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Recap & intro / Robot navigation problem

• Goal: find a path or trajectory from a given initial pose (A) to the desired 
final pose (B)
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Recap & intro / Robot navigation problem

• Goal: find a path or trajectory from a given initial pose (A) to the desired 
final pose (B)

• Division into global and local navigation
• Global: compute path from start to goal
• Local: execute local part of global path while satisfying constraints
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Recap & intro / Robot navigation problem

• Goal: find a path or trajectory from a given initial pose (A) to the desired 
final pose (B)

• Division into global and local navigation
• Global: compute path from start to goal
• Local: execute local part of global path while satisfying constraints
• Reasons:

• Reduce complexity
• Static vs dynamic environment
• Global world model often incomplete or unavailable
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Recap & intro / Robot navigation problem

• Goal: find a path or trajectory from a given initial pose (A) to the desired 
final pose (B)

• Division into global and local navigation
• Local navigation algorithms
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Recap & intro / Robot navigation problem

• Goal: find a path or trajectory from a given initial pose (A) to the desired 
final pose (B)

• Division into global and local navigation
• Local navigation algorithms

• Artificial potential fields
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Recap & intro / Robot navigation problem

• Goal: find a path or trajectory from a given initial pose (A) to the desired 
final pose (B)

• Division into global and local navigation
• Local navigation algorithms

• Artificial potential fields
• Dynamic window approach
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Recap & intro / Robot navigation problem

• Goal: find a path or trajectory from a given initial pose (A) to the desired 
final pose (B)

• Division into global and local navigation
• Local navigation algorithms

• Artificial potential fields
• Dynamic window approach
• Vector field histograms
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Recap & intro / Robot navigation problem

• Goal: find a path or trajectory from a given initial pose (A) to the desired 
final pose (B)

• Division into global and local navigation
• Local navigation algorithms

• Artificial potential fields
• Dynamic window approach
• Vector field histograms
• Optimization- and learning-based methods
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Recap & intro / Robot navigation problem

• Goal: find a path or trajectory from a given initial pose (A) to the desired 
final pose (B)

• Division into global and local navigation
• Local navigation algorithms

Questions?
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Recap & intro / Global navigation problem

• What is the global navigation problem?
• Find a feasible path from A to B based on your current knowledge

• How does it complement local navigation?
• Global path gives the direction to progress
• Local navigation follows this direction safely, taking into account local objects

• What are the requirements?

Mobile Robot Control - Lecture 4 - Global Navigation9



Recap & intro / Motion planning algorithms: specs & properties
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Completeness: finding a path if one exists

Optimality: finding the optimal path (time, energy, distance, …)

Computational complexity: scalability

Robustness against a dynamic environment

Robustness against uncertainty

Kinematic and dynamic constraints



Recap & intro / Motion planning algorithms: specs & properties
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Completeness: finding a path if one exists

Optimality: finding the optimal path (time, energy, distance, …)

Computational complexity: scalability

Robustness against a dynamic environment

Robustness against uncertainty

Kinematic and dynamic constraints

Also important for 
global planning!

Mainly handled by 
local planning
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Map representations

We often discretize the map to make the problem more manageable

Mobile Robot Control - Lecture 4 - Global Navigation12

Grid-based (equidistant cells)                      Cell-based                                             Graph-based



Map representations

We often discretize the map to make the problem more manageable

Mobile Robot Control - Lecture 4 - Global Navigation12

Coenen, S.A.M. (2012). Motion Planning for Mobile Robots - A Guide. Master’s thesis

Grid-based (equidistant cells)                      Cell-based                                             Graph-based



Map representations

We often discretize the map to make the problem more manageable

Mobile Robot Control - Lecture 4 - Global Navigation12

Coenen, S.A.M. (2012). Motion Planning for Mobile Robots - A Guide. Master’s thesis

Grid-based (equidistant cells)                      Cell-based                                             Graph-based



