
Coordination: mechanisms
and architectural patterns

Herman Bruyninckx
KU Leuven&TU Eindhoven

27 May 2020

Coordination: mechanisms and architectural patterns – H. Bruyninckx, 27 May 2020 1

Overview
Why is Coordination needed?
Three complementary mechanisms for Coordination:

flag arrays (“bitfields”)
Petri Nets arrays (“bitfields”)
Finite State Machines

Architectures for:
data exchange
task queue processing

•
•

•
•
•

•
•
•

Coordination: mechanisms and architectural patterns – H. Bruyninckx, 27 May 2020 2

Why is Coordination needed?

3

Why is “Coordination” needed?
if (condA and conB) then {...}

In every algorithm, conditional statements
like the one on the left occur.

There are two very different contexts at work behind the screens:

synchronous computing:

both condA and condB are
computed in the same algorithm,
using data that is not shared with
any other algorithm.

asynchronous computing:

one or both of condA and condB
are computed with data that can
also be changed by another
algorithm.

Problem: the conditions on which one algorithm makes its decisions can
change behind its back, while it is deciding
 → inconsistent decisions will occur, sooner or later!
Solution: let algorithms coordinate the execution of their functions!

Coordination: mechanisms and architectural patterns – H. Bruyninckx, 27 May 2020 5

Three mechanisms for Coordination

6

Mechanism 1: Flag arrays for protocols
time t

time t1

time t2

time t3

time t4

t < t1 < t2 < t3 < t4

time t

time t1

time t2

time t3

time t4

time t

time t1

time t2

time t3

time t4

There are two algorithms: Alg1 and Alg2
They share a bitfield, or flag array.

Each algorithm computes logical conditions,
with data that is under its full control only…
…and fills in the truth value of such logical
condition in the agreed-upon bit in the
shared array.

Both algorithms also share a protocol.
That is, the order in which each algorithm fills in the next flag in the array.

Each algorithm only computes the logical conditions involved in the protocol
after it has observed that the other algorithm has set the associated flag.

Coordination: mechanisms and architectural patterns – H. Bruyninckx, 27 May 2020 7

Mechanism 1: Flag arrays for protocols (2)
Reading and writing bits in a bitfield can be done atomically on all CPUs
 → consistency of protocol flag array can be guaranteed!
 → consistency of evaluation of logical conditions can be guaranteed!

Caution:

correct obedience of both algorithms to agreed-
upon protocol can not be guaranteed, but
depends on discipline of programmers.

they must make sure that the truth values of
conditions in each algorithm does not change as
long as the coordination protocol is active.

•

•

Coordination: mechanisms and architectural patterns – H. Bruyninckx, 27 May 2020 8

Mechanism 1: Flag arrays for protocols (3)
Example: Stop-and-go coordination

can I go?

Go!

Bye

I'm gone

One algorithm waits before starting a
particular computation…

…until another algorithm has finished its own
particular computation.

They inform each other explicitly about the
end of their mutual coordination.

Coordination: mechanisms and architectural patterns – H. Bruyninckx, 27 May 2020 9

Mechanism 1: Flag arrays for protocols (4)
Example: Data borrowing coordination

thanks!

I'm done

can I

borrow

your data?

yes, you

can!

Special case of Stop-and-go coordination:

one algorithm owns data that other
algorithms also need to work with.
each of the other algorithms engages in a
protocol with the “owner” to get its explicit
agreement to use the data.
the “borrower” informs the “owner” when
it's done.

•

•

•

Coordination: mechanisms and architectural patterns – H. Bruyninckx, 27 May 2020 10

Mechanism 2: Petri Nets for multi-algorithm coordination

tr1 tr2

pl11

pl22

pl12

pl14

pl13

pl21

f12

f13

f14

f11

f21f22

Flag arrays don't scale well for the
coordination of many algorithms:

the coordination order is often not
sequential any more.
flag arrays imply that implementers of all
involved algorithms known about all the
other algorithms involved in a
coordination.

