45CO0
Globa

MiY 7™ zo

ben Beumeﬁ) :

EINDHOVEN

Mechanical Engineering, Robotics UNIVERSITY OF
TECHNOLOGY



Outline

Recap local navigation & intro global navigation
Map representations

From map to graph

Path planning in graphs

Efficient graph generation

Summary

Introduction to assignment
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Outline

* Recap local navigation & intro global navigation
* Robot navigation problem
* Global vs local navigation

* Global navigation problem
* Motion planning algorithms: specifications and properties
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Recap & intro / Robot navigation problem

* Goal: find a path or trajectory from a given initial pose (A) to the desired
final pose (B)
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Recap & intro / Robot navigation problem

* Goal: find a path or trajectory from a given initial pose (A) to the de5|red
final pose (B)

* Division into global and local navigation
* Global: compute path from start to goal
* Local: execute local part of global path while satisfying constraints

Global
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Recap & intro / Robot navigation problem

* Goal: find a path or trajectory from a given initial pose (A) to the desired
final pose (B)
* Division into global and local navigation
* Global: compute path from start to goal
* Local: execute local part of global path while satisfying constraints
* Reasons:
e Reduce complexity
* Static vs dynamic environment
* Global world model often incomplete or unavailable
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Recap & intro / Robot navigation problem

* Goal: find a path or trajectory from a given initial pose (A) to the desired
final pose (B)

* Division into global and local navigation

* Local navigation algorithms
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Recap & intro / Robot navigation problem

* Goal: find a path or trajectory from a given initial pose (A) to the desired
final pose (B)
* Division into global and local navigation

* Local navigation algorithms
* Artificial potential fields

https://sudonull.com/post/62343-What-robotics-can-teach-
gaming-Al
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Recap & intro / Robot navigation problem

* Goal: find a path or trajectory from a given initial pose (A) to the desired

* Division into global and local navigation

7

final pose (B)

Local navigation algorithms
* Artificial potential fields
* Dynamic window approach
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Recap & intro / Robot navigation problem

* Goal: find a path or trajectory from a given initial pose (A) to the desired
final pose (B)
* Division into global and local navigation

* Local navigation algorithms = _ PN g
* Artificial potential fields J B . Directions:
. . N Polar histogram °0°
* Dynamic window approach Yetiok
ndk 180~ o°
* Vector field histograms H’ (k)
2' o
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Recap & intro / Robot navigation problem

* Goal: find a path or trajectory from a given initial pose (A) to the desired
final pose (B)

* Division into global and local navigation

* Local navigation algorithms
* Artificial potential fields
* Dynamic window approach

* Vector field histograms
e Optimization- and learning-based methods
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Recap & intro / Robot navigation problem

* Goal: find a path or trajectory from a given initial pose (A) to the desired
final pose (B)

* Division into global and local navigation

* Local navigation algorithms

Questions?
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Recap & intro / Global navigation problem

What is the global navigation problem?
* Find a feasible path from A to B based on your current knowledge

How does it complement local navigation?
* Global path gives the direction to progress
* Local navigation follows this direction safely, taking into account local objects

What are the requirements?
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Recap & intro / Motion planning algorithms: specs & properties

Q. Completeness: finding a path if one exists
B4 Optimality: finding the optimal path (time, energy, distance, ...)

8 Computational complexity: scalability

Robustness against a dynamic environment
? Robustness against uncertainty

€ Kinematic and dynamic constraints
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Recap & intro / Motion planning algorithms: specs & properties

Q. Completeness: finding a path if one exists

| Also important for

B4 Optimality: finding the optimal path (time, energy, distance, ...) elobal planning!