Map representations

We often discretize the map to make the problem more manageable
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Coenen, S.A.M. (2012). Motion Planning for Mobile Robots - A Guide. Master’s thesis

Blöchliger et al. (2017). Topomap: Topological Mapping 
and Navigation Based on Visual SLAM Maps. CoRR, 
http://arxiv.org/abs/1709.05533

Grid-based (equidistant cells)                      Cell-based                                             Graph-based

http://arxiv.org/abs/1709.05533
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From map to graph
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From map to graph
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From map to graph
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From map to graph
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From map to graph
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Outline

• Recap local navigation & intro global navigation
• Map representations
• From map to graph
• Path planning in graphs

• Dijkstra’s algorithm
• A* algorithm

• Efficient graph generation
• Summary
• Introduction to assignment
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Dijkstra’s algorithm
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• Goal: find the shortest path from start to goal in a graph

• Two stages:
• Exploration starting from start node
• Tracing back the path from goal to start

• Guarantees optimality!



Dijkstra’s algorithm / Exploration
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Step Closed nodes Open nodes (distance) Unvisited nodes
{𝑣𝑣 ∉ 𝑄𝑄} {𝑣𝑣 ∈ 𝑄𝑄 | dist 𝑣𝑣 < ∞} {𝑣𝑣 ∈ 𝑄𝑄| dist 𝑣𝑣 = ∞}
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function Dijkstra(Graph, start, goal):

for each node v in Graph.Nodes:
dist[v] = INF
prev[v] = NONE
add v to Q

dist[start] = 0

while Q is not empty:
u = node in Q with min dist[u]
if u is goal:

return dist, prev
remove u from Q
for each neighbor v of u still in Q:

d = dist[u] + Graph.Edges(u, v)
if d < dist[v]:

dist[v] = d
prev[v] = u

Pseudo-code based on 
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
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Dijkstra’s algorithm / Trace path back
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Path = empty sequence
u = goal

while prev[u] ≠ NONE and u = start:
insert u at beginning of Path
u = prev[u]
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Dijkstra’s algorithm / Larger scale visualization
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Dijkstra’s algorithm. Source: 
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
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A* algorithm

“A* = Dijkstra + heuristic”

• 𝑣𝑣 ≤ cost_to_go(𝑣𝑣)
• 𝐻𝐻(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) = 0

• Example: Euclidean distance to goal
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A* algorithm
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function Astar(Graph, start, goal):

for each node v in Graph.Nodes:
dist[v] = INF
heur[v] = H(v)
prev[v] = NONE
add v to Q

dist[start] = 0

while Q is not empty:
u = node in Q with min dist[u] + heur[u]
if u is goal:

return dist, prev
remove u from Q
for each neighbor v of u still in Q:

d = dist[u] + Graph.Edges(u, v)
if d < dist[v]:

dist[v] = d
prev[v] = u
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A* algorithm / Visualization compared to Dijkstra
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Dijkstra’s algorithm. Source: 
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

A* algorithm. Source: 
https://en.wikipedia.org/wiki/A*_search_algorithm

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
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Break

• Recap local navigation & intro global navigation
• Map representations
• From map to graph
• Path planning in graphs
• Efficient graph generation
• Summary
• Introduction to assignment

Any questions so far?
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Outline

• Recap local navigation & intro global navigation
• Map representations
• From map to graph
• Path planning in graphs
• Efficient graph generation

• Visibility graphs
• Rapidly-exploring Random Tree (RRT)
• Probabilistic Roadmap

• Summary
• Introduction to assignment
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Efficient graph generation / Motivation

• Example: A* on grid maps
• Advantages:

+ No need to create the graph in advance, because 
the grid is regular

+ Easy to calculate path cost
• Disadvantages:

- In general less efficient because not all nodes 
are necessary
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Efficient graph generation / Motivation

• Example: A* on grid maps
• Advantages:

+ No need to create the graph in advance, because 
the grid is regular

+ Easy to calculate path cost
• Disadvantages:

- In general less efficient because not all nodes 
are necessary

• More efficient graph desired!
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A* algorithm. Source: 
https://en.wikipedia.org/wiki/A*_search_algorithm

https://en.wikipedia.org/wiki/A*_search_algorithm


Efficient graph generation / Visibility graph

• Nodes:
• Vertices of obstacles
• Agent
• Goal

• Edges:
• All straight lines between nodes that do not cross 

obstacles (visibility)
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Efficient graph generation / Visibility graph

• Nodes:
• Vertices of obstacles
• Agent
• Goal

• Edges:
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Efficient graph generation / Visibility graph

• Nodes:
• Vertices of obstacles
• Agent
• Goal

• Edges:
• All straight lines between nodes that do not cross 

obstacles (visibility)

• Scalability: maximum distance to create edge
• Robustness: inflate obstacles or handled by 

local planner
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unmanned surface vehicles. Ocean Engineering. 161. 
308-321. 10.1016/j.oceaneng.2018.01.025.



Efficient graph generation / RRT

• RRT = Rapidly-exploring Random 
Tree

• Construct a tree by random 
sampling, starting at the initial state

Mobile Robot Control - Lecture 4 - Global Navigation27



Efficient graph generation / RRT

• RRT = Rapidly-exploring Random 
Tree

• Construct a tree by random 
sampling, starting at the initial state

Mobile Robot Control - Lecture 4 - Global Navigation27

function BuildRRT(q_init,    // Initial configuration 
K,          // number of vertices
Δq):       // incremental distance
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q_near ← NEAREST_VERTEX(q_rand, Graph)

Graph.add_edge(q_near, q_rand)

return Graph
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Efficient graph generation / RRT

• RRT = Rapidly-exploring Random 
Tree

• Construct a tree by random 
sampling, starting at the initial state

• Tree is dense in the limit
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• Presence of obstacles

Efficient graph generation / RRT
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• Presence of obstacles

• We can stop if we can add the goal 
node to the tree

Efficient graph generation / RRT
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• RRT*: RRT with rewiring for shorter paths
• Similar to Dijkstra and A*

Efficient graph generation / RRT*
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Efficient graph generation / Probabilistic roadmap
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Efficient graph generation / Probabilistic roadmap
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• Nodes: randomly generated (valid) 
configurations

• Edges: (straight-line) collision-free 
connections between nodes

• Note: Different strategies of sampling, 
neighborhood or connections might be 
more appropriate

• Planning: e.g. Dijkstra or A*
• Roadmap can be independent of start 

and final configurations



Following a global path with a local planner

• Exact trajectory planning is often infeasible
• Would lead to constant replanning
• Local planner needed (previous lecture)
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Source: https://www.openstreetmap.org/
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• Recap local navigation & intro global navigation
• Map representations
• From map to graph
• Path planning in graphs
• Efficient graph generation
• Summary
• Introduction to assignment
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• Map representations

• Discretizations: Cell-based, grid-based and graph-based
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• Path planning in graphs

• Dijkstra & A*: complete and optimal
• Grids are simple but often inefficient. Alternatives:

• Visibility graph: short paths, has to be recomputed when map is updated
• RRT(*): creates graph and finds path, but very specific for start location, 

completeness only guaranteed in the limit
• Probabilistic roadmap: completeness only guaranteed in the limit
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Assignment part 1
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• Complete an implementation of the A* algorithm to find the shortest 
path from start to finish in a maze

• Provided: list of nodes and edges, index of start and finish nodes
• Required: sequence of node indices that form the shortest path from 

start to finish
0 1 2 3 4 5 6 7 8

9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

31 32 33

34 35 36 37 38 39 40

41



Assignment part 2
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• Complete the implementation of generating a graph that represents a 
Probabilistic Roadmap (PRM)

• When part 1 of the assignment is also finished, a path from start to goal 
in this PRM can be found using your A* algorithm



Assignment part 3
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• Connect global and local planner
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