
Faculty of Mechanical Engineering
4SC020

Quartile 4 - 2019/2020

Mobile Robot Control

Design Document

Baubekova, M. (1426311) - Master Systems&Control
Chatzizacharias, S. (1467751) - Master Systems&Control
Menaria, A (1419684) - Master Systems&Control
Verdonschot, J. (0893516) - Master Systems&Control
Walk, B. (0964797) - Master Systems&Control
Wingelaar, B. (0948655) - Master Systems&Control

May 4th 2020, Eindhoven



Contents
1 Requirements & specifications 2

2 Components 2

3 Functions 3

4 Interfaces 4

1



1 Requirements & specifications

Requirement Specification (corresponding)
• Robot should exit the room in minimum time • Robot must finish the trail within 5 minutes
• Robot should remain in motion as much as
possible

• Robot cannot remain stationary for more than
30 seconds

• Robot should not bump into walls in the room • Robot must maintain a distance of 25cm from
walls at all times

• Robot should not bump into walls in the hall-
way

• Robot must remain in the middle of the cor-
ridor at all times

• Robot will be able to communicate and explain
decisions

• Robot will communicate whenever a change of
state occurs & provide reasoning behind it and
the new state

• Robot should drive out of escape room au-
tonomously

• Git controlled software must compile the al-
gorithm into 1 executable which drives the robot
without any further input

• Robot should be able to move • Translational and rotational speed limits for
robot are ±0.5m/s and ±1.2rad/s respectively

• Robot should be aware of its size • Robot is 41 cm wide and 35 cm deep according
to the Jazz robot datasheet.

• Robot must take its surroundings into account • Laser range finder on the robot is capable of
measuring distances ranging from 0.01m to 10m
in a field of view of 4 rad (229.18°). This field of
view is equally divided into 1000 points. When
robot dimensions and its distance from the walls
are known, collision into walls and corners can
be prevented.

2 Components
The PICO robot in its environment is divided into components to make it structured. This will also help to
organise the (software) Functions in a systematic way. The identified components are listed below.

• perception of sensor data
• control
• path planning
• motion of robot
• monitoring
• User interface
• Finite state machine (FSM)
• Physical environment model

– walls
– corridor
– dynamic objects e.g. humans (not applicable for escape room)

• (virtual) hardware
– PICO robot body
– PC with the Ubuntu 16.04 OS
– sensors

∗ Encoders for wheels
∗ Laser range finder (LRF)

– actuators
∗ holonomic omni-wheels

2



3 Functions
In figure 3.1 an overview of the software layout is given. The functions inside the Finite State Machine
(FSM) compose the functions of the software design. The FSM will go through the states depending on the
findings and the resulting change in booleans and variables. The different functions are shortly explained
below.

• RoomScan: When the software is first started, the robot will scan the room while slowly rotating.
After a scan 360 degrees around, it will be decided if a possible exit is identified. If an exit is found the
boolean called ExitFound becomes true and the FSM will go to state GoToExit. If no exit is identified,
the boolean ExitFound will be false and the next state will be FindWall.

• GoToExit: The robot will move towards where the exit was identified. Since the data can be inac-
curate, this will only be an approximate movement. Once the robot nears the exit and the variable
ExitDistance, which is the distance to the approximate location of the exit, is smaller than a certain,
to be determined value, the FSM will go to state ExitAlign.

• FindWall: When no exit is found with the initial scan of the room, the plan is to make the robot follow
the walls. To this extend, the robot first has to find the closest wall that it will start to follow and
move towards it. Once the variable wallDistance, which is the distance from the robot to the wall, is
below a certain, to be determined value, the FSM will go to state AlignWall.

• AlignWall: In this state the robot will be aligned parallel to the wall. This is done to make the robot
face the correct direction to start following the walls. The robot will be aligned to face in the clockwise
direction. Once the orientation of the robot is parallel to the wall, the boolean wallParallel will become
true and the FSM will go to state FollowWall.

• FollowWall: The robot will move strictly forward without rotation. If the robot is aligned correctly,
the robot will follow the wall. When the data indicates that the robot is no longer moving parallel to
the wall, the boolean wallParallel will become false and the FSM will go back to state AlignWall. If
the laser data indicates that a wall is ahead of the robot, the boolean wallAhead will become true and
the FSM will go to state InCorner. When the variable LeftWallDist, the distance between the robot
and the wall on the left, suddenly becomes larger than a certain, to be determined value, the FSM will
go to state IdentifyExit.

• InCorner : If the robot approaches a corner, it will have to stop moving and rotate approximately 90
degrees. When the rotation is done and there is no longer a wall in front of the robot, the boolean
wallAhead will become false and the FSM will go back to state AlignWall.

• IdentifyExit: At first when the robot enters this state, the boolean ExitFound will be re-initialized to
clear it of any previous value to refrain the robot from getting stuck in a loop. When the robot has
found a gap in the wall, it will have to be scanned to identify if this is the exit, or if it is not. It could
be that the data is incorrect at first and there is actually no gap in the wall, or that there is a small
gap in the wall which is not the exit. To this extend the width of the identified exit will be measured.
If this is wide enough to be the exit, the boolean ExitFound will become true and the FSM will go to
state ExitAlign. If the identified exit is not actually an exit, the boolean ExitFound will become false
and the FSM will go back to FollowWall.

• ExitAlign: When the robot has successfully found an exit, it will have to align in front of it to make
the movement into the exit. The robot should be clear of the side walls of the exit before moving into
the exit. When the robot is aligned, the FSM will go to state MoveIntoExit.

• MoveIntoExit: The robot will move into the exit hallway. Since the width of the hallway is unknown,
the robot can not use a fixed distance to either one of the walls as safety indication. Instead, the
walls to either side will be kept to an equal distance of the robot so that the robot is always on the
center-line of the hallway. If the measurements indicate that the distance to the walls is not equal, the
boolean wallsEqualDist will become false and the FSM goes to state ReAlign. Since the length of the
hallway is also not known, the robot will keep moving until the ends of the walls are slightly behind
the robot. When this happens the boolean wallEnd becomes true and the FSM goes to state Finished.

• ReAlign: The robot stops moving forward to be able to re-align the robot better to the center-line of
the hallway. When the walls on both side are again at an equal distance of the robot, the boolean
wallsEqualDist will become true again and the FSM goes back to state MoveIntoExit.

• Finished: The robot stops moving and the challenge is finished.

3



Figure 3.1: Schematic overview of software for escape room challenge. The colors of the blocks in the FSM
represent the following: Yellow is for exiting the room, Red is for finding the exit, Purple is safety measures,
and Green is finishing the challenge.

4 Interfaces
The interfaces represent the connection and/or communication between the components. The world model is
updated through the interface with the perception of sensor data which is influenced by the sensor components
of the (virtual) hardware sensors. The world model influences a collective of components (classes in Figure
3.1): path planning, drive control, detection and safety(monitoring), while these components influence the
world model itself with the actuator components. All these components communicate with the Finite State
Machine (FSM) which is used to solve the escape room problem in a logical way. Finally, the user interacts
with the finite state machine by starting the challenge or receiving information on progress.

4


	Requirements & specifications
	Components
	Functions
	Interfaces

