

Outline

- Recap local navigation & intro global navigation
- Map representations
- From map to graph
- Path planning in graphs
- Efficient graph generation
- Summary
- Introduction to assignment

Outline

- Recap local navigation & intro global navigation
 - Robot navigation problem
 - Global vs local navigation
 - Global navigation problem
 - Motion planning algorithms: specifications and properties
- Map representations
- From map to graph
- Path planning in graphs
- Efficient graph generation
- Summary
- Introduction to assignment

• Goal: find a path or trajectory from a given initial pose (A) to the desired final pose (B)

Goal: find a path or trajectory from a given initial pose (A) to the desired

final pose (B)

Division into global and local navigation

Global: compute path from start to goal

• Local: execute local part of global path while satisfying constraints

38 min.

- Goal: find a path or trajectory from a given initial pose (A) to the desired final pose (B)
- Division into global and local navigation
 - Global: compute path from start to goal
 - Local: execute local part of global path while satisfying constraints
 - Reasons:
 - Reduce complexity
 - Static vs dynamic environment
 - Global world model often incomplete or unavailable

- Goal: find a path or trajectory from a given initial pose (A) to the desired final pose (B)
- Division into global and local navigation
- Local navigation algorithms

- Goal: find a path or trajectory from a given initial pose (A) to the desired final pose (B)
- Division into global and local navigation
- Local navigation algorithms
 - Artificial potential fields

https://sudonull.com/post/62343-What-robotics-can-teach-gaming-Al

- Goal: find a path or trajectory from a given initial pose (A) to the desired final pose (B)
- Division into global and local navigation
- Local navigation algorithms
 - Artificial potential fields
 - Dynamic window approach

- Goal: find a path or trajectory from a given initial pose (A) to the desired final pose (B)
- Division into global and local navigation
- Local navigation algorithms
 - Artificial potential fields
 - Dynamic window approach
 - Vector field histograms

- Goal: find a path or trajectory from a given initial pose (A) to the desired final pose (B)
- Division into global and local navigation
- Local navigation algorithms
 - Artificial potential fields
 - Dynamic window approach
 - Vector field histograms
 - Optimization- and learning-based methods

- Goal: find a path or trajectory from a given initial pose (A) to the desired final pose (B)
- Division into global and local navigation
- Local navigation algorithms

Questions?

- What is the global navigation problem?
 - Find a feasible path from A to B based on your current knowledge
- How does it complement local navigation?
 - Global path gives the direction to progress
 - Local navigation follows this direction safely, taking into account local objects
- What are the requirements?

Recap & intro / Motion planning algorithms: specs & properties

- Completeness: finding a path if one exists
- Optimality: finding the optimal path (time, energy, distance, ...)
- Computational complexity: scalability
- Robustness against a dynamic environment
- ? Robustness against uncertainty
- Kinematic and dynamic constraints

Recap & intro / Motion planning algorithms: specs & properties

Outline

- Recap local navigation & intro global navigation
- Map representations
- From map to graph
- Path planning in graphs
- Efficient graph generation
- Summary
- Introduction to assignment

We often discretize the map to make the problem more manageable

Grid-based (equidistant cells)

Cell-based

Graph-based

We often discretize the map to make the problem more manageable

Grid-based (equidistant cells)

 $ullet q_i$

Cell-based

Graph-based

Coenen, S.A.M. (2012). Motion Planning for Mobile Robots - A Guide. Master's thesis

We often discretize the map to make the problem more manageable

Coenen, S.A.M. (2012). Motion Planning for Mobile Robots - A Guide. Master's thesis

Graph-based

We often discretize the map to make the problem more manageable

Outline

- Recap local navigation & intro global navigation
- Map representations
- From map to graph
- Path planning in graphs
- Efficient graph generation
- Summary
- Introduction to assignment

- Nodes
- Edges

Coenen, S.A.M. (2012). Motion Planning for Mobile Robots - A Guide. Master's thesis

- Nodes
- Edges

Coenen, S.A.M. (2012). Motion Planning for Mobile Robots - A Guide. Master's thesis

- Nodes
- Edges

- Nodes
- Edges

Source: https://www.openstreetmap.org/

- Nodes
- Edges

Source: https://www.openstreetmap.org/

- Nodes
- Edges

Outline

- Recap local navigation & intro global navigation
- Map representations
- From map to graph
- Path planning in graphs
 - Dijkstra's algorithm
 - A* algorithm
- Efficient graph generation
- Summary
- Introduction to assignment

