
4SC020 Mobile Robot Control 2025:
Global Navigation
MAY 7TH 2025

Ruben Beumer

Mechanical Engineering, Robotics

Outline

• Recap local navigation & intro global navigation
• Map representations
• From map to graph
• Path planning in graphs
• Efficient graph generation
• Summary
• Introduction to assignment

Mobile Robot Control - Lecture 4 - Global Navigation2

Outline

• Recap local navigation & intro global navigation
• Robot navigation problem

• Global vs local navigation
• Global navigation problem
• Motion planning algorithms: specifications and properties

• Map representations
• From map to graph
• Path planning in graphs
• Efficient graph generation
• Summary
• Introduction to assignment

Mobile Robot Control - Lecture 4 - Global Navigation3

Recap & intro / Robot navigation problem

• Goal: find a path or trajectory from a given initial pose (A) to the desired
final pose (B)

Mobile Robot Control - Lecture 4 - Global Navigation4

A

B

Recap & intro / Robot navigation problem

• Goal: find a path or trajectory from a given initial pose (A) to the desired
final pose (B)

• Division into global and local navigation
• Global: compute path from start to goal
• Local: execute local part of global path while satisfying constraints

Mobile Robot Control - Lecture 4 - Global Navigation5

GlobalLocal

Recap & intro / Robot navigation problem

• Goal: find a path or trajectory from a given initial pose (A) to the desired
final pose (B)

• Division into global and local navigation
• Global: compute path from start to goal
• Local: execute local part of global path while satisfying constraints
• Reasons:

• Reduce complexity
• Static vs dynamic environment
• Global world model often incomplete or unavailable

Mobile Robot Control - Lecture 4 - Global Navigation6

Recap & intro / Robot navigation problem

• Goal: find a path or trajectory from a given initial pose (A) to the desired
final pose (B)

• Division into global and local navigation
• Local navigation algorithms

Mobile Robot Control - Lecture 4 - Global Navigation7

Recap & intro / Robot navigation problem

• Goal: find a path or trajectory from a given initial pose (A) to the desired
final pose (B)

• Division into global and local navigation
• Local navigation algorithms

• Artificial potential fields

Mobile Robot Control - Lecture 4 - Global Navigation7

https://sudonull.com/post/62343-What-robotics-can-teach-
gaming-AI

Recap & intro / Robot navigation problem

• Goal: find a path or trajectory from a given initial pose (A) to the desired
final pose (B)

• Division into global and local navigation
• Local navigation algorithms

• Artificial potential fields
• Dynamic window approach

Mobile Robot Control - Lecture 4 - Global Navigation7

Recap & intro / Robot navigation problem

• Goal: find a path or trajectory from a given initial pose (A) to the desired
final pose (B)

• Division into global and local navigation
• Local navigation algorithms

• Artificial potential fields
• Dynamic window approach
• Vector field histograms

Mobile Robot Control - Lecture 4 - Global Navigation7

Recap & intro / Robot navigation problem

• Goal: find a path or trajectory from a given initial pose (A) to the desired
final pose (B)

• Division into global and local navigation
• Local navigation algorithms

• Artificial potential fields
• Dynamic window approach
• Vector field histograms
• Optimization- and learning-based methods

Mobile Robot Control - Lecture 4 - Global Navigation7

Recap & intro / Robot navigation problem

• Goal: find a path or trajectory from a given initial pose (A) to the desired
final pose (B)

• Division into global and local navigation
• Local navigation algorithms

Questions?

Mobile Robot Control - Lecture 4 - Global Navigation8

Recap & intro / Global navigation problem

• What is the global navigation problem?
• Find a feasible path from A to B based on your current knowledge

• How does it complement local navigation?
• Global path gives the direction to progress
• Local navigation follows this direction safely, taking into account local objects

• What are the requirements?

Mobile Robot Control - Lecture 4 - Global Navigation9

Recap & intro / Motion planning algorithms: specs & properties

Mobile Robot Control - Lecture 4 - Global Navigation10

Completeness: finding a path if one exists

Optimality: finding the optimal path (time, energy, distance, …)

Computational complexity: scalability

Robustness against a dynamic environment

Robustness against uncertainty

Kinematic and dynamic constraints

Recap & intro / Motion planning algorithms: specs & properties

Mobile Robot Control - Lecture 4 - Global Navigation10

Completeness: finding a path if one exists

Optimality: finding the optimal path (time, energy, distance, …)

Computational complexity: scalability

Robustness against a dynamic environment

Robustness against uncertainty

Kinematic and dynamic constraints

Also important for
global planning!

Mainly handled by
local planning

Outline

• Recap local navigation & intro global navigation
• Map representations
• From map to graph
• Path planning in graphs
• Efficient graph generation
• Summary
• Introduction to assignment

Mobile Robot Control - Lecture 4 - Global Navigation11

Map representations

We often discretize the map to make the problem more manageable

Mobile Robot Control - Lecture 4 - Global Navigation12

Grid-based (equidistant cells) Cell-based Graph-based

Map representations

We often discretize the map to make the problem more manageable

Mobile Robot Control - Lecture 4 - Global Navigation12

Coenen, S.A.M. (2012). Motion Planning for Mobile Robots - A Guide. Master’s thesis

Grid-based (equidistant cells) Cell-based Graph-based

Map representations

We often discretize the map to make the problem more manageable

Mobile Robot Control - Lecture 4 - Global Navigation12

Coenen, S.A.M. (2012). Motion Planning for Mobile Robots - A Guide. Master’s thesis

Grid-based (equidistant cells) Cell-based Graph-based

Map representations

We often discretize the map to make the problem more manageable

Mobile Robot Control - Lecture 4 - Global Navigation12

Coenen, S.A.M. (2012). Motion Planning for Mobile Robots - A Guide. Master’s thesis

