically damped parabolic responses.

Digital joint control

single mass time discrete model Single mass and K = Kdac.Ai.Km.Kenc zero order hold D/A Ts: sample time r : gear ratio Disturbance Link angle qu $(Ts)^2(z+1)$ $2J(z-1)^2$ Reference trajectory r Joint angle q Κv Δa (Increments per sample period) "velocity loop" 'position loop'

- State controller using velocity and position feedback
- Sometimes referred to as PD controller

Typical values:

r : 20..200 Ts: 0.5..5 ms

Kdac: 5V/2¹⁵ bits/V (16 bits D/A)

Ai: 3.2 A/V Km: 0.055 Nm/A

Kenc: (1000..5000)/2.pi increments/rad

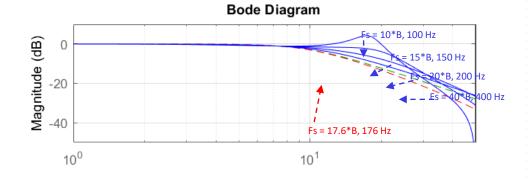
J: 40..200 10-6 kgm2

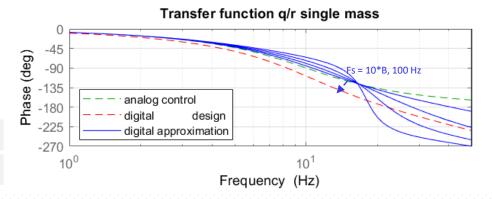
Digital joint control

single mass, bandwidth and sample frequency

- Desired Bandwidth (B) of servo system is -3dB frequency of closed loop system.
- Digital design maps bandwidth and damping ration of analog system.
- Fs = 1/Ts is the sample frequency. If $Fs = \infty$, behavior analog control is realized.
- Calculation time of control algorithm is added to the sample delay and should be minimized.

Calculation time Tc	0	Ts/2	Ts
Oversampling ratio Fs/B	15	22	30





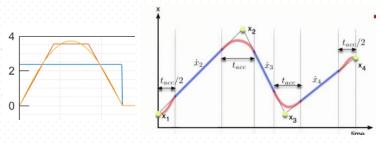
Analog and digital control comparison Bandwidth B = 10 Hz

Digital joint control

Trajectory generation

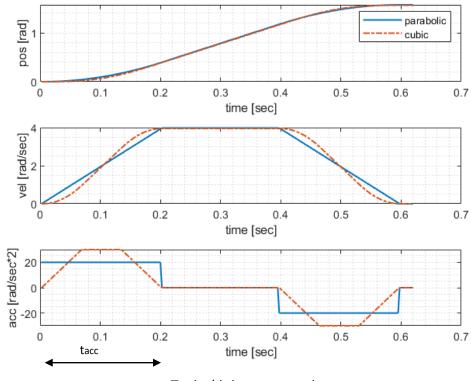
Reference trajectory generated from acceleration with: maxium acceleration and velocity and

- Smooth Linear Segments with Parabolic Blends (LSPB) used for point-to-point control. Blend (acceleration) time is tacc
- Cubic blends used for high accuracy use 50% higher acceleration. Jerk (j) from sine acceleration slope:
 j = 4.5.Amax/tacc