8 Computational complexity: scalability

J\

Robustness against a dynamic environment

_ Mainly handled by

? Robustness against uncertainty el sl

€ Kinematic and dynamic constraints
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Outline

* Map representations
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Map representations

We often discretize the map to make the problem more manageable

Grid-based (equidistant cells) Cell-based Graph-based
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Map representations

We often discretize the map to make the problem more manageable

Grid-based (equidistant cells) Cell-based Graph-based
*qi 4
Z
757 Z b 7
27
7
7 *q

Coenen, S.A.M. (2012). Motion Planning for Mobile Robots - A Guide. Master’s thesis

12 Mobile Robot Control - Lecture 4 - Global Navigation TU/e



Map representations

We often discretize the map to make the problem more manageable

Grid-based (equidistant cells) Cell-based
TTT 1]
*q; / *q;
% I

7

A % :

27077 ;

% 7 ‘ 7

% *q *q

Coenen, S.A.M. (2012). Motion Planning for Mobile Robots - A Guide. Master’s thesis
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Map representations

We often discretize the map to make the problem more manageable

Grid-based (equidistant cells) Cell-based Graph-based
L] ]]
*q; / *q;
% 7

7
%% Z //.// %

7, ///

57 2 4

)

77 *q *q . Lt . .
9 g Blochliger et al. (2017). Topomap: Topological Mapping

Coenen, S.A.M. (2012). Motion Planning for Mobile Robots - A Guide. Master’s thesis and Naviggtion Based on Visual SLAM Maps. CoRR,
http://arxiv.org/abs/1709.05533
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http://arxiv.org/abs/1709.05533

Outline

* From map to graph
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From map to graph
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Coenen, S.A.M. (2012). Motion Planning for Mobile Robots - A Guide. Master’s thesis
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From map to graph

* Nodes .
* Edges qi ~0

afpie-

, Y
/O\X/\y'qyt

Coenen, S.A.M. (2012). Motion Planning for Mobile Robots - A Guide. Master’s thesis
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From map to graph

* Nodes
* Edges
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From map to graph

* Nodes i
* Edges
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https://www.openstreetmap.org/

From map to graph
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From map to graph

* Nodes
* Edges
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Outline

* Path planning in graphs
* Dijkstra’s algorithm
* A*algorithm

16  Mobile Robot Control - Lecture 4 - Global Navigation TU/e



Dijkstra’s algorithm

* Goal: find the shortest path from start to goal in a graph

* Two stages:
* Exploration starting from start node
* Tracing back the path from goal to start

* Guarantees optimality!
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Dijkstra’s algorithm / Exploration

Goal

@
2
©

3
Start
4
Step Closed nodes Open nodes (distance) Unvisited nodes
{vé&Q} {v € Q| dist[v] < oo} {v € Q| dist[v] = o}
0 0(0) 1,2,3,4,5,6,7

Pseudo-code based on
https://en.wikipedia.org/wiki/Dijkstra%27s algorithm
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jkstra’s algorithm / Exploration

Goal

Di
@
2
4
i

3
Start
4
Step Closed nodes Open nodes (distance) Unvisited nodes
{vé&Q} {v € Q| dist[v] < oo} {v € Q| dist[v] = o}
0 0(0) 1,2,3,4,5,6,7
1 0 1(4), 4(3) 2,3,5,6,7

Pseudo-code based on
https://en.wikipedia.org/wiki/Dijkstra%27s algorithm
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https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

jkstra’s algorithm / Exploration

—0—=0 09

Start
4
Step Closed nodes Open nodes (distance) Unvisited nodes
{v & Q} {v € Q| dist[v] < oo} {v € Q| dist[v] = oo}
0 0(0) 1,2,3,4,5,6,7
1 0 1(4), 4(3) 2,3,5,6,7
2 04 1(4), 5(11), 7(5) 2,3,6

Pseudo-code based on
https://en.wikipedia.org/wiki/Dijkstra%27s algorithm
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jkstra’s algorithm / Exploration

Goal

—0—=0 09

Start
4

Step Closed nodes Open nodes (distance) Unvisited nodes

{v & Q} {v € Q| dist[v] < oo} {v € Q| dist[v] = oo}
0 0(0) 1,2,3,4,5,6,7
1 0 1(4), 4(3) 2,3,5,6,7
2 04 1(4), 5(11), 7(5) 2,3,6
3 0,1,4 2(8), 5(9), 7(5) 3,6

Pseudo-code based on
https://en.wikipedia.org/wiki/Dijkstra%27s algorithm
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jkstra’s algorithm / Exploration