Dijkstra's algorithm

- Goal: find the shortest path from start to goal in a graph
- Two stages:
 - Exploration starting from start node
 - Tracing back the path from goal to start
- Guarantees optimality!


```
function Dijkstra(Graph, start, goal):
for each node v in Graph.Nodes:
  dist[v] = INF
  prev[v] = NONE
  add v to Q
dist[start] = 0
while Q is not empty:
  u = \text{node in } Q \text{ with min dist}[u]
  if u is qoal:
     return dist, prev
  remove u from Q
  for each neighbor v of u still in Q:
    d = dist[u] + Graph.Edges(u, v)
    if d < dist[v]:
       dist[v] = d
       prev[v] = u
```

Pseudo-code based on

https://en.wikipedia.org/wiki/Dijkstra%27s algorithm


```
function Dijkstra(Graph, start, goal):
for each node v in Graph.Nodes:
  dist[v] = INF
  prev[v] = NONE
  add v to Q
dist[start] = 0
while Q is not empty:
  u = \text{node in } Q \text{ with min dist}[u]
  if u is qoal:
     return dist, prev
  remove u from Q
  for each neighbor v of u still in Q:
    d = dist[u] + Graph.Edges(u, v)
    if d < dist[v]:
       dist[v] = d
       prev[v] = u
```

Pseudo-code based on

https://en.wikipedia.org/wiki/Dijkstra%27s algorithm


```
function Dijkstra(Graph, start, goal):
for each node v in Graph.Nodes:
  dist[v] = INF
  prev[v] = NONE
  add v to Q
dist[start] = 0
while Q is not empty:
  u = \text{node in } Q \text{ with min dist}[u]
  if u is qoal:
     return dist, prev
  remove u from Q
  for each neighbor v of u still in Q:
    d = dist[u] + Graph.Edges(u, v)
    if d < dist[v]:
       dist[v] = d
       prev[v] = u
```

Pseudo-code based on

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm


```
      Step Closed nodes
      Open nodes (distance)

      \{v \notin Q\}
      \{v \in Q \mid \text{dist}[v] < \infty\}

      0
      0 (0)

      1
      0
      1 (4), \frac{4}{3} (3)

      2
      0, 4
      \frac{1}{3} (4), \frac{1}{3} (11), \frac{1}{3} (5)

      3
      0, 1, 4
      \frac{1}{3} (8), \frac{1}{3} (9), \frac{1}{3} (5)
```

```
Unvisited nodes \{v \in Q \mid \text{dist}[v] = \infty\} 1, 2, 3, 4, 5, 6, 7 2, 3, 5, 6, 7 2, 3, 6 3, 6
```

```
function Dijkstra(Graph, start, goal):
for each node v in Graph.Nodes:
  dist[v] = INF
  prev[v] = NONE
  add v to Q
dist[start] = 0
while Q is not empty:
  u = \text{node in } Q \text{ with min dist}[u]
  if u is qoal:
     return dist, prev
  remove u from Q
  for each neighbor v of u still in Q:
    d = dist[u] + Graph.Edges(u, v)
    if d < dist[v]:
       dist[v] = d
       prev[v] = u
```

Pseudo-code based on

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Step Closed nodes

 $\{v \in Q \mid \operatorname{dist}[v] < \infty\}$ $\{v \notin Q\}$ 0 0(0)1 (4), 4 (3) 0, 4 <u>1 (4)</u>, 5 (11), 7 (5) 0, 1, 4 2 (8), <mark>5 (9)</mark>, <u>7 (5)</u> 0, 1, 4, 7 2 (8), 5 (9)

Unvisited nodes

```
\{v \in Q \mid \operatorname{dist}[v] = \infty\}
1, 2, 3, 4, 5, 6, 7
2, 3, 5, 6, 7
2, 3, 6
3, 6
3, 6
```

```
function Dijkstra(Graph, start, goal):
for each node v in Graph.Nodes:
  dist[v] = INF
  prev[v] = NONE
  add v to Q
dist[start] = 0
while Q is not empty:
  u = \text{node in } Q \text{ with min dist}[u]
  if u is qoal:
     return dist, prev
  remove u from Q
  for each neighbor v of u still in Q:
    d = dist[u] + Graph.Edges(u, v)
    if d < dist[v]:
       dist[v] = d
       prev[v] = u
```