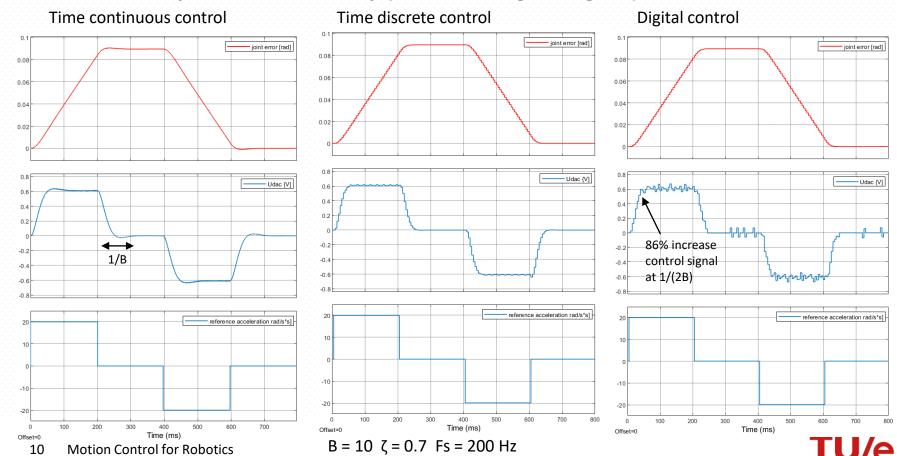
Cubic, sine and parabolic acceleration

LSPB trajectory with via points x2 and x3

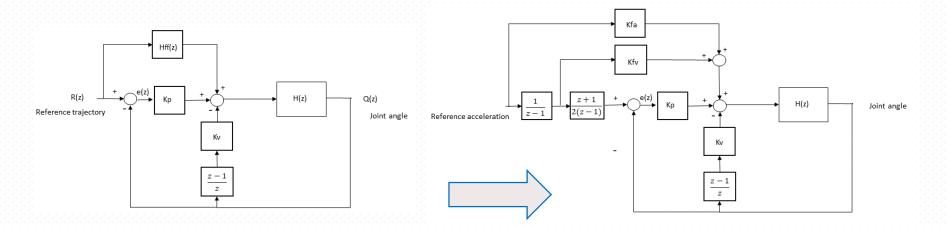


Typical joint space trajectory

Joint control process sensitivity (from analog to digital)



Feedforward



$$e(z) = 0 \implies H_{ff}(z) = \frac{1}{H(z)} + Kv \frac{z}{z-1}$$

For a single mass $\frac{1}{H(z)} = \frac{2(z-1)^2}{(z+1)K.Ts^2}$ (non causal)

→ Use reference acceleration to realize feedforward

$$K_{fa} = \frac{1}{K.Ts^2}$$

$$K_{fv} = Kv$$

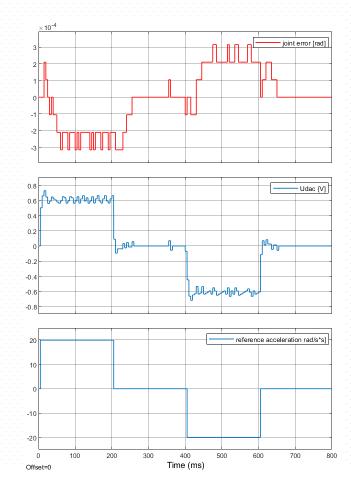
Digital control of rigid body joint, no friction

Digital feedforward and feedback

Position error less than 3 encoder increments also during motion!

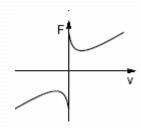
Digital position control using feedforward and feedback for single mass system.

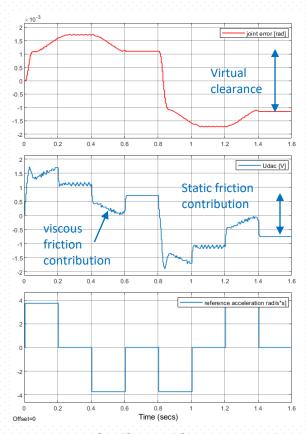
$$B = 10 \text{ Hz}, \zeta = 0.7, \text{ Fs} = 200 \text{ Hz}$$