—0—=0 09

Start
4
Step Closed nodes Open nodes (distance) Unvisited nodes
{veQ} {v € Q| dist[v] < oo} {v € Q| dist[v] = oo}
0 0(0) 1,2,3,4,5,6,7
1 0 1(4), 4(3) 2,3,5,6,7
2 04 1(4), 5(11), 7 (5) 2,3,6
3 0,1,4 2(8), 5(9), 7(5) 3,6
4 0,1,4,7 2(8), 5(9) 3,6 Pseudo-code based on

https://en.wikipedia.org/wiki/Dijkstra%27s algorithm
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https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

jkstra’s algorithm / Exploration

=0 9

w
=

Start
4
Step Closed nodes Open nodes (distance) Unvisited nodes
{v & Q} {v € Q| dist[v] < oo} {v € Q| dist[v] = oo}
0 0(0) 1,2,3,4,5,6,7
1 0 1(4), 4(3) 2,3,5,6,7
2 04 1(4), 5(11), 7 (5) 2,3,6
3 0,1,4 2(8), 5(9), 7.(5) 3,6
4 0,1,4,7 2(8), 5(9) 3,6 Pseudo-code based on
5 0,21,4,7 5(9), 3(10) 6 https://en.wikipedia.org/wiki/Dijkstra%27s algorithm
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|

kstra’s algorithm / Trace path back

—0—=0 9

Start

19

Pseudo-code based on

https://en.wikipedia.org/wiki/Dijkstra%27s algorithm
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|

kstra’s algorithm / Trace path back

—0—=0 9

Start

19

Pseudo-code based on

https://en.wikipedia.org/wiki/Dijkstra%27s algorithm
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|

kstra’s algorithm / Trace path back

—0—=0 9

Start

19

Pseudo-code based on

https://en.wikipedia.org/wiki/Dijkstra%27s algorithm
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|

kstra’s algorithm / Trace path back

—0—=0 9

Start

19

Pseudo-code based on

https://en.wikipedia.org/wiki/Dijkstra%27s algorithm
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|

kstra’s algorithm / Trace path back

—0—=0 9

Start

19

Pseudo-code based on

https://en.wikipedia.org/wiki/Dijkstra%27s algorithm
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|

kstra’s algorithm / Trace path back

—0—=0 9

Start

19

Pseudo-code based on

https://en.wikipedia.org/wiki/Dijkstra%27s algorithm
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Dijkstra’s algorithm / Larger scale visualization

L

Dijkstra’s algorithm. Source:
https://en.wikipedia.org/wiki/Dijkstra%27s algorithm

20  Mobile Robot Control - Lecture 4 - Global Navigation TU/e


https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

A* algorithm

“A* = Dijkstra + heuristic”

* (v) < cost_to_go(v)
* H(goal) =0
* Example: Euclidean distance to goal
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A* algorithm

“A* = Dijkstra + heuristic”
 Select open node with minimum:
* Dijkstra:  cost-to-come
* A% cost-to-come + heuristic cost-to-go

(v) < cost_to_go(v)
H(goal) =0
e Example: Euclidean distance to goal
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A* algorithm

“A* = Dijkstra + heuristic”
 Select open node with minimum:
* Dijkstra:  cost-to-come
* A% cost-to-come + heuristic cost-to-go
* Heuristic approximates remaining distance
to goal

* (v) < cost_to_go(v)
* H(goal) =0
e Example: Euclidean distance to goal
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A* algorithm

ggooaall)=0

cost to_go(vv)

‘A* = Dijkstra + heuristic”
 Select open node with minimum:

* Dijkstra:  cost-to-come

o A% cost-to-come + heuristic cost-to-go
* Heuristic approximates remaining distance
to goal

e Criteria for an admissible heuristic to

guarantee optimality:
* H(goal) =0
e H(analh =0

21  Mobile Robot Control - Lecture 4 - Global Navigation

TU/e



A* algorithm

ggooaall)=0

cost to_go(vv)

‘A* = Dijkstra + heuristic”
 Select open node with minimum:

* Dijkstra:  cost-to-come

o A% cost-to-come + heuristic cost-to-go
* Heuristic approximates remaining distance
to goal

* Criteria for an admissible heuristic to
guarantee optimality:
* Example: Euclidean distance to goal
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A* algorithm / Visualization compared to Dijkstra

* ]
A* algorithm. Source: Dijkstra’s algorithm. Source:
https://en.wikipedia.org/wiki/A* search algorithm https://en.wikipedia.org/wiki/Dijkstra%27s algorithm
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https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm

Break

Recap local navigation & intro global navigation
Map representations

From map to graph

Path planning in graphs

Any questions so far?
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Outline

* Efficient graph generation
* Visibility graphs
* Rapidly-exploring Random Tree (RRT)
* Probabilistic Roadmap
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Efficient graph generation / Motivation

e Example: A* on grid maps
* Advantages:
+ No need to create the graph in advance, because
the grid is regular
+ Easy to calculate path cost
* Disadvantages:
- In general less efficient because not all nodes
are necessary

]

A* algorithm. Source:

https://en.wikipedia.org/wiki/A* search algorithm
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Efficient graph generation / Motivation

e Example: A* on grid maps
* Advantages:
+ No need to create the graph in advance, because
the grid is regular
+ Easy to calculate path cost
* Disadvantages:
- In general less efficient because not all nodes
are necessary

* More efficient graph desired!

A* algorithm. Source:
https://en.wikipedia.org/wiki/A* search algorithm
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Efficient graph generation / Visibility graph

* Nodes:
* Vertices of obstacles
* Agent
* Goal
* Edges:
* All straight lines between nodes that do not cross
obstacles (visibility)

Niu, Hanlin & Lu, Yu & Savvaris, Al & Tsourdos, Antonios.
(2018). An energy-efficient path planning algorithm for
unmanned surface vehicles. Ocean Engineering. 161.
308-321.10.1016/j.oceaneng.2018.01.025.
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Efficient graph generation / Visibility graph

* Nodes:
* Vertices of obstacles
* Agent
* Goal
* Edges:
* All straight lines between nodes that do not cross
obstacles (visibility)

* Scalability: maximum distance to create edge

Niu, Hanlin & Lu, Yu & Savvaris, Al & Tsourdos, Antonios.
(2018). An energy-efficient path planning algorithm for
unmanned surface vehicles. Ocean Engineering. 161.
308-321.10.1016/j.oceaneng.2018.01.025.
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Efficient graph generation / Visibility graph

Nodes:

* Vertices of obstacles

* Agent

* Goal

Edges:

* All straight lines between nodes that do not cross
obstacles (visibility)

Scalability: maximum distance to create edge

Robustness: inflate obstacles or handled by Niu, Hanlin & Lu, Yu & Savvaris, Al & Tsourdos, Antonios.
(2018). An energy-efficient path planning algorithm for

local pla nner unmanned surface vehicles. Ocean Engineering. 161.
308-321.10.1016/j.oceaneng.2018.01.025.

26  Mobile Robot Control - Lecture 4 - Global Navigation TU/e



Efficient graph generation / RRT

* RRT = Rapidly-exploring Random
Tree

e Construct a tree by random
sampling, starting at the initial state
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Efficient graph generation / RRT

* RRT = Rapidly-exploring Random
Tree

e Construct a tree by random
sampling, starting at the initial state
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Efficient graph generation / RRT

* RRT = Rapidly-exploring Random
Tree

e Construct a tree by random
sampling, starting at the initial state

g_init
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Efficient graph generation / RRT

* RRT = Rapidly-exploring Random
Tree

e Construct a tree by random
sampling, starting at the initial state

g_init
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Efficient graph generation / RRT

* RRT = Rapidly-exploring Random
Tree

e Construct a tree by random
sampling, starting at the initial state

g_init
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Efficient graph generation / RRT

* RRT = Rapidly-exploring Random
Tree

e Construct a tree by random
sampling, starting at the initial state

g_init
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Efficient graph generation / RRT

* RRT = Rapidly-exploring Random
Tree

e Construct a tree by random
sampling, starting at the initial state

g_init
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Efficient graph generation / RRT

* RRT = Rapidly-exploring Random
Tree

e Construct a tree by random
sampling, starting at the initial state

g_init
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Efficient graph generation / RRT

* RRT = Rapidly-exploring Random
Tree

e Construct a tree by random
sampling, starting at the initial state

* Tree is dense in the limit

27  Mobile Robot Control - Lecture 4 - Global Navigation
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Efficient graph generation / RRT

* Presence of obstacles

q_init
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Efficient graph generation / RRT

* Presence of obstacles

q_init
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Efficient graph generation / RRT