Pseudo-code based on

https://en.wikipedia.org/wiki/Dijkstra%27s algorithm

Step Closed nodes Open nodes (distance) $\{v \notin Q\}$ $\{v \in Q \mid \text{dist}[v] < \infty\}$

0, 1, 4, 7

0, 2, 1, 4, 7

2 (8), 5 (9) 5 (9), 3 (10)

Unvisited nodes

```
\{v \in Q | \operatorname{dist}[v] = \infty\}
1, 2, 3, 4, 5, 6, 7
2, 3, 5, 6, 7
2, 3, 6
3, 6
3, 6
```

```
function Dijkstra(Graph, start, goal):
for each node v in Graph.Nodes:
  dist[v] = INF
  prev[v] = NONE
  add v to Q
dist[start] = 0
while Q is not empty:
  u = \text{node in } Q \text{ with min dist}[u]
  if u is qoal:
     return dist, prev
  remove u from Q
  for each neighbor v of u still in Q:
    d = dist[u] + Graph.Edges(u, v)
    if d < dist[v]:
       dist[v] = d
       prev[v] = u
```

Pseudo-code based on

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Dijkstra's algorithm / Trace path back

Path = empty sequenceu = goal

while prev[u] \neq NONE and u = start: insert u at beginning of Pathu = prev[u]

Pseudo-code based on https://en.wikipedia.org/wiki/Dijkstra%27s algorithm

Path = empty sequenceu = goal

while prev[u] \neq NONE and u = start: insert u at beginning of Pathu = prev[u]

Pseudo-code based on https://en.wikipedia.org/wiki/Dijkstra%27s algorithm

Path = empty sequenceu = goal

while prev[u] \neq NONE and u = start: insert u at beginning of Pathu = prev[u]

Path = empty sequenceu = goal

while prev[u] \neq NONE and u = start: insert u at beginning of Pathu = prev[u]

Path = empty sequenceu = goal

while prev[u] \neq NONE and u = start: insert u at beginning of Pathu = prev[u]

Path = empty sequenceu = goal

while prev[u] \neq NONE and u = start: insert u at beginning of Pathu = prev[u]

Dijkstra's algorithm / Larger scale visualization

Dijkstra's algorithm. Source: https://en.wikipedia.org/wiki/Dijkstra%27s algorithm

- $(v) \leq \text{cost_to_go}(v)$
- H(goal) = 0
- Example: Euclidean distance to goal

"A* = Dijkstra + heuristic"

Select open node with minimum:

• Dijkstra: cost-to-come

• A*: cost-to-come + heuristic cost-to-go

- $(v) \le \cos_{\log v}(v)$
- H(goal) = 0
- Example: Euclidean distance to goal

```
function Astar(Graph, start, goal):
for each node v in Graph.Nodes:
     dist[v] = INF
     heur[v] = H(v)
     prev[v] = NONE
     add v to Q
dist[start] = 0
while Q is not empty:
     u = \text{node in } Q \text{ with min dist}[u] + \text{heur}[u]
     if u is qoal:
          return dist, prev
     remove u from Q
     for each neighbor v of u still in Q:
          d = dist[u] + Graph.Edges(u, v)
          if d < dist[v]:
               dist[v] = d
               prev[v] = u
```


"A* = Dijkstra + heuristic"

- Select open node with minimum:
 - Dijkstra: cost-to-come
 - A*: cost-to-come + heuristic cost-to-go
- Heuristic approximates remaining distance to goal

- $(v) \leq \text{cost_to_go}(v)$
- H(goal) = 0
- Example: Euclidean distance to goal

```
function Astar(Graph, start, goal):
for each node v in Graph.Nodes:
     dist[v] = INF
     heur[v] = H(v)
     prev[v] = NONE
     add v to Q
dist[start] = 0
while Q is not empty:
     u = \text{node in } Q \text{ with min dist}[u] + \text{heur}[u]
     if u is qoal:
          return dist, prev
     remove u from Q
     for each neighbor v of u still in Q:
          d = dist[u] + Graph.Edges(u, v)
          if d < dist[v]:
               dist[v] = d
               prev[v] = u
```