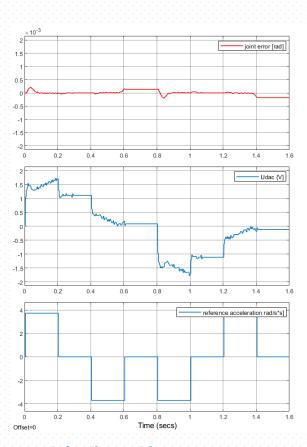
Process sensitivity

Friction



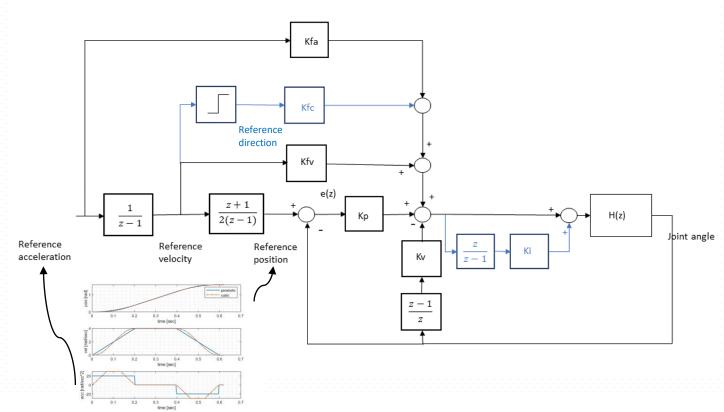


No feedforward for viscous and Coulomb friction



With feedforward for viscous and Coulomb friction

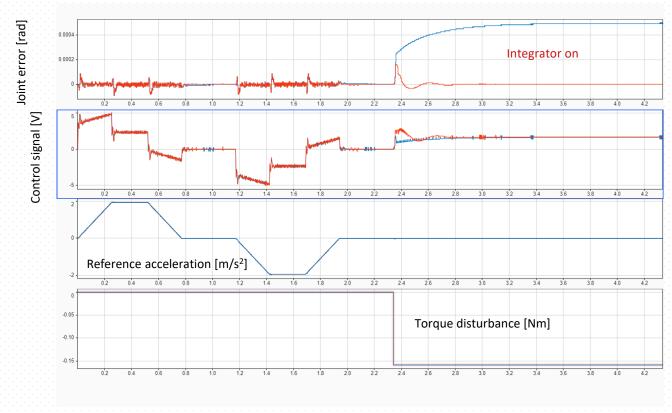
Extended feedforward and feedback structure for friction



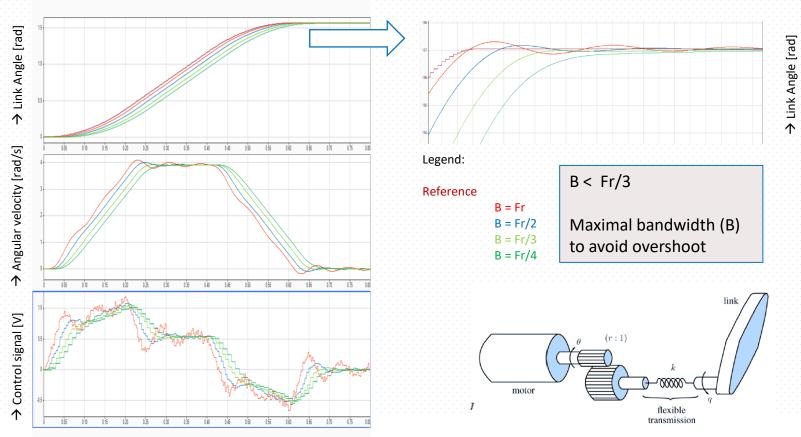
Integral action needed?

PI controller in velocity loop:

- Only switched on when reference equals zero.
- Reduces bandwidth and high frequency performance.
- Steady state error → zero.
- Use only when needed for static accuracy

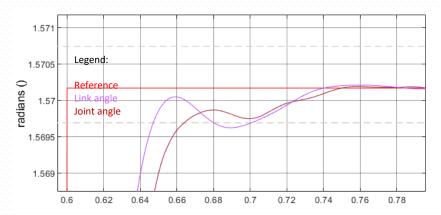


Flexible joints



Reduced model (Large transmission ratio)

Flexible joints



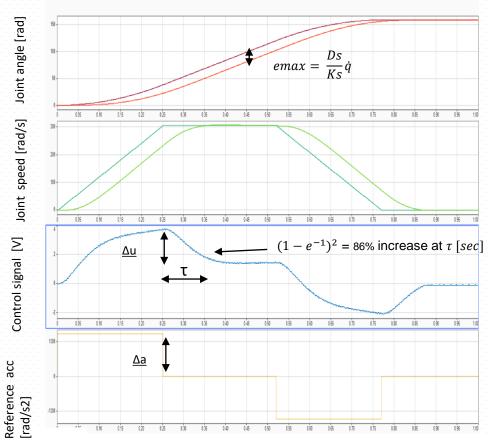
Link and joint response, resonance at 20 Hz