Blöchliger et al. (2017). Topomap: Topological Mapping
and Navigation Based on Visual SLAM Maps. CoRR,
http://arxiv.org/abs/1709.05533

Grid-based (equidistant cells) Cell-based Graph-based

http://arxiv.org/abs/1709.05533

Outline

• Recap local navigation & intro global navigation
• Map representations
• From map to graph
• Path planning in graphs
• Efficient graph generation
• Summary
• Introduction to assignment

Mobile Robot Control - Lecture 4 - Global Navigation13

From map to graph

Mobile Robot Control - Lecture 4 - Global Navigation14

Coenen, S.A.M. (2012). Motion Planning for Mobile Robots - A Guide. Master’s thesis

• Nodes
• Edges

From map to graph

Mobile Robot Control - Lecture 4 - Global Navigation14

Coenen, S.A.M. (2012). Motion Planning for Mobile Robots - A Guide. Master’s thesis

• Nodes
• Edges

From map to graph

Mobile Robot Control - Lecture 4 - Global Navigation14

• Nodes
• Edges

From map to graph

Mobile Robot Control - Lecture 4 - Global Navigation15

Source: https://www.openstreetmap.org/

• Nodes
• Edges

https://www.openstreetmap.org/

From map to graph

Mobile Robot Control - Lecture 4 - Global Navigation15

Source: https://www.openstreetmap.org/

• Nodes
• Edges

https://www.openstreetmap.org/

From map to graph

Mobile Robot Control - Lecture 4 - Global Navigation15

• Nodes
• Edges

Outline

• Recap local navigation & intro global navigation
• Map representations
• From map to graph
• Path planning in graphs

• Dijkstra’s algorithm
• A* algorithm

• Efficient graph generation
• Summary
• Introduction to assignment

Mobile Robot Control - Lecture 4 - Global Navigation16

Dijkstra’s algorithm

Mobile Robot Control - Lecture 4 - Global Navigation17

0 1 2 3

4 5 6

7

4 4 2

8 2

5 3
13

33

2
Goal

Start

• Goal: find the shortest path from start to goal in a graph

• Two stages:
• Exploration starting from start node
• Tracing back the path from goal to start

• Guarantees optimality!

Dijkstra’s algorithm / Exploration

Mobile Robot Control - Lecture 4 - Global Navigation18

0 1 2 3

4 5 6

7

4 4 2

8 2

5 3 13 33

2
Goal

Start

Step Closed nodes Open nodes (distance) Unvisited nodes
{𝑣𝑣 ∉ 𝑄𝑄} {𝑣𝑣 ∈ 𝑄𝑄 | dist 𝑣𝑣 < ∞} {𝑣𝑣 ∈ 𝑄𝑄| dist 𝑣𝑣 = ∞}

0 0 (0) 1, 2, 3, 4, 5, 6, 7

function Dijkstra(Graph, start, goal):

for each node v in Graph.Nodes:
dist[v] = INF
prev[v] = NONE
add v to Q

dist[start] = 0

while Q is not empty:
u = node in Q with min dist[u]
if u is goal:

return dist, prev
remove u from Q
for each neighbor v of u still in Q:

d = dist[u] + Graph.Edges(u, v)
if d < dist[v]:

dist[v] = d
prev[v] = u

Pseudo-code based on
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Dijkstra’s algorithm / Exploration

Mobile Robot Control - Lecture 4 - Global Navigation18

0 1 2 3

4 5 6

7

4 4 2

8 2

5 3 13 33

2
Goal

Start

Step Closed nodes Open nodes (distance) Unvisited nodes
{𝑣𝑣 ∉ 𝑄𝑄} {𝑣𝑣 ∈ 𝑄𝑄 | dist 𝑣𝑣 < ∞} {𝑣𝑣 ∈ 𝑄𝑄| dist 𝑣𝑣 = ∞}

0 0 (0) 1, 2, 3, 4, 5, 6, 7
1 0 1 (4), 4 (3) 2, 3, 5, 6, 7

function Dijkstra(Graph, start, goal):

for each node v in Graph.Nodes:
dist[v] = INF
prev[v] = NONE
add v to Q

dist[start] = 0

while Q is not empty:
u = node in Q with min dist[u]
if u is goal:

return dist, prev
remove u from Q
for each neighbor v of u still in Q:

d = dist[u] + Graph.Edges(u, v)
if d < dist[v]:

dist[v] = d
prev[v] = u

Pseudo-code based on
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Dijkstra’s algorithm / Exploration

Mobile Robot Control - Lecture 4 - Global Navigation18

0 1 2 3

4 5 6

7

4 4 2

8 2

5 3 13 33

2
Goal

Start

Step Closed nodes Open nodes (distance) Unvisited nodes
{𝑣𝑣 ∉ 𝑄𝑄} {𝑣𝑣 ∈ 𝑄𝑄 | dist 𝑣𝑣 < ∞} {𝑣𝑣 ∈ 𝑄𝑄| dist 𝑣𝑣 = ∞}

0 0 (0) 1, 2, 3, 4, 5, 6, 7
1 0 1 (4), 4 (3) 2, 3, 5, 6, 7
2 0, 4 1 (4), 5 (11), 7 (5) 2, 3, 6

function Dijkstra(Graph, start, goal):

for each node v in Graph.Nodes:
dist[v] = INF
prev[v] = NONE
add v to Q

dist[start] = 0

while Q is not empty:
u = node in Q with min dist[u]
if u is goal:

return dist, prev
remove u from Q
for each neighbor v of u still in Q:

d = dist[u] + Graph.Edges(u, v)
if d < dist[v]:

dist[v] = d
prev[v] = u

Pseudo-code based on
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Dijkstra’s algorithm / Exploration