21

```
ggooaall)=0

cost_to_go(vv)

"A* = Dijkstra + heuristic"
```

Select open node with minimum:

• Dijkstra: cost-to-come

• A*: cost-to-come + heuristic cost-to-go

- Heuristic approximates remaining distance to goal
- Criteria for an admissible heuristic to guarantee optimality:
 - H(goal) = 0
 - H(anal) = 0

```
function Astar(Graph, start, goal):
for each node v in Graph.Nodes:
     dist[v] = INF
     heur[v] = H(v)
     prev[v] = NONE
     add v to Q
dist[start] = 0
while Q is not empty:
     u = \text{node in } Q \text{ with min dist}[u] + \text{heur}[u]
     if u is goal:
          return dist, prev
     remove u from Q
     for each neighbor v of u still in Q:
          d = dist[u] + Graph.Edges(u, v)
          if d < dist[v]:
               dist[v] = d
               prev[v] = u
```



```
ggooaall)=0

cost_to_go(vv)

"A* = Dijkstra + heuristic"
```

Select open node with minimum:

• Dijkstra: cost-to-come

• A*: cost-to-come + heuristic cost-to-go

- Heuristic approximates remaining distance to goal
- Criteria for an admissible heuristic to guarantee optimality:
- Example: Euclidean distance to goal

```
• U(aaal) = 0
```

```
function Astar(Graph, start, goal):
for each node v in Graph.Nodes:
     dist[v] = INF
     heur[v] = H(v)
     prev[v] = NONE
     add v to Q
dist[start] = 0
while Q is not empty:
     u = \text{node in } Q \text{ with min dist}[u] + \text{heur}[u]
     if u is goal:
          return dist, prev
     remove u from Q
     for each neighbor v of u still in Q:
          d = dist[u] + Graph.Edges(u, v)
          if d < dist[v]:
               dist[v] = d
               prev[v] = u
```


A* algorithm / Visualization compared to Dijkstra

A* algorithm. Source:

https://en.wikipedia.org/wiki/A* search algorithm

Dijkstra's algorithm. Source: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Break

- Recap local navigation & intro global navigation
- Map representations
- From map to graph
- · Path planning in graphs
- Efficient graph generation
- Summary
- Introduction to assignment

Any questions so far?

Outline

- Recap local navigation & intro global navigation
- Map representations
- From map to graph
- Path planning in graphs
- Efficient graph generation
 - Visibility graphs
 - Rapidly-exploring Random Tree (RRT)
 - Probabilistic Roadmap
- Summary
- Introduction to assignment

Efficient graph generation / Motivation

- Example: A* on grid maps
 - Advantages:
 - + No need to create the graph in advance, because the grid is regular
 - + Easy to calculate path cost
 - Disadvantages:
 - In general less efficient because not all nodes are necessary

A* algorithm. Source:

https://en.wikipedia.org/wiki/A* search algorithm

Efficient graph generation / Motivation

- Example: A* on grid maps
 - Advantages:
 - + No need to create the graph in advance, because the grid is regular
 - + Easy to calculate path cost
 - Disadvantages:
 - In general less efficient because not all nodes are necessary
- More efficient graph desired!

A* algorithm. Source: https://en.wikipedia.org/wiki/A* search algorithm

Efficient graph generation / Visibility graph

- Nodes:
 - Vertices of obstacles
 - Agent
 - Goal
- Edges:
 - All straight lines between nodes that do not cross obstacles (visibility)

Niu, Hanlin & Lu, Yu & Savvaris, Al & Tsourdos, Antonios. (2018). An energy-efficient path planning algorithm for unmanned surface vehicles. Ocean Engineering. 161. 308-321. 10.1016/j.oceaneng.2018.01.025.

Efficient graph generation / Visibility graph

- Nodes:
 - Vertices of obstacles
 - Agent
 - Goal
- Edges:
 - All straight lines between nodes that do not cross obstacles (visibility)
- Scalability: maximum distance to create edge

Niu, Hanlin & Lu, Yu & Savvaris, Al & Tsourdos, Antonios. (2018). An energy-efficient path planning algorithm for unmanned surface vehicles. Ocean Engineering. 161. 308-321. 10.1016/j.oceaneng.2018.01.025.