Solution:
one algorithm (the “mediator”) is responsible for the overall coordination.
it engages in a flag array protocol with each of the coordinated algorithms
 → decoupling of having to know each other!
it uses a Petri Net model to organise its own decision making
 → non-sequential ordering in decision making becomes possible!

•

•

•
•

•

Coordination: mechanisms and architectural patterns – H. Bruyninckx, 27 May 2020 11

https://en.wikipedia.org/wiki/Petri_net

Mechanism 2: Petri Nets for multi-algorithm coordination (2)

tr1 tr2

pl11

pl22

pl12

pl14

pl13

pl21

f12

f13

f14

f11

f21f22

Primitives in a Petri Net:

token: represents flag of one coordinated
algorithm.
place: holds zero or one token
transition: fires when all its input places
are full
→ makes them empty.
→ fills its output places.

Marking reaction table of the Petri Net:

input places transition output places
pl11, pl21 tr1 pl12

pl12, pl13 tr2 pl14, pl22

Mediator is only “owner” of Petri Net:
it can compute the Petri Net transitions
without any interference of the other
algorithms.
it can engage in multiple flag array
protocols, without interference.

•

•
•

•

•

Coordination: mechanisms and architectural patterns – H. Bruyninckx, 27 May 2020 12

Mechanism 2: Petri Nets for multi-algorithm coordination (3)
Example: coordinated starting of multiple algorithms

Can I go?

Can I go?

Go!

Coordination behaviour:

coordinated algorithms can become
ready-to-go in any order.

mediator waits till both coordinated
algorithms are ready to start…
…before making its transition.

both coordinated algorithms can check
their Go! flag at their own leisure…
…and without having to known anything
about each other's existence.

•

•

•

Coordination: mechanisms and architectural patterns – H. Bruyninckx, 27 May 2020 13

Mechanism 3: Finite State Machines
e1

State1

State2 State3

State4

Transition6

Transition1
Transition4

Transition2

T
r
a
n
s
i
t
i
o
n
3

T
r
a
n
s
i
t
i
o
n
5

Transition7

e2 e3 e4 e5e6 e7 e8

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

input event transition output event
e1 Transition1

e2 Transition2 E2

e3 Transition3 E3

e2 Transition4 E4

e1 Transition5

e6 Transition6 E7

e4 Transition7 E4

Differences with Petri Net:
mediator algorithm can be in one and
only one state at any given time.
setting and cleaning of any flag in flag
array can happen at any time, by any
algorithm.
mediator algorithm decides to take a
transition away from its current state as
soon as the associated event flags are
true.
possibly, a transition sets an event flag in
the output array.
mediator algorithm can decide to clean
input and/or output event arrays at any
time.

•

•

•

•

•

Coordination: mechanisms and architectural patterns – H. Bruyninckx, 27 May 2020 14

Mechanism 3: Finite State Machines (2)
Example: Life Cycle State Machine (LCSM)

creating

Life Cycle State Machine

config-
uring

resources

configuring
capabilities

runningrunning

pausingdeleting

ready
deploy

ing active

The hierarchy of states is only in the model:
 →only leaf states matter for the software.
 →other state: view on set of leaf states.

Purpose: to coordinate the behaviour of an
activity:

activity = set of many algorithms
running together.
state of the activity: particular
configuration of these algorithms.
before being “active”, the activity must
make sure its resources have been
correctly configured.
while being “active”, the activity can
decide to pause its behaviour,
temporarily.

•

•

•

•

Coordination: mechanisms and architectural patterns – H. Bruyninckx, 27 May 2020 15

Mechanism 3: Finite State Machines (3)
Example: Task execution State Machine

each robot has its own FSM:
each state has different control
settings.
each state reacts to different events.

the task's FSM coordinates these two
robot FSMs:
 → by sending events.
 → LCSM events are essential!

•
•

•

•

Coordination: mechanisms and architectural patterns – H. Bruyninckx, 27 May 2020 16

https://videolab.avnet.kuleuven.be/video/?id=5ee4082f5a64448515d9897793bc0f9c&autostart=false&height=388&width=640

Architectures

17

Data exchange architectures

18

Data “communication” pattern: ring buffer

(See animation on Wikipedia.)