Bandwidth	ratio Bandwidth /	Feedforward	Overshoot	Maximum trackingerror	Settling time
(B)	Resonance frequency		%	%	ms
5	0,25	N	0,00	12,41	120
5	0,25	Υ	0,00	0,17	90
6,5	0,33	N	0,00	9,36	47
6,5	0,33	Υ	0,04	0,15	75
10	0,50	N	0,09	6,07	70
10	0,50	Υ	0,03	0,23	85
20	1,00	N	0,16	3,15	170
20	1,00	Υ	0,17	0,30	155

Link vibration damped by joint at B = Fr/3

Feedforward reduces tracking error but not the settling behavior

System identification: parameter estimation for dummies



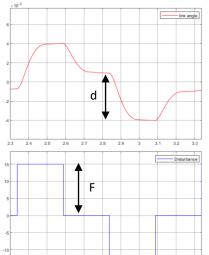
Acceleration = 0:

$$\frac{K}{Kdac} = Ai * Km/J = \frac{\Delta a}{\Delta u} = \frac{1220}{2.3} = 530$$

Rise time control signal after acceleration step:

Bandwidth (B) =
$$\frac{1}{2*\tau} = \frac{1}{2*0.125} = 4 Hz$$

Servo stiffness (Ks) =
$$\frac{F}{d} = \frac{30 \text{ N}}{0.5 \text{ mm}} \approx 3000 \text{ Nm/rad}$$



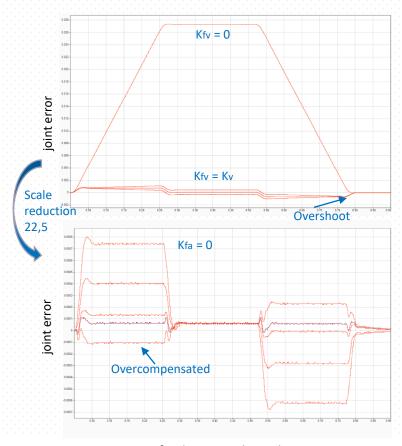
(at joint level:

$$Ks = 0.12 Nm/rad$$
)

3 Kg

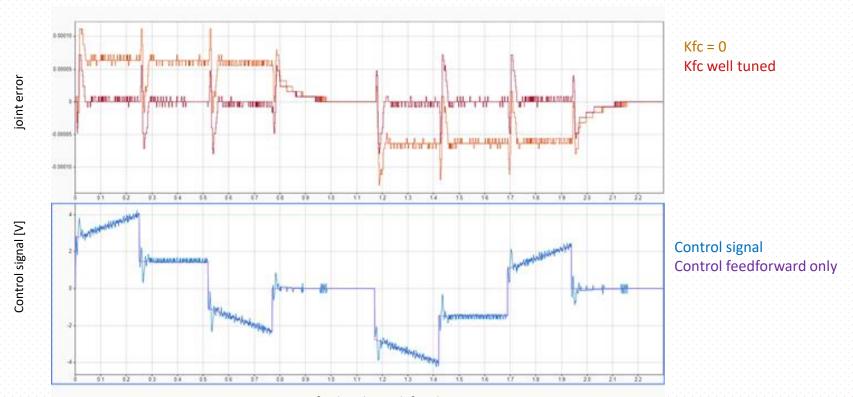
Time domain tuning

Kp, Kv	No overshoot, limited ripple in control signal	Start at low values Increase bandwidth and calculate Kp and Kv
Kfv	Minimize position error at constant velocity	
Kfa Kfc	Average position error during acceleration = average position error during deceleration Minimize average position error for back and forth motion	
Ki	Minimise position error , only when needed.	Start at low value