* Presence of obstacles

q_init
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Efficient graph generation / RRT

* Presence of obstacles

g_near g_new

q_init
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Efficient graph generation / RRT

* Presence of obstacles

g_near g_new

q_init

* We can stop if we can add the goal
node to the tree
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Efficient graph generation / RRT*

* RRT*: RRT with rewiring for shorter paths
e Similar to Dijkstra and A*

q_init
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Efficient graph generation / RRT*

* RRT*: RRT with rewiring for shorter paths
e Similar to Dijkstra and A*

q_init ‘
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Efficient graph generation / RRT*

* RRT*: RRT with rewiring for shorter paths
e Similar to Dijkstra and A*

q_init

29  Mobile Robot Control - Lecture 4 - Global Navigation TU/e



Efficient graph generation / RRT*

* RRT*: RRT with rewiring for shorter paths
e Similar to Dijkstra and A*

q_init
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Efficient graph generation / Probabilistic roadmap

* Nodes: randomly generated (valid)

* Edges: (straight-line) collision-free

30

configurations

connections between nodes
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Efficient graph generation / Probabilistic roadmap

* Nodes: randomly generated (valid)
configurations

* Edges: (straight-line) collision-free
connections between nodes
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Efficient graph generation / Probabilistic roadmap

* Nodes: randomly generated (valid)
configurations

* Edges: (straight-line) collision-free
connections between nodes

* Note: Different strategies of sampling,
neighborhood or connections might be
more appropriate
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Efficient graph generation / Probabilistic roadmap

30

Nodes: randomly generated (valid)
configurations

Edges: (straight-line) collision-free
connections between nodes

Note: Different strategies of sampling,
neighborhood or connections might be
more appropriate
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Efficient graph generation / Probabilistic roadmap

* Nodes: randomly generated (valid)
configurations

* Edges: (straight-line) collision-free 0
connections between nodes 0

* Note: Different strategies of sampling, 100
neighborhood or connections might be
more appropriate

* Planning: e.g. Dijkstra or A*

150

250

300

0 100 200 300 400 500
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Efficient graph generation / Probabilistic roadmap

* Nodes: randomly generated (valid)
configurations

* Edges: (straight-line) collision-free 0
connections between nodes 0

* Note: Different strategies of sampling, 100
neighborhood or connections might be
more appropriate

* Planning: e.g. Dijkstra or A*

* Roadmap can be independent of start
and final configurations ° 10 200 300 400 500

150

250

300
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Following a global path with a local planner

* Exact trajectory planning is often infeasible
* Would lead to constant replanning
* Local planner needed (previous lecture)
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Following a global path with a local planner

* Exact trajectory planning is often infeasible
* Would lead to constant replanning
* Local planner needed (previous lecture)
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Following a global path with a local planner

* Exact trajectory planning is often infeasible
* Would lead to constant replanning
* Local planner needed (previous lecture)
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* Would lead to constant replanning
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Following a global path with a local planner

* Exact trajectory planning is often infeasible
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Following a global path with a local planner

Exact trajectory planning is often infeasible
Would lead to constant replanning
Local planner needed (previous lecture) )

Monitor when the plan is blocked
* Robot stands still

Update worldmodel/graph and replan
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* Summary
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Summary

Global (vs local) navigation

Map representations

 Discretizations: Cell-based, grid-based and graph-based

Discretized map = graph

Path planning in graphs

* Dijkstra & A*: complete and optimal

Grids are simple but often inefficient. Alternatives:

* Visibility graph: short paths, has to be recomputed when map is updated
* RRT(*): creates graph and finds path, but very specific for start location,

completeness only guaranteed in the limit
* Probabilistic roadmap: completeness only guaranteed in the limit
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* Introduction to assignment
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Assignment part 1

* Complete an implementation of the A* algorithm to find the shortest
path from start to finish in a maze

* Provided: list of nodes and edges, index of start and finish nodes

* Required: sequence of node indices that form the shortest path from
start to finish
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Assignment part 2

* Complete the implementation of generating a graph that represents a
Probabilistic Roadmap (PRM)

* When part 1 of the assignment is also finished, a path from start to goal
in this PRM can be found using your A* algorithm
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Assignment part 3

e Connect global and local planner
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