Principle:
producer can fill the part of the
buffer it owns.

same holds for consumer.

producer can transfer ownership to
consumer, by advancing one pointer.

same holds for consumer.

ownership transfer can always be done
without disrupting the consumer.

Result: “communication” of data with zero overhead!

•

•

•

•

•

Coordination: mechanisms and architectural patterns – H. Bruyninckx, 27 May 2020 19

https://en.wikipedia.org/wiki/Circular_buffer
https://en.wikipedia.org/wiki/Zero-copy

Data “communication” pattern: ring buffer (2)
Multiple producers – multiple consumers

producer_1

producer_2

consumer_1

consumer_2

consumer_3

mediator

Principle:
mediator algorithm has one
ring buffer “stream” with
each producer.

same holds for each consumer.

mediator decides on the
transfer policy between
producers and consumers.

•

•

•

Coordination: mechanisms and architectural patterns – H. Bruyninckx, 27 May 2020 20

Submission-Completion architecture
For “dialogues” between algorithms

request

producer

completion stream

request

processor

submission stream

47

12

Use cases:

database-like “queries”
pointers to data structures, to
“borrow” access.

one algorithm hands over “stuff to do”
to another algorithm.

that algorithm returns processed
results, at its own pace.

each hand-over has a unique ID,
and includes the ID of submitter &
executor,
→ execution of “stuff” can be traced…
 …and reacted upon.

•
•

•

•

•

Coordination: mechanisms and architectural patterns – H. Bruyninckx, 27 May 2020 21

Event loop architecture

22

Event loop architecture: “execution engine”
Decouples the Communicate, Coordinate, Configure, Compute parts in algorithms

when triggered // by operating system, which deals with all
 // asynchronous side effects.
 do { // the serial control flow structure of the event loop.
 communicate() // get all "messages" with events, data & queries,
 // provided by other asynchronous algorithms.
 coordinate() // handle the events in these messages, and
 // decide which ones to react to.
 configure() // some events imply reconfiguration of event loop.

 compute() // execute your (serialized set of) synchronous algorithms,
 // which in themselves are side effect-free computations.

 coordinate() // the computations above can generate events that imply
 // reconfiguration, of this event loop or other algorithms.
 communicate() // the computations above can generate events, data & queries
 // that other asynchronous algorithms must know about.

 sleep() // the loop deactivates itself, until the earliest deadline
 // (default, or requested in the steps above).
 }

Coordination: mechanisms and architectural patterns – H. Bruyninckx, 27 May 2020 23

Further reading

https://robmosys.pages.mech.kuleuven.be/.
Especially Chapters 2 and 5.

Wiki pages of H2020 project RobMoSys

Questions or remarks: contact me at:

herman . bruyninckx at kuleuven . be

Coordination: mechanisms and architectural patterns – H. Bruyninckx, 27 May 2020 24

https://robmosys.pages.mech.kuleuven.be/
https://robmosys.eu/wiki/
https://robmosys.eu/

Lots of algorithms…

(Direct link to video above.)

sensor processing: encoders,
accelerometers, laser distance sensors,…
motion control: velocity or torque control
for every wheel, task control of the whole
platform,…
task execution: decide when to switch to
which part of the robot's task plan.
monitoring: check all constraints and
assumptions that should not be violated.
resources: configure and interface
hardware, communication, CPU,…

Any robot controller runs a lot of algorithms “at the same time”!

n

ROPOD: Robot navigation plus load usiROPOD: Robot navigation plus load usi……
•

•

•

•

•

Coordination: mechanisms and architectural patterns – H. Bruyninckx, 27 May 2020 4

https://www.youtube.com/embed/AhBgBI59yEA?list=PL9eenMqsZNq_LKf1wwwb9YrwNDMgSgzAP
https://www.youtube.com/watch?list=PL9eenMqsZNq_LKf1wwwb9YrwNDMgSgzAP&v=AhBgBI59yEA