Efficient graph generation / Visibility graph

- Nodes:
 - Vertices of obstacles
 - Agent
 - Goal
- Edges:
 - All straight lines between nodes that do not cross obstacles (visibility)
- Scalability: maximum distance to create edge
- Robustness: inflate obstacles or handled by local planner

Niu, Hanlin & Lu, Yu & Savvaris, Al & Tsourdos, Antonios. (2018). An energy-efficient path planning algorithm for unmanned surface vehicles. Ocean Engineering. 161. 308-321. 10.1016/j.oceaneng.2018.01.025.

- RRT = Rapidly-exploring Random Tree
- Construct a tree by random sampling, starting at the initial state

- RRT = Rapidly-exploring Random Tree
- Construct a tree by random sampling, starting at the initial state

```
function BuildRRT(q init, // Initial configuration
                          // number of vertices
                   Δq):
                           // incremental distance
  Graph.init(q init)
  for k = 1 to K:
    q rand \leftarrow RAND CONF(\Deltaq)
     q near ← NEAREST VERTEX(q rand, Graph)
     Graph.add edge(q near, q rand)
  return Graph
```


- RRT = Rapidly-exploring Random Tree
- Construct a tree by random sampling, starting at the initial state

```
function BuildRRT(q init, // Initial configuration
                          // number of vertices
                   Δq):
                           // incremental distance
  Graph.init(q init)
  for k = 1 to K:
    q rand \leftarrow RAND CONF(\Deltaq)
     q near ← NEAREST VERTEX(q rand, Graph)
     Graph.add edge(q near, q rand)
  return Graph
```


- RRT = Rapidly-exploring Random Tree
- Construct a tree by random sampling, starting at the initial state


```
function BuildRRT(q init, // Initial configuration
                          // number of vertices
                   Δq):
                           // incremental distance
  Graph.init(q init)
  for k = 1 to K:
    q rand \leftarrow RAND CONF(\Deltaq)
     q near ← NEAREST VERTEX(q rand, Graph)
     Graph.add edge(q near, q rand)
  return Graph
```


- RRT = Rapidly-exploring Random Tree
- Construct a tree by random sampling, starting at the initial state


```
function BuildRRT(q init,
                            // Initial configuration
                           // number of vertices
                   Δq):
                            // incremental distance
  Graph.init(q init)
  for k = 1 to K:
    q rand \leftarrow RAND CONF(\Deltaq)
     q near ← NEAREST VERTEX(q rand, Graph)
     Graph.add edge(q near, q rand)
  return Graph
```


- RRT = Rapidly-exploring Random Tree
- Construct a tree by random sampling, starting at the initial state


```
function BuildRRT(q init,
                            // Initial configuration
                           // number of vertices
                   Δq):
                            // incremental distance
  Graph.init(q init)
  for k = 1 to K:
    q rand \leftarrow RAND CONF(\Deltaq)
     q near ← NEAREST VERTEX(q rand, Graph)
     Graph.add edge(q near, q rand)
  return Graph
```


- RRT = Rapidly-exploring Random Tree
- Construct a tree by random sampling, starting at the initial state


```
function BuildRRT(q init,
                            // Initial configuration
                            // number of vertices
                   Δq):
                            // incremental distance
  Graph.init(q init)
  for k = 1 to K:
    q rand \leftarrow RAND CONF(\Deltaq)
     q near ← NEAREST VERTEX(q rand, Graph)
     Graph.add edge(q near, q rand)
  return Graph
```


- RRT = Rapidly-exploring Random Tree
- Construct a tree by random sampling, starting at the initial state


```
function BuildRRT(q init,
                            // Initial configuration
                            // number of vertices
                   Δq):
                            // incremental distance
  Graph.init(q init)
  for k = 1 to K:
    q rand \leftarrow RAND CONF(\Deltaq)
     q near ← NEAREST VERTEX(q rand, Graph)
     Graph.add edge(q near, q rand)
  return Graph
```