Mobile Robot Control - Lecture 4 - Global Navigation18

0 1 2 3

4 5 6

7

4 4 2

8 2

5 3 13 33

2
Goal

Start

Step Closed nodes Open nodes (distance) Unvisited nodes
{𝑣𝑣 ∉ 𝑄𝑄} {𝑣𝑣 ∈ 𝑄𝑄 | dist 𝑣𝑣 < ∞} {𝑣𝑣 ∈ 𝑄𝑄| dist 𝑣𝑣 = ∞}

0 0 (0) 1, 2, 3, 4, 5, 6, 7
1 0 1 (4), 4 (3) 2, 3, 5, 6, 7
2 0, 4 1 (4), 5 (11), 7 (5) 2, 3, 6
3 0, 1, 4 2 (8), 5 (9), 7 (5) 3, 6

function Dijkstra(Graph, start, goal):

for each node v in Graph.Nodes:
dist[v] = INF
prev[v] = NONE
add v to Q

dist[start] = 0

while Q is not empty:
u = node in Q with min dist[u]
if u is goal:

return dist, prev
remove u from Q
for each neighbor v of u still in Q:

d = dist[u] + Graph.Edges(u, v)
if d < dist[v]:

dist[v] = d
prev[v] = u

Pseudo-code based on
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Dijkstra’s algorithm / Exploration

Mobile Robot Control - Lecture 4 - Global Navigation18

0 1 2 3

4 5 6

7

4 4 2

8 2

5 3 13 33

2
Goal

Start

Step Closed nodes Open nodes (distance) Unvisited nodes
{𝑣𝑣 ∉ 𝑄𝑄} {𝑣𝑣 ∈ 𝑄𝑄 | dist 𝑣𝑣 < ∞} {𝑣𝑣 ∈ 𝑄𝑄| dist 𝑣𝑣 = ∞}

0 0 (0) 1, 2, 3, 4, 5, 6, 7
1 0 1 (4), 4 (3) 2, 3, 5, 6, 7
2 0, 4 1 (4), 5 (11), 7 (5) 2, 3, 6
3 0, 1, 4 2 (8), 5 (9), 7 (5) 3, 6
4 0, 1, 4, 7 2 (8), 5 (9) 3, 6

function Dijkstra(Graph, start, goal):

for each node v in Graph.Nodes:
dist[v] = INF
prev[v] = NONE
add v to Q

dist[start] = 0

while Q is not empty:
u = node in Q with min dist[u]
if u is goal:

return dist, prev
remove u from Q
for each neighbor v of u still in Q:

d = dist[u] + Graph.Edges(u, v)
if d < dist[v]:

dist[v] = d
prev[v] = u

Pseudo-code based on
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Dijkstra’s algorithm / Exploration

Mobile Robot Control - Lecture 4 - Global Navigation18

0 1 2 3

4 5 6

7

4 4 2

8 2

5 3 13 33

2
Goal

Start

Step Closed nodes Open nodes (distance) Unvisited nodes
{𝑣𝑣 ∉ 𝑄𝑄} {𝑣𝑣 ∈ 𝑄𝑄 | dist 𝑣𝑣 < ∞} {𝑣𝑣 ∈ 𝑄𝑄| dist 𝑣𝑣 = ∞}

0 0 (0) 1, 2, 3, 4, 5, 6, 7
1 0 1 (4), 4 (3) 2, 3, 5, 6, 7
2 0, 4 1 (4), 5 (11), 7 (5) 2, 3, 6
3 0, 1, 4 2 (8), 5 (9), 7 (5) 3, 6
4 0, 1, 4, 7 2 (8), 5 (9) 3, 6
5 0, 2, 1, 4, 7 5 (9), 3 (10) 6

function Dijkstra(Graph, start, goal):

for each node v in Graph.Nodes:
dist[v] = INF
prev[v] = NONE
add v to Q

dist[start] = 0

while Q is not empty:
u = node in Q with min dist[u]
if u is goal:

return dist, prev
remove u from Q
for each neighbor v of u still in Q:

d = dist[u] + Graph.Edges(u, v)
if d < dist[v]:

dist[v] = d
prev[v] = u

Pseudo-code based on
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Dijkstra’s algorithm / Trace path back

Mobile Robot Control - Lecture 4 - Global Navigation19

Path = empty sequence
u = goal

while prev[u] ≠ NONE and u = start:
insert u at beginning of Path
u = prev[u]

Pseudo-code based on
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

0 1 2 3

4 5 6

7

4 4 2

8 2

5 3 13 33

2
Goal

Start

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Dijkstra’s algorithm / Trace path back

Mobile Robot Control - Lecture 4 - Global Navigation19

Path = empty sequence
u = goal

while prev[u] ≠ NONE and u = start:
insert u at beginning of Path
u = prev[u]

Pseudo-code based on
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

0 1 2 3

4 5 6

7

4 4 2

8 2

5 3 13 33

2
Goal

Start

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Dijkstra’s algorithm / Trace path back

Mobile Robot Control - Lecture 4 - Global Navigation19

Path = empty sequence
u = goal

while prev[u] ≠ NONE and u = start:
insert u at beginning of Path
u = prev[u]

Pseudo-code based on
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

0 1 2 3

4 5 6

7

4 4 2

8 2

5 3 13 33

2
Goal

Start

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Dijkstra’s algorithm / Trace path back

Mobile Robot Control - Lecture 4 - Global Navigation19

Path = empty sequence
u = goal

while prev[u] ≠ NONE and u = start:
insert u at beginning of Path
u = prev[u]

Pseudo-code based on
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

0 1 2 3

4 5 6

7

4 4 2

8 2

5 3 13 33

2
Goal

Start

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Dijkstra’s algorithm / Trace path back