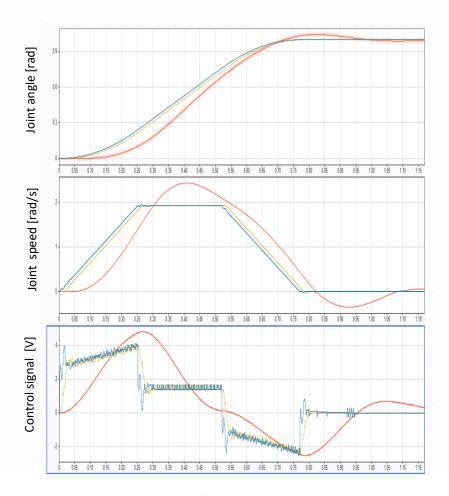


Tuning of velocity and acceleration feedforward

Result feedforward tuning



Error response of a back-and-forth movement



Time domain tuning

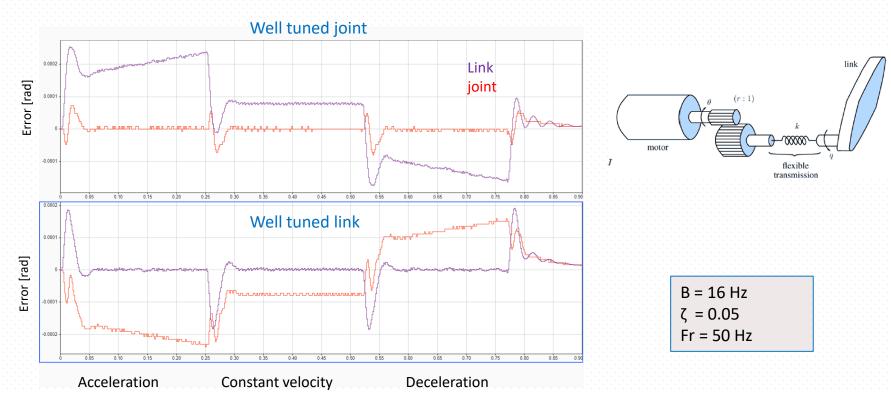
Legend:

Poor tuned feedback

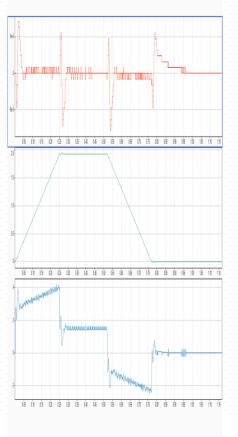
Well tuned feedback

Well tuned feedback + feedforward

Link tracking with 2nd order joint controller using feedforward



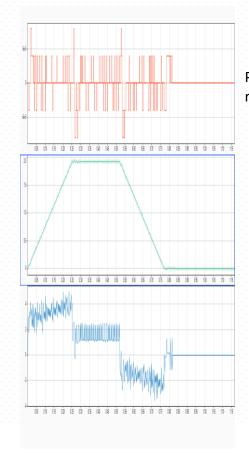
Quantization effects (1)



Position encoder resolution = 5000

Max Torque ripple
=
(Kp + Kv)KdacAiKm

Kp = 173 Kv = 1545 Torque ripple = 2.3%



Position encoder resolution = 1000

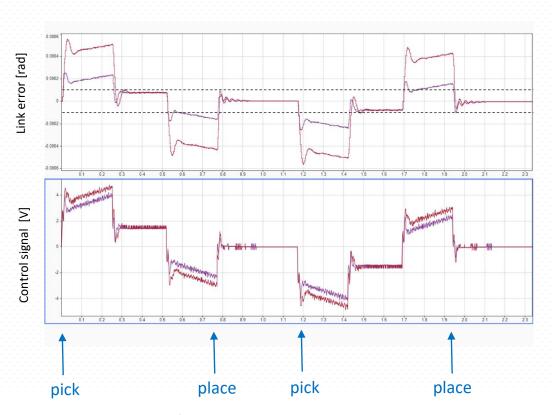
Kp = 866 Kv = 7727 Torque ripple = 11.8%

Quantization effects (2)

Torque ripple too high?