- RRT = Rapidly-exploring Random Tree
- Construct a tree by random sampling, starting at the initial state
- Tree is dense in the limit


```
function BuildRRT(q init,
                           // Initial configuration
                           // number of vertices
                   Δq):
                           // incremental distance
  Graph.init(q init)
  for k = 1 to K:
    q rand \leftarrow RAND CONF(\Deltaq)
    q near ← NEAREST VERTEX(q rand, Graph)
     q new ← STOPPING CONFIG(q near, q rand)
     if q new != q near:
       Graph.add edge(q near, q new)
  return Graph
```



```
function BuildRRT(q init,
                           // Initial configuration
                           // number of vertices
                   Δq):
                           // incremental distance
  Graph.init(q init)
  for k = 1 to K:
    q rand \leftarrow RAND CONF(\Deltaq)
    q near ← NEAREST VERTEX(q rand, Graph)
     q new ← STOPPING CONFIG(q near, q rand)
     if q new != q near:
       Graph.add edge(q near, q new)
  return Graph
```



```
function BuildRRT(q init,
                           // Initial configuration
                           // number of vertices
                   Δq):
                           // incremental distance
  Graph.init(q init)
  for k = 1 to K:
    q rand \leftarrow RAND CONF(\Deltaq)
    q near ← NEAREST VERTEX(q rand, Graph)
     q new ← STOPPING CONFIG(q near, q rand)
     if q new != q near:
       Graph.add edge(q near, q new)
  return Graph
```



```
function BuildRRT(q init,
                           // Initial configuration
                           // number of vertices
                   Δq):
                           // incremental distance
  Graph.init(q init)
  for k = 1 to K:
    q rand \leftarrow RAND CONF(\Deltaq)
    q near ← NEAREST VERTEX(q rand, Graph)
     q new ← STOPPING CONFIG(q near, q rand)
     if q new != q near:
       Graph.add edge(q near, q new)
  return Graph
```


 We can stop if we can add the goal node to the tree

```
function BuildRRT(q init,
                           // Initial configuration
                           // number of vertices
                   Δq):
                           // incremental distance
  Graph.init(q init)
  for k = 1 to K:
    g rand \leftarrow RAND CONF(\Deltag)
     q near ← NEAREST VERTEX(q rand, Graph)
     q new ← STOPPING CONFIG(q near, q rand)
     if q new != q near:
       Graph.add edge(q near, q new)
  return Graph
```


- RRT*: RRT with rewiring for shorter paths
 - Similar to Dijkstra and A*

- RRT*: RRT with rewiring for shorter paths
 - Similar to Dijkstra and A*

- RRT*: RRT with rewiring for shorter paths
 - Similar to Dijkstra and A*

Efficient graph generation / RRT*

- RRT*: RRT with rewiring for shorter paths
 - Similar to Dijkstra and A*

- Nodes: randomly generated (valid) configurations
- Edges: (straight-line) collision-free connections between nodes

- Nodes: randomly generated (valid) configurations
- Edges: (straight-line) collision-free connections between nodes

```
function Generate PRM(Map, N vertices):
  G.init()
  for i = 0 to N_vertices:
    c ← a free configuration in Map
     G.add vertex(c)
    for each q in neighbours(c, G):
       if connect(c, q):
         G.add edge(c, q)
```


- Nodes: randomly generated (valid) configurations
- Edges: (straight-line) collision-free connections between nodes
- Note: Different strategies of sampling, neighborhood or connections might be more appropriate

```
function Generate PRM(Map, N vertices):
  G.init()
  for i = 0 to N vertices:
    c ← a free configuration in Map
    G.add vertex(c)
    for each q in neighbours(c, G):
       if connect(c, q):
         G.add edge(c, q)
```


- Nodes: randomly generated (valid) configurations
- Edges: (straight-line) collision-free connections between nodes
- Note: Different strategies of sampling, neighborhood or connections might be more appropriate

- Nodes: randomly generated (valid) configurations
- Edges: (straight-line) collision-free connections between nodes
- Note: Different strategies of sampling, neighborhood or connections might be more appropriate
- Planning: e.g. Dijkstra or A*

- Nodes: randomly generated (valid) configurations
- Edges: (straight-line) collision-free connections between nodes
- Note: Different strategies of sampling, neighborhood or connections might be more appropriate
- Planning: e.g. Dijkstra or A*
- Roadmap can be independent of start and final configurations

- Exact trajectory planning is often infeasible
- Would lead to constant replanning
- Local planner needed (previous lecture)

Source: https://www.openstreetmap.org/

- Exact trajectory planning is often infeasible
- Would lead to constant replanning
- Local planner needed (previous lecture)

