MRC 2020 Group 4

FINAL DESIGN PRESENTATION

PICO in the Hospital

D. van Boven	0780958	B. Kool	1387391
M. Katzmann	1396846	R.O.B. Stiemsma	0852884
R. Konings	1394819	A.S.H. Vinjarapu	1502859

CHEROLD .

Tutor: Marzieh Dolatabadi Farahani

// Control Systems Group

Outline

Architecture

- Strategy
- Program structure

Implementation

- Mapping
 - Feature Recognition
 - SLAM (FastSLAM2)
 - Map Updating
- Navigation
 - A* Pathfinding
 - Motion Planning

Architecture : Strategy

Modular division into:

- PICO IO
- World sense
- Planning
- Task Management

('interactions')
('mapping')
('navigation')
(main*)

The idea is to minimize backward dependencies.

Architecture : Structure

• PICO IO

('interactions')

- Dependent on the API
- Lightweight, only remembers sensor data of previous iteration
- World sense

('mapping')

- Dependent on interactions
- Maintains an internal world model
- Recognizes features in the world

(lines and points) ('landmarks')

- Performs **SLAM**
- **Error prone** due to containing a matrix inversion.

Architecture : Structure II

• Planning

('navigation')

- Dependent on mapping
- Task management

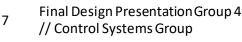
(main*)

- Dependent on all the above.
- Lightly codependent (injects variables and 'modes')
- Takes intuitive decisions

('initialize','scout', 'go', 'wait', 'use cabinet')

Implementation: Mapping I – Feature Recognition

- Segmenting laser rangefinder data points
- Total Least Squares regression on a segment's points
- Intersect regression lines for more accurate corner locations
- Match corners to map's landmarks using PICO localization data

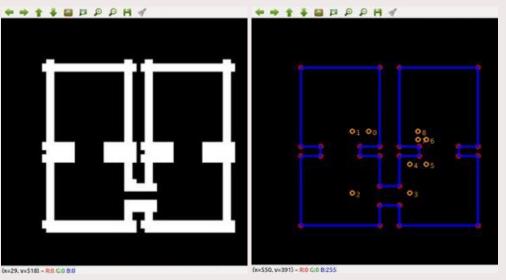


Implementation: Mapping II – SLAM

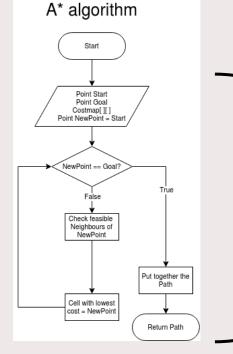
- Chosen algorithm is FastSLAM2
 - Monte Carlo localization method
 - (very similar to the EKF Particle Filter method)
 - Abuses the static nature of landmarks through Rao-Blackwellization
 - \rightarrow **n 2x2** EKF covariance matrices per hypothesis, vs **nxn**
 - *Incorporates measurement into prior position hypothesis*

FastSLAM2 promises robust, efficient behaviour for static elements.

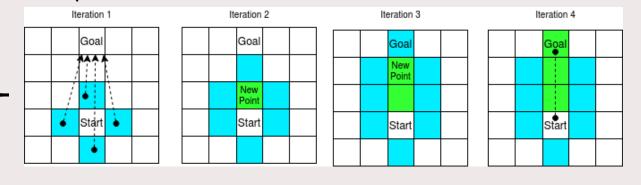
Dynamic elements will be accounted for using a confidence-based grid mapping approach.*

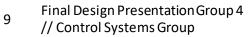


n: the amount of landmarks (corners) in the global map *: not yet implemented. The idea is a reduced gridSLAM method


Implementation: Mapping III – Model Updating

- Model update based on features from FastSlam
- Tile the global map for a costmap
- Uses the aforementioned heatmap for dynamic objects





Implementation: Navigation I – A* Pathfinding

Simple case:

Implementation: Navigation II – Motion Planning

- Trajectory to movement
 - PICO rotates until perpendicular to next point
- Feedback
 - © Current position compared with goal position
 - Position adjusted if necessary