Mobile Robot Control - Lecture 4 - Global Navigation19

Path = empty sequence
u = goal

while prev[u] ≠ NONE and u = start:
insert u at beginning of Path
u = prev[u]

Pseudo-code based on
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

0 1 2 3

4 5 6

7

4 4 2

8 2

5 3 13 33

2
Goal

Start

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Dijkstra’s algorithm / Trace path back

Mobile Robot Control - Lecture 4 - Global Navigation19

Path = empty sequence
u = goal

while prev[u] ≠ NONE and u = start:
insert u at beginning of Path
u = prev[u]

Pseudo-code based on
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

0 1 2 3

4 5 6

7

4 4 2

8 2

5 3 13 33

2
Goal

Start

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Dijkstra’s algorithm / Larger scale visualization

Mobile Robot Control - Lecture 4 - Global Navigation20

Dijkstra’s algorithm. Source:
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

A* algorithm

“A* = Dijkstra + heuristic”

• 𝑣𝑣 ≤ cost_to_go(𝑣𝑣)
• 𝐻𝐻(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) = 0

• Example: Euclidean distance to goal

Mobile Robot Control - Lecture 4 - Global Navigation21

A* algorithm

“A* = Dijkstra + heuristic”
• Select open node with minimum:

• Dijkstra: cost-to-come
• A*: cost-to-come + heuristic cost-to-go

• 𝑣𝑣 ≤ cost_to_go(𝑣𝑣)
• 𝐻𝐻(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) = 0

• Example: Euclidean distance to goal

Mobile Robot Control - Lecture 4 - Global Navigation21

function Astar(Graph, start, goal):

for each node v in Graph.Nodes:
dist[v] = INF
heur[v] = H(v)
prev[v] = NONE
add v to Q

dist[start] = 0

while Q is not empty:
u = node in Q with min dist[u] + heur[u]
if u is goal:

return dist, prev
remove u from Q
for each neighbor v of u still in Q:

d = dist[u] + Graph.Edges(u, v)
if d < dist[v]:

dist[v] = d
prev[v] = u

A* algorithm

“A* = Dijkstra + heuristic”
• Select open node with minimum:

• Dijkstra: cost-to-come
• A*: cost-to-come + heuristic cost-to-go

• Heuristic approximates remaining distance
to goal

• 𝑣𝑣 ≤ cost_to_go(𝑣𝑣)
• 𝐻𝐻(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) = 0

• Example: Euclidean distance to goal

Mobile Robot Control - Lecture 4 - Global Navigation21

function Astar(Graph, start, goal):

for each node v in Graph.Nodes:
dist[v] = INF
heur[v] = H(v)
prev[v] = NONE
add v to Q

dist[start] = 0

while Q is not empty:
u = node in Q with min dist[u] + heur[u]
if u is goal:

return dist, prev
remove u from Q
for each neighbor v of u still in Q:

d = dist[u] + Graph.Edges(u, v)
if d < dist[v]:

dist[v] = d
prev[v] = u

A* algorithm

𝑔𝑔𝑔𝑔𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙)=0
cost_to_go(𝑣𝑣𝑣𝑣)
“A* = Dijkstra + heuristic”

• Select open node with minimum:
• Dijkstra: cost-to-come
• A*: cost-to-come + heuristic cost-to-go

• Heuristic approximates remaining distance
to goal

• Criteria for an admissible heuristic to
guarantee optimality:
• 𝐻𝐻(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) = 0
• 𝐻𝐻(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) = 0

• Example: Euclidean distance to goalMobile Robot Control - Lecture 4 - Global Navigation21

function Astar(Graph, start, goal):

for each node v in Graph.Nodes:
dist[v] = INF
heur[v] = H(v)
prev[v] = NONE
add v to Q

dist[start] = 0

while Q is not empty:
u = node in Q with min dist[u] + heur[u]
if u is goal:

return dist, prev
remove u from Q
for each neighbor v of u still in Q:

d = dist[u] + Graph.Edges(u, v)
if d < dist[v]:

dist[v] = d
prev[v] = u

A* algorithm

𝑔𝑔𝑔𝑔𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙)=0
cost_to_go(𝑣𝑣𝑣𝑣)
“A* = Dijkstra + heuristic”

• Select open node with minimum:
• Dijkstra: cost-to-come
• A*: cost-to-come + heuristic cost-to-go

• Heuristic approximates remaining distance
to goal

• Criteria for an admissible heuristic to
guarantee optimality:

• Example: Euclidean distance to goal
• 𝐻𝐻(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) = 0

• Example: Euclidean distance to goalMobile Robot Control - Lecture 4 - Global Navigation21

function Astar(Graph, start, goal):

for each node v in Graph.Nodes:
dist[v] = INF
heur[v] = H(v)
prev[v] = NONE
add v to Q

dist[start] = 0

while Q is not empty:
u = node in Q with min dist[u] + heur[u]
if u is goal:

return dist, prev
remove u from Q
for each neighbor v of u still in Q:

d = dist[u] + Graph.Edges(u, v)
if d < dist[v]:

dist[v] = d
prev[v] = u

A* algorithm / Visualization compared to Dijkstra

Mobile Robot Control - Lecture 4 - Global Navigation22

Dijkstra’s algorithm. Source:
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

A* algorithm. Source:
https://en.wikipedia.org/wiki/A*_search_algorithm

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm

Break

• Recap local navigation & intro global navigation
• Map representations
• From map to graph
• Path planning in graphs
• Efficient graph generation
• Summary
• Introduction to assignment

Any questions so far?