- Reduce sample frequency (and hence bandwidth)
- Increase resolution position encoder
- State observer to estimate joint speed

Pick and place loadchange

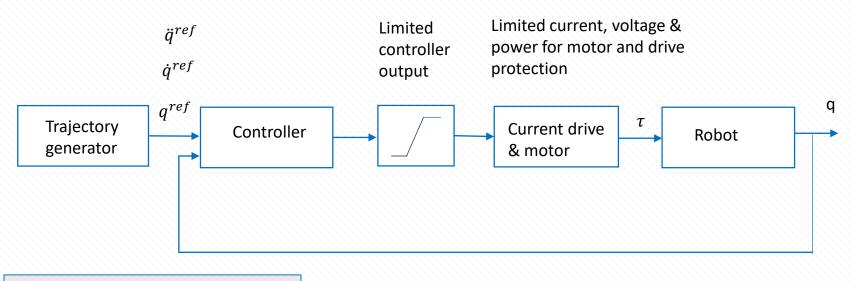


No load 50% load (of link inertia)

Link rotation = 1 rad Link speed = 2 rad/s Link acceleration = 8 rad/s^2

> B = 16 Hz $\zeta = 0.05$ Fr = 50 Hz

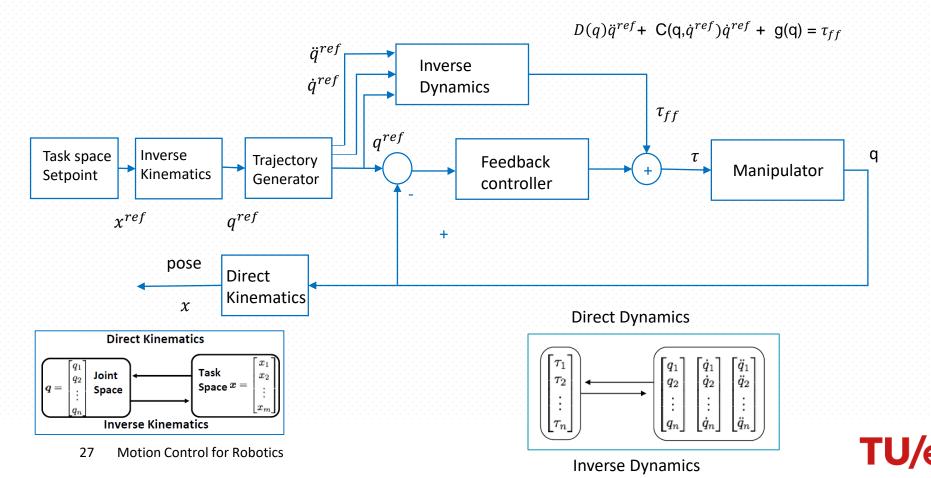
Constraints



Acceleration and velocity constraints for trajectory generator determine duration of motion and prevent saturation of control signal.

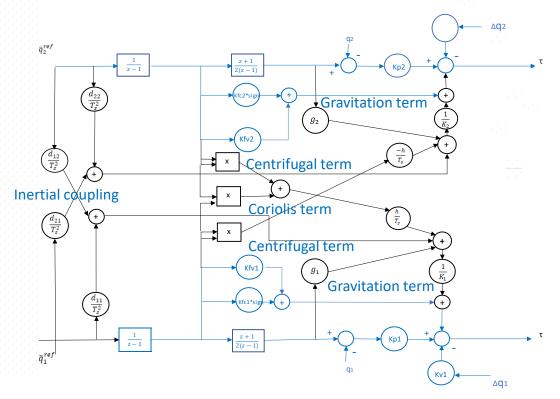
Maximum acceleration : max current
Maximum velocity : max voltage