Source: https://www.openstreetmap.org/

- Exact trajectory planning is often infeasible
- Would lead to constant replanning
- Local planner needed (previous lecture)

- Exact trajectory planning is often infeasible
- Would lead to constant replanning
- Local planner needed (previous lecture)

- Exact trajectory planning is often infeasible
- Would lead to constant replanning
- Local planner needed (previous lecture)

- Exact trajectory planning is often infeasible
- Would lead to constant replanning
- Local planner needed (previous lecture)
- Monitor when the plan is blocked
 - Robot stands still

- Exact trajectory planning is often infeasible
- Would lead to constant replanning
- Local planner needed (previous lecture)
- Monitor when the plan is blocked
 - Robot stands still

- Exact trajectory planning is often infeasible
- Would lead to constant replanning
- Local planner needed (previous lecture)
- Monitor when the plan is blocked
 - Robot stands still

- Exact trajectory planning is often infeasible
- Would lead to constant replanning
- Local planner needed (previous lecture)
- Monitor when the plan is blocked
 - Robot stands still
- Update worldmodel/graph and replan

- Exact trajectory planning is often infeasible
- Would lead to constant replanning
- Local planner needed (previous lecture)
- Monitor when the plan is blocked
 - Robot stands still
- Update worldmodel/graph and replan

- Exact trajectory planning is often infeasible
- Would lead to constant replanning
- Local planner needed (previous lecture)
- Monitor when the plan is blocked
 - Robot stands still
- Update worldmodel/graph and replan

Outline

- Recap local navigation & intro global navigation
- Map representations
- From map to graph
- Path planning in graphs
- Efficient graph generation
- Summary
- Introduction to assignment

• Global (vs local) navigation

- Global (vs local) navigation
- Map representations
 - Discretizations: Cell-based, grid-based and graph-based

- Global (vs local) navigation
- Map representations
 - Discretizations: Cell-based, grid-based and graph-based
- Discretized map → graph

- Global (vs local) navigation
- Map representations
 - Discretizations: Cell-based, grid-based and graph-based
- Discretized map → graph
- Path planning in graphs
 - Dijkstra & A*: complete and optimal

- Global (vs local) navigation
- Map representations
 - Discretizations: Cell-based, grid-based and graph-based
- Discretized map → graph
- Path planning in graphs
 - Dijkstra & A*: complete and optimal
- Grids are simple but often inefficient. Alternatives:

- Global (vs local) navigation
- Map representations
 - Discretizations: Cell-based, grid-based and graph-based
- Discretized map → graph
- Path planning in graphs
 - Dijkstra & A*: complete and optimal
- Grids are simple but often inefficient. Alternatives:
 - Visibility graph: short paths, has to be recomputed when map is updated

- Global (vs local) navigation
- Map representations
 - Discretizations: Cell-based, grid-based and graph-based
- Discretized map → graph
- Path planning in graphs
 - Dijkstra & A*: complete and optimal
- Grids are simple but often inefficient. Alternatives:
 - Visibility graph: short paths, has to be recomputed when map is updated
 - RRT(*): creates graph and finds path, but very specific for start location, completeness only guaranteed in the limit

- Global (vs local) navigation
- Map representations
 - Discretizations: Cell-based, grid-based and graph-based
- Discretized map → graph
- Path planning in graphs
 - Dijkstra & A*: complete and optimal
- Grids are simple but often inefficient. Alternatives:
 - Visibility graph: short paths, has to be recomputed when map is updated
 - RRT(*): creates graph and finds path, but very specific for start location, completeness only guaranteed in the limit
 - Probabilistic roadmap: completeness only guaranteed in the limit

Outline

- Recap local navigation & intro global navigation
- Map representations
- From map to graph
- Path planning in graphs
- Efficient graph generation
- Summary
- Introduction to assignment

Assignment part 1

• Complete an implementation of the A* algorithm to find the shortest path from start to finish in a maze

Provided: list of nodes and edges, index of start and finish nodes

Required: sequence of node indices that form the shortest path from

start to finish

Assignment part 2

- Complete the implementation of generating a graph that represents a Probabilistic Roadmap (PRM)
- When part 1 of the assignment is also finished, a path from start to goal in this PRM can be found using your A* algorithm

Assignment part 3

Connect global and local planner