Mobile Robot Control - Lecture 4 - Global Navigation23

Outline

• Recap local navigation & intro global navigation
• Map representations
• From map to graph
• Path planning in graphs
• Efficient graph generation

• Visibility graphs
• Rapidly-exploring Random Tree (RRT)
• Probabilistic Roadmap

• Summary
• Introduction to assignment

Mobile Robot Control - Lecture 4 - Global Navigation24

Efficient graph generation / Motivation

• Example: A* on grid maps
• Advantages:

+ No need to create the graph in advance, because
the grid is regular

+ Easy to calculate path cost
• Disadvantages:

- In general less efficient because not all nodes
are necessary

Mobile Robot Control - Lecture 4 - Global Navigation25

A* algorithm. Source:
https://en.wikipedia.org/wiki/A*_search_algorithm

https://en.wikipedia.org/wiki/A*_search_algorithm

Efficient graph generation / Motivation

• Example: A* on grid maps
• Advantages:

+ No need to create the graph in advance, because
the grid is regular

+ Easy to calculate path cost
• Disadvantages:

- In general less efficient because not all nodes
are necessary

• More efficient graph desired!

Mobile Robot Control - Lecture 4 - Global Navigation25

A* algorithm. Source:
https://en.wikipedia.org/wiki/A*_search_algorithm

https://en.wikipedia.org/wiki/A*_search_algorithm

Efficient graph generation / Visibility graph

• Nodes:
• Vertices of obstacles
• Agent
• Goal

• Edges:
• All straight lines between nodes that do not cross

obstacles (visibility)

Mobile Robot Control - Lecture 4 - Global Navigation26

Niu, Hanlin & Lu, Yu & Savvaris, Al & Tsourdos, Antonios.
(2018). An energy-efficient path planning algorithm for
unmanned surface vehicles. Ocean Engineering. 161.
308-321. 10.1016/j.oceaneng.2018.01.025.

Efficient graph generation / Visibility graph

• Nodes:
• Vertices of obstacles
• Agent
• Goal

• Edges:
• All straight lines between nodes that do not cross

obstacles (visibility)

• Scalability: maximum distance to create edge

Mobile Robot Control - Lecture 4 - Global Navigation26

Niu, Hanlin & Lu, Yu & Savvaris, Al & Tsourdos, Antonios.
(2018). An energy-efficient path planning algorithm for
unmanned surface vehicles. Ocean Engineering. 161.
308-321. 10.1016/j.oceaneng.2018.01.025.

Efficient graph generation / Visibility graph

• Nodes:
• Vertices of obstacles
• Agent
• Goal

• Edges:
• All straight lines between nodes that do not cross

obstacles (visibility)

• Scalability: maximum distance to create edge
• Robustness: inflate obstacles or handled by

local planner

Mobile Robot Control - Lecture 4 - Global Navigation26

Niu, Hanlin & Lu, Yu & Savvaris, Al & Tsourdos, Antonios.
(2018). An energy-efficient path planning algorithm for
unmanned surface vehicles. Ocean Engineering. 161.
308-321. 10.1016/j.oceaneng.2018.01.025.

Efficient graph generation / RRT

• RRT = Rapidly-exploring Random
Tree

• Construct a tree by random
sampling, starting at the initial state

Mobile Robot Control - Lecture 4 - Global Navigation27

Efficient graph generation / RRT

• RRT = Rapidly-exploring Random
Tree

• Construct a tree by random
sampling, starting at the initial state

Mobile Robot Control - Lecture 4 - Global Navigation27

function BuildRRT(q_init, // Initial configuration
K, // number of vertices
Δq): // incremental distance

Graph.init(q_init)

for k = 1 to K:
q_rand ← RAND_CONF(Δq)
q_near ← NEAREST_VERTEX(q_rand, Graph)

Graph.add_edge(q_near, q_rand)

return Graph

Efficient graph generation / RRT

• RRT = Rapidly-exploring Random
Tree

• Construct a tree by random
sampling, starting at the initial state

Mobile Robot Control - Lecture 4 - Global Navigation27

q_init

function BuildRRT(q_init, // Initial configuration
K, // number of vertices
Δq): // incremental distance

Graph.init(q_init)

for k = 1 to K:
q_rand ← RAND_CONF(Δq)
q_near ← NEAREST_VERTEX(q_rand, Graph)

Graph.add_edge(q_near, q_rand)

return Graph

Efficient graph generation / RRT

• RRT = Rapidly-exploring Random
Tree

• Construct a tree by random
sampling, starting at the initial state

Mobile Robot Control - Lecture 4 - Global Navigation27

q_init

function BuildRRT(q_init, // Initial configuration
K, // number of vertices
Δq): // incremental distance

Graph.init(q_init)

for k = 1 to K:
q_rand ← RAND_CONF(Δq)
q_near ← NEAREST_VERTEX(q_rand, Graph)

Graph.add_edge(q_near, q_rand)

return Graph

Efficient graph generation / RRT

• RRT = Rapidly-exploring Random
Tree

• Construct a tree by random
sampling, starting at the initial state

Mobile Robot Control - Lecture 4 - Global Navigation27

q_init

function BuildRRT(q_init, // Initial configuration
K, // number of vertices
Δq): // incremental distance

Graph.init(q_init)

for k = 1 to K:
q_rand ← RAND_CONF(Δq)
q_near ← NEAREST_VERTEX(q_rand, Graph)

Graph.add_edge(q_near, q_rand)

return Graph

Efficient graph generation / RRT

• RRT = Rapidly-exploring Random
Tree

• Construct a tree by random
sampling, starting at the initial state

Mobile Robot Control - Lecture 4 - Global Navigation27

q_init

function BuildRRT(q_init, // Initial configuration
K, // number of vertices
Δq): // incremental distance

Graph.init(q_init)

for k = 1 to K:
q_rand ← RAND_CONF(Δq)
q_near ← NEAREST_VERTEX(q_rand, Graph)

