
Department of Mechanical Engineering

4SC020 – Mobile Robot Control (Embedded motion control)

Design Document

Name Student number
D. van Boven 0780958
M. Katzmann 1396846
R. Konings 1394819
B. Kool 1387391
R.O.B. Stiemsma 0852884
A.S.H. Vinjarapu 1502859

Tutor: Marzieh Dolatabadi Farahani

Eindhoven, May 4, 2020



Introduction

This document describes the design of a PICO application. A PICO is a robot that can monitor the
enviroment by sensors. There are two competitions for the robot to complete. The escape room competition,
where the robot needs to escape out of a rectangular room, without bumping into a wall. And the robot
needs to complete the hospital competition, where the robot needs to maneuver through a hospital, where it
has to avoid obstacles.

Requirements

A requirement tree has been set up with the requirements from the stakeholders of the project. The
stakeholders are the customer, the hospital employees and the developers of the robot. From here on, the
environmental requirements, indicated with the orange boxes, have been acquired. From these environmental
requirements, the border requirements, indicated with the purple boxes, have been acquired. Lastly, the
system requirements have been acquired, indicated with the green boxes. Some of the green boxes have
a set value assigned, indicated with a blue ball. And other system requirements are out of scope for the
project team, indicated with a red square. The requirement tree of the hospital room can be seen in figure 1.
The requirement tree of the escape room is indicated with the red dotted line.

Figure 1: Requirement tree hospital room(dotted area: escape room)

The values assigned to system requirements are still subject to change as the project progresses. In addition,
two values have not been chosen yet. Namely the maximum acceleration and the maximum distance to
walls and objects. The maximum acceleration will be chosen accordingly once more information of the robot
is available. The maximum distance to walls and objects has been chosen between a range from 0.1 and 0.5
meter and will also be chosen accordingly later on when more information is available.

1



Functions and Interfaces

In this section, the proposed architecture is described by means of its constituent functions and their
relationships (interfaces) between one another.

Functions

PICO Interactions

These are all low-level interactions consisting mostly of calls to the IO API (which represents communication
with PICO).

• actuate(v, u, th). Casts a desired velocity profile [ẋ, ẏ, ˙theta] to the robot.

• getLRF(). Pulls LRF data from the robot. Returns a Laserdata struct.

• getODO(). Pulls odometry data from the robot. Returns an OdometryData struct.

Mapping

This section describes the outlines of the internal map model and its learning process.

• seeLocal(Laserdata). Interprets laserdata as a local vision envelope, and stores the outcome locally.

• loc2glob(). Transforms local sensor data into a global perspective using calibration elements (e.g.
intersections of wall lines).

• tf2map(). Transforms sensor data (in a global coordinate system) to Mapdata, which involves
rasterizing the received data.

• integrate(). Compares and contrasts new data with old data, and modifies (and/or expands) the
global map model accordingly.

Navigation

This section covers the system functionalities responsible for (intelligent) navigation. All functions here have
read access to the world model’s internal map and LRF envelope.

• localize(). Deducts the PICO’s current location in the map model based on its most recent LRF
data.

• pathfind(x, y). Employs a pathfinding algorithm to find a combination of rotations and straight
motions (longitudinal or sideways) that will bring the PICO from its current location to the global
coordinate (x, y). Returns a PathData struct which describes the intended locations, and necessary
rotations and local (x, y) motions to reach them.

• nextTrajectory(). Takes the next first data from PathData1, and calculates the necessary velocity
profiles and timings to achieve the desired motion smoothly. Returns this as a Trajectory struct.

• compensate(). Checks the PICO’s current location compared to its intended location within the
planned path, and determines whether compensation is needed in the sense of adjusting the path, the
PICO’s position, or recomputing the path.

Supervisor

This section covers the governing control logic of the proposed system. The idea is that the supervisor makes
choices, tunes parameters, and controls flow-of-command within remaining code depending on its mode, and
changes modes dynamically. Modes are described here as functions, but may end up in a different form
during implementation.

1This pops the corresponding entry out of PathData

2



• init(). Initializes the robot, checks (as far as possible) whether safe operation is possible. Sets the
mode to scout.

• scout(). PICO is uncertain about its surroundings, and hence scans its surroundings, moving as little
as possible in doing so. In this mode, safety parameters are conservative. Once a useful feature (such
as a door) is found, or map confidence improves enough for PICO to feel safe, control is yielded to the
move mode. If all exploration options are exhausted and PICO is still uncertain, control is instead
yielded to wait.

• move(). PICO knows enough, and knows where it wants to go. This mode sets safety margins much
more aggressively than scout mode, and looks to move long, efficient motions in pursuit of PICO’s
intended destination. During motion, PICO keeps updating its map, and reverts to scout mode if
certainty dips to unacceptable levels.

• wait(). PICO decides its goal is currently impossible. Waits, and occasionally returns to scout mode
to see if the situation has changed2.

• act(). An empty token mode to represent PICO arriving at a destination and doing something there.

Interfaces

Keeping the aforementioned functionalities in mind, and given that the modes of the Supervisor module are
represented here as separate locations for clarity’s sake, a rough depiction of the proposed system structure
is shown in Figure 2 below.

Supervisor

Wait Scout Move

Mapping

NavigationPICOInteractions

Act

Figure 2: State Machine Representation

2This covers the test case where a target location is barricaded.

3



Components

The hardware of the PICO robot used to smoothly execute the functions mentioned above, consists of the
following components:

• Sensors

– Laser Range Finder

– Wheel Encoders

• Actuators

– Holonomic wheels

• Computer

– Intel Core i7 Processor and 8+ GB of DDR3 RAM

Specifications

System: PICO

1. Maximum translational speed: 0.5 m/s

2. Maximum rotational speed: 1.2 rad/s

3. Wheel encoders used for odometry

4. Laser Range Finder(LRF) used for distance measurement

• Measurable angle: 4 radians.

• Resolution: 0.004 radians.

Environment:

1. Escape Room Challenge:

• Shape of the room is rectangular.

• PICO starts at a random position.

• Width of the corridor is between 0.5m to 1.5m.

• Finish line is more than 3m into the corridor whose orientation is perpendicular to the wall.

• Walls are not necessarily perfectly straight.

• Corners are not necessarily perfectly perpendicular.

• Challenge is to be finished in 5 mins.

2. Hospital Challenge:

• Hallway is approximately 1.5m wide and is not necessarily straight.

• Doors in the hospital are 0.5m to 1m wide.(closed or open).

• A random number of static and dynamic obstacles will be present throughout the hospital.

• Challenge is to be finished in 5 mins.

4