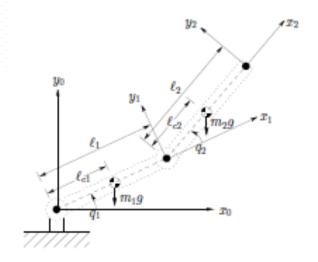
Robot control



Inverse dynamics for rigid body robots

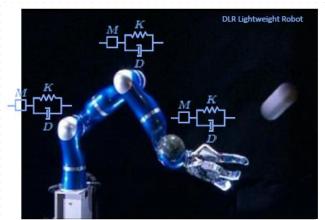
- Example of a two-link revolute joint manipulator -





$$\begin{split} h &= -m_2 l_1 l_{c2} \sin \, q_2 \\ g_1 &= \, (m_1 \, l_{c1} + \, m_2 l_1) g cos q_1 + \, m_2 \, l_{c2} cos \, (q_1 + \, q_2) \\ g_2 &= m_2 \, l_{c2} cos \, (q_1 + \, q_2) \\ d_{11} &= \, m_1 l_{c1}^2 + \, m_2 (l_1^2 + l_{c2}^2 + 2 l_1 l_{c2} cos q_2) + \, I_1 + \, I_2 \\ d_{12} &= \, d_{21} = \, m_2 (l_{c2}^2 + l_1 l_{c2} cos q_2) + \, I_2 \\ d_{22} &= \, m_2 l_{c2}^2 + \, I_2 \\ K_1 &= \, K_2 = K_{dac} A_i K_m K_{enc} \\ T_* \, sample \, time \end{split}$$

Torque feedback for light-weight flexible robots



To Do: describe fourth order state feedback digital controller, gravitation compensation, force control, impedance control, ID, Franka Emika Panda

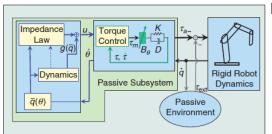
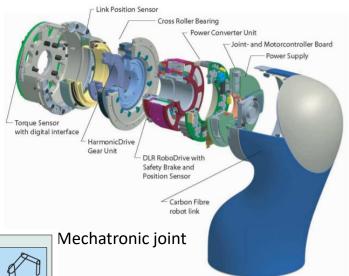
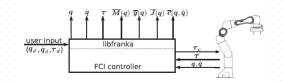


Figure 3. Representation of the compliance-controlled robot as a connection of passive blocks. θ is the motor position, and q the link position. B, K, and D are the motor inertia, joint stiffness, and damping matrices, respectively. τ is the elastic joint torque, τ_a the total (elastic and damping) joint torque, $\tau_{\rm ext}$ the external torque, and g the gravity torque.





Beyond position control

Paradigm: Control parameters are fixed at highest stiffness and bandwidth

But when controller settings are defined like:

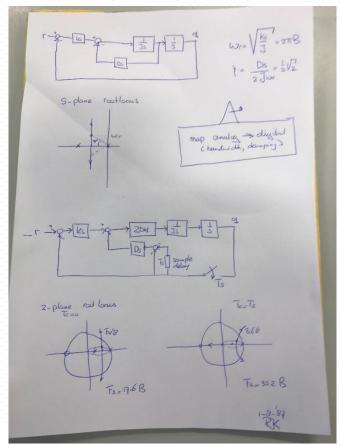
- Stiff
- Medium stiff
- Weak
- Passive

For each task a controller setting can be selected (Lazy control or control by need)

Conclusions

- Joint position control with high transmission ratio provides a robust method to compensate most dominant dynamics and linearization. It created a stable platform for high level control of robots.
- Disturbance rejection of loads is high but limited by quantization of position sensing and the lowest resonance frequency of the robot arm.
- Accurate tracking and positioning are enabled by high bandwidth and can be optimized by model-based feedforward.
- High sample rates do not always result in high performance: an optimal sample rate exist. → Rule of the thump: 20 x Bandwidth
- A digital controlled rigid mass system can become instable (at frequencies between Fs/8 and Fs/16)

Appendix A rootlocus analog & digital rigid body



Appendix B Rare industrial control methods

 PID like feedback controllers are most frequently used in industry, but rarities exist:

- Fuzzy control
- Sliding mode control (VSS)
- MPC

low performance, no model needed noisy, discontinue control Universities, high computation burden