Graph.add_edge(q_near, q_rand)

return Graph

Efficient graph generation / RRT

• RRT = Rapidly-exploring Random
Tree

• Construct a tree by random
sampling, starting at the initial state

Mobile Robot Control - Lecture 4 - Global Navigation27

q_init

function BuildRRT(q_init, // Initial configuration
K, // number of vertices
Δq): // incremental distance

Graph.init(q_init)

for k = 1 to K:
q_rand ← RAND_CONF(Δq)
q_near ← NEAREST_VERTEX(q_rand, Graph)

Graph.add_edge(q_near, q_rand)

return Graph

Efficient graph generation / RRT

• RRT = Rapidly-exploring Random
Tree

• Construct a tree by random
sampling, starting at the initial state

Mobile Robot Control - Lecture 4 - Global Navigation27

q_init

function BuildRRT(q_init, // Initial configuration
K, // number of vertices
Δq): // incremental distance

Graph.init(q_init)

for k = 1 to K:
q_rand ← RAND_CONF(Δq)
q_near ← NEAREST_VERTEX(q_rand, Graph)

Graph.add_edge(q_near, q_rand)

return Graph

Efficient graph generation / RRT

• RRT = Rapidly-exploring Random
Tree

• Construct a tree by random
sampling, starting at the initial state

• Tree is dense in the limit

Mobile Robot Control - Lecture 4 - Global Navigation27

• Presence of obstacles

Efficient graph generation / RRT

Mobile Robot Control - Lecture 4 - Global Navigation28

function BuildRRT(q_init, // Initial configuration
K, // number of vertices
Δq): // incremental distance

Graph.init(q_init)

for k = 1 to K:
q_rand ← RAND_CONF(Δq)
q_near ← NEAREST_VERTEX(q_rand, Graph)
q_new ← STOPPING_CONFIG(q_near, q_rand)
if q_new != q_near:

Graph.add_edge(q_near, q_new)

return Graph

q_init

• Presence of obstacles

Efficient graph generation / RRT

Mobile Robot Control - Lecture 4 - Global Navigation28

function BuildRRT(q_init, // Initial configuration
K, // number of vertices
Δq): // incremental distance

Graph.init(q_init)

for k = 1 to K:
q_rand ← RAND_CONF(Δq)
q_near ← NEAREST_VERTEX(q_rand, Graph)
q_new ← STOPPING_CONFIG(q_near, q_rand)
if q_new != q_near:

Graph.add_edge(q_near, q_new)

return Graph

q_init

q_rand

• Presence of obstacles

Efficient graph generation / RRT

Mobile Robot Control - Lecture 4 - Global Navigation28

function BuildRRT(q_init, // Initial configuration
K, // number of vertices
Δq): // incremental distance

Graph.init(q_init)

for k = 1 to K:
q_rand ← RAND_CONF(Δq)
q_near ← NEAREST_VERTEX(q_rand, Graph)
q_new ← STOPPING_CONFIG(q_near, q_rand)
if q_new != q_near:

Graph.add_edge(q_near, q_new)

return Graph

q_init

q_near

q_rand

• Presence of obstacles

Efficient graph generation / RRT

Mobile Robot Control - Lecture 4 - Global Navigation28

function BuildRRT(q_init, // Initial configuration
K, // number of vertices
Δq): // incremental distance

Graph.init(q_init)

for k = 1 to K:
q_rand ← RAND_CONF(Δq)
q_near ← NEAREST_VERTEX(q_rand, Graph)
q_new ← STOPPING_CONFIG(q_near, q_rand)
if q_new != q_near:

Graph.add_edge(q_near, q_new)

return Graph

q_init

q_near q_new

q_rand

• Presence of obstacles

• We can stop if we can add the goal
node to the tree

Efficient graph generation / RRT

Mobile Robot Control - Lecture 4 - Global Navigation28

function BuildRRT(q_init, // Initial configuration
K, // number of vertices
Δq): // incremental distance

Graph.init(q_init)

for k = 1 to K:
q_rand ← RAND_CONF(Δq)
q_near ← NEAREST_VERTEX(q_rand, Graph)
q_new ← STOPPING_CONFIG(q_near, q_rand)
if q_new != q_near:

Graph.add_edge(q_near, q_new)

return Graph

q_init

q_near q_new

q_rand

• RRT*: RRT with rewiring for shorter paths
• Similar to Dijkstra and A*

Efficient graph generation / RRT*

Mobile Robot Control - Lecture 4 - Global Navigation29

q_init

• RRT*: RRT with rewiring for shorter paths
• Similar to Dijkstra and A*

Efficient graph generation / RRT*

Mobile Robot Control - Lecture 4 - Global Navigation29

q_init

• RRT*: RRT with rewiring for shorter paths
• Similar to Dijkstra and A*

Efficient graph generation / RRT*

Mobile Robot Control - Lecture 4 - Global Navigation29

q_init

• RRT*: RRT with rewiring for shorter paths
• Similar to Dijkstra and A*

Efficient graph generation / RRT*

Mobile Robot Control - Lecture 4 - Global Navigation29

q_init

Efficient graph generation / Probabilistic roadmap

Mobile Robot Control - Lecture 4 - Global Navigation30

• Nodes: randomly generated (valid)
configurations

• Edges: (straight-line) collision-free
connections between nodes

Efficient graph generation / Probabilistic roadmap

Mobile Robot Control - Lecture 4 - Global Navigation30

function Generate_PRM(Map, N_vertices):

G.init()

for i = 0 to N_vertices:
c  a free configuration in Map
G.add_vertex(c)

for each q in neighbours(c, G):
if connect(c, q):

G.add_edge(c, q)

• Nodes: randomly generated (valid)
configurations

• Edges: (straight-line) collision-free
connections between nodes

Efficient graph generation / Probabilistic roadmap

Mobile Robot Control - Lecture 4 - Global Navigation30

function Generate_PRM(Map, N_vertices):

G.init()

for i = 0 to N_vertices:
c  a free configuration in Map
G.add_vertex(c)

for each q in neighbours(c, G):
if connect(c, q):

G.add_edge(c, q)

• Nodes: randomly generated (valid)
configurations

• Edges: (straight-line) collision-free
connections between nodes

• Note: Different strategies of sampling,
neighborhood or connections might be
more appropriate

Efficient graph generation / Probabilistic roadmap

Mobile Robot Control - Lecture 4 - Global Navigation30

• Nodes: randomly generated (valid)
configurations

• Edges: (straight-line) collision-free
connections between nodes

• Note: Different strategies of sampling,
neighborhood or connections might be
more appropriate

Efficient graph generation / Probabilistic roadmap

Mobile Robot Control - Lecture 4 - Global Navigation30

• Nodes: randomly generated (valid)
configurations

• Edges: (straight-line) collision-free
connections between nodes

• Note: Different strategies of sampling,
neighborhood or connections might be
more appropriate

• Planning: e.g. Dijkstra or A*

Efficient graph generation / Probabilistic roadmap

Mobile Robot Control - Lecture 4 - Global Navigation30

• Nodes: randomly generated (valid)
configurations

• Edges: (straight-line) collision-free
connections between nodes

• Note: Different strategies of sampling,
neighborhood or connections might be
more appropriate

• Planning: e.g. Dijkstra or A*
• Roadmap can be independent of start

and final configurations

Following a global path with a local planner

• Exact trajectory planning is often infeasible
• Would lead to constant replanning
• Local planner needed (previous lecture)

Mobile Robot Control - Lecture 4 - Global Navigation31

Source: https://www.openstreetmap.org/

https://www.openstreetmap.org/

Following a global path with a local planner

• Exact trajectory planning is often infeasible
• Would lead to constant replanning
• Local planner needed (previous lecture)

Mobile Robot Control - Lecture 4 - Global Navigation31

Source: https://www.openstreetmap.org/

https://www.openstreetmap.org/

Following a global path with a local planner

• Exact trajectory planning is often infeasible
• Would lead to constant replanning
• Local planner needed (previous lecture)

Mobile Robot Control - Lecture 4 - Global Navigation31

Following a global path with a local planner

• Exact trajectory planning is often infeasible
• Would lead to constant replanning
• Local planner needed (previous lecture)

Mobile Robot Control - Lecture 4 - Global Navigation31

A

B

Following a global path with a local planner

• Exact trajectory planning is often infeasible
• Would lead to constant replanning
• Local planner needed (previous lecture)

Mobile Robot Control - Lecture 4 - Global Navigation31

A

B

Following a global path with a local planner

• Exact trajectory planning is often infeasible
• Would lead to constant replanning
• Local planner needed (previous lecture)
• Monitor when the plan is blocked

• Robot stands still

Mobile Robot Control - Lecture 4 - Global Navigation31

A

B

Following a global path with a local planner

• Exact trajectory planning is often infeasible
• Would lead to constant replanning
• Local planner needed (previous lecture)
• Monitor when the plan is blocked

• Robot stands still

Mobile Robot Control - Lecture 4 - Global Navigation31

A

B

Following a global path with a local planner

• Exact trajectory planning is often infeasible
• Would lead to constant replanning
• Local planner needed (previous lecture)
• Monitor when the plan is blocked

• Robot stands still

Mobile Robot Control - Lecture 4 - Global Navigation31

A

B

Following a global path with a local planner

• Exact trajectory planning is often infeasible
• Would lead to constant replanning
• Local planner needed (previous lecture)
• Monitor when the plan is blocked

• Robot stands still
• Update worldmodel/graph and replan

Mobile Robot Control - Lecture 4 - Global Navigation31

A

B

Following a global path with a local planner

• Exact trajectory planning is often infeasible
• Would lead to constant replanning
• Local planner needed (previous lecture)
• Monitor when the plan is blocked

• Robot stands still
• Update worldmodel/graph and replan

Mobile Robot Control - Lecture 4 - Global Navigation31

A

B

Following a global path with a local planner

• Exact trajectory planning is often infeasible
• Would lead to constant replanning
• Local planner needed (previous lecture)
• Monitor when the plan is blocked

• Robot stands still
• Update worldmodel/graph and replan

Mobile Robot Control - Lecture 4 - Global Navigation31

A

B

Outline

• Recap local navigation & intro global navigation
• Map representations
• From map to graph
• Path planning in graphs
• Efficient graph generation
• Summary
• Introduction to assignment

Mobile Robot Control - Lecture 4 - Global Navigation32

Summary

• Global (vs local) navigation

Mobile Robot Control - Lecture 4 - Global Navigation33

Summary

• Global (vs local) navigation
• Map representations

• Discretizations: Cell-based, grid-based and graph-based

Mobile Robot Control - Lecture 4 - Global Navigation33

Summary

• Global (vs local) navigation
• Map representations

• Discretizations: Cell-based, grid-based and graph-based
• Discretized map  graph

Mobile Robot Control - Lecture 4 - Global Navigation33

Summary

• Global (vs local) navigation
• Map representations

• Discretizations: Cell-based, grid-based and graph-based
• Discretized map  graph
• Path planning in graphs

• Dijkstra & A*: complete and optimal

Mobile Robot Control - Lecture 4 - Global Navigation33

Summary

• Global (vs local) navigation
• Map representations

• Discretizations: Cell-based, grid-based and graph-based
• Discretized map  graph
• Path planning in graphs

• Dijkstra & A*: complete and optimal
• Grids are simple but often inefficient. Alternatives:

Mobile Robot Control - Lecture 4 - Global Navigation33

Summary

• Global (vs local) navigation
• Map representations

• Discretizations: Cell-based, grid-based and graph-based
• Discretized map  graph
• Path planning in graphs

• Dijkstra & A*: complete and optimal
• Grids are simple but often inefficient. Alternatives:

• Visibility graph: short paths, has to be recomputed when map is updated

Mobile Robot Control - Lecture 4 - Global Navigation33

Summary

• Global (vs local) navigation
• Map representations

• Discretizations: Cell-based, grid-based and graph-based
• Discretized map  graph
• Path planning in graphs

• Dijkstra & A*: complete and optimal
• Grids are simple but often inefficient. Alternatives:

• Visibility graph: short paths, has to be recomputed when map is updated
• RRT(*): creates graph and finds path, but very specific for start location,

completeness only guaranteed in the limit

Mobile Robot Control - Lecture 4 - Global Navigation33

Summary

• Global (vs local) navigation
• Map representations

• Discretizations: Cell-based, grid-based and graph-based
• Discretized map  graph
• Path planning in graphs

• Dijkstra & A*: complete and optimal
• Grids are simple but often inefficient. Alternatives:

• Visibility graph: short paths, has to be recomputed when map is updated
• RRT(*): creates graph and finds path, but very specific for start location,

completeness only guaranteed in the limit
• Probabilistic roadmap: completeness only guaranteed in the limit

Mobile Robot Control - Lecture 4 - Global Navigation33

Outline

• Recap local navigation & intro global navigation
• Map representations
• From map to graph
• Path planning in graphs
• Efficient graph generation
• Summary
• Introduction to assignment

Mobile Robot Control - Lecture 4 - Global Navigation34

Assignment part 1

Mobile Robot Control - Lecture 4 - Global Navigation35

• Complete an implementation of the A* algorithm to find the shortest
path from start to finish in a maze

• Provided: list of nodes and edges, index of start and finish nodes
• Required: sequence of node indices that form the shortest path from

start to finish
0 1 2 3 4 5 6 7 8

9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

31 32 33

34 35 36 37 38 39 40

41

Assignment part 2

Mobile Robot Control - Lecture 4 - Global Navigation36

• Complete the implementation of generating a graph that represents a
Probabilistic Roadmap (PRM)

• When part 1 of the assignment is also finished, a path from start to goal
in this PRM can be found using your A* algorithm

Assignment part 3

Mobile Robot Control - Lecture 4 - Global Navigation37

• Connect global and local planner

	4SC020 Mobile Robot Control 2025:�Global Navigation
	Outline
	Outline
	Recap & intro / Robot navigation problem
	Recap & intro / Robot navigation problem
	Recap & intro / Robot navigation problem
	Recap & intro / Robot navigation problem
	Recap & intro / Robot navigation problem
	Recap & intro / Robot navigation problem
	Recap & intro / Robot navigation problem
	Recap & intro / Robot navigation problem
	Recap & intro / Robot navigation problem
	Recap & intro / Global navigation problem
	Recap & intro / Motion planning algorithms: specs & properties
	Recap & intro / Motion planning algorithms: specs & properties
	Outline
	Map representations
	Map representations
	Map representations
	Map representations
	Outline
	From map to graph
	From map to graph
	From map to graph
	From map to graph
	From map to graph
	From map to graph
	Outline
	Dijkstra’s algorithm
	Dijkstra’s algorithm / Exploration
	Dijkstra’s algorithm / Exploration
	Dijkstra’s algorithm / Exploration
	Dijkstra’s algorithm / Exploration
	Dijkstra’s algorithm / Exploration
	Dijkstra’s algorithm / Exploration
	Dijkstra’s algorithm / Trace path back
	Dijkstra’s algorithm / Trace path back
	Dijkstra’s algorithm / Trace path back
	Dijkstra’s algorithm / Trace path back
	Dijkstra’s algorithm / Trace path back
	Dijkstra’s algorithm / Trace path back
	Dijkstra’s algorithm / Larger scale visualization
	A* algorithm
	A* algorithm
	A* algorithm
	A* algorithm
	A* algorithm
	A* algorithm / Visualization compared to Dijkstra
	Break
	Outline
	Efficient graph generation / Motivation
	Efficient graph generation / Motivation
	Efficient graph generation / Visibility graph
	Efficient graph generation / Visibility graph
	Efficient graph generation / Visibility graph
	Efficient graph generation / RRT
	Efficient graph generation / RRT
	Efficient graph generation / RRT
	Efficient graph generation / RRT
	Efficient graph generation / RRT
	Efficient graph generation / RRT
	Efficient graph generation / RRT
	Efficient graph generation / RRT
	Efficient graph generation / RRT
	Efficient graph generation / RRT
	Efficient graph generation / RRT
	Efficient graph generation / RRT
	Efficient graph generation / RRT
	Efficient graph generation / RRT
	Efficient graph generation / RRT*
	Efficient graph generation / RRT*
	Efficient graph generation / RRT*
	Efficient graph generation / RRT*
	Efficient graph generation / Probabilistic roadmap
	Efficient graph generation / Probabilistic roadmap
	Efficient graph generation / Probabilistic roadmap
	Efficient graph generation / Probabilistic roadmap
	Efficient graph generation / Probabilistic roadmap
	Efficient graph generation / Probabilistic roadmap
	Following a global path with a local planner
	Following a global path with a local planner
	Following a global path with a local planner
	Following a global path with a local planner
	Following a global path with a local planner
	Following a global path with a local planner
	Following a global path with a local planner
	Following a global path with a local planner
	Following a global path with a local planner
	Following a global path with a local planner
	Following a global path with a local planner
	Outline
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary
	Outline
	Assignment part 1
	Assignment part 2
	Assignment part 3

