Robot Localization

Embedded Motion Control 2013

Jos Elfring

Motivation

Many tasks require a localized robot

- Map is assumed to be available
- Measurements are performed
- Position (x, y, θ) of the robot in map is calculated

Goal: localization

Today's Topics

1. Probability theory
2. Gaussian distributions
3. Robot localization using a particle filter

Random variable

A random variable is a variable that can take different values, each with its own probability:

- Side after a coin flip
- Number of pips (dots) after rolling a dice
- Rank and suit of card taken from a deck
- Position of a robot in a room
- ...

A random variable is represented by an uppercase symbol, its value by a lowercase symbol:

- X takes a value heads or tails
- $X=$ heads or $X=$ tails
- $X \in\{$ heads, tails $\}$

Probabilities

Each value a random variable might take is associated with a probability:

- $p(X=$ heads $)=0.5$
- $p(X=$ tails $)=0.5$
- $p($ heads $)=p($ tails $)=0.5$

Definitions and properties:

- Set of all possible outcomes is called event space, e.g., $\Omega=\{$ heads, tails $\}$
- $0 \leq p\left(E=e_{1}\right) \leq 1$
- $p\left(E=e_{1}\right) \in \mathbb{R}$
- Probability that some event in the event space occurs is one

Notation

A

B

$A \cap B$

$A \cup B$

Dependence versus independence (1/2)

Pick one card from a deck of cards:

- $p($ hearts $)=\frac{1}{4}$
- $p($ red $)=p($ hearts \cup diamonds $)=p($ hearts $)+p($ diamonds $)=\frac{1}{2}$ Note: hearts and diamonds are mutually exclusive, i.e., hearts \cap diamonds $=\emptyset$ hence p (hearts \cap diamonds) $=0$
- Ace and spades:

$$
p(\text { ace } \cap \text { spades })=p(\text { ace } \mid \text { spades }) \cdot p(\text { spades })=\frac{1}{13} \cdot \frac{1}{4}=\frac{1}{52}
$$

Rank and suit of a card are (statistically) independent:

- Two random variables are independent if the probability of one does not affect the probability of the other.

Dependence versus independence (2/2)

Two random variables: color $C \in\{$ green, blue $\}$ and bowl $B \in\left\{b_{1}, b_{2}\right\}$.

- $p\left(b_{1}\right)=p\left(b_{2}\right)=\frac{1}{2}$

Dependent event:

- Probability green ball given the bowl identity:

$$
\begin{aligned}
& p\left(\text { green } \mid b_{1}\right)=\frac{p\left(\text { green }, b_{1}\right)}{p\left(b_{1}\right)}=\frac{3 / 10}{1 / 2}=\frac{3}{5} \\
& p\left(\text { green } \mid b_{2}\right)=\frac{p\left(\text { green }, b_{2}\right)}{p\left(b_{2}\right)}=\frac{4 / 10}{1 / 2}=\frac{4}{5}
\end{aligned}
$$

Rules of probability

Sum rule:

$$
p(X)=\sum_{Y} p(X, Y),
$$

Example: $p($ green $)=p\left(\right.$ green, $\left.b_{1}\right)+p\left(\right.$ green, $\left.b_{2}\right)=\frac{3}{10}+\frac{4}{10}=\frac{7}{10}$.

Product rule:

$$
p(X, Y)=p(Y \mid X) p(X)
$$

Example: $p\left(\right.$ green, $\left.b_{1}\right)=p\left(\right.$ green $\left.\mid b_{1}\right) \cdot p\left(b_{1}\right)=\frac{3}{5} \cdot \frac{1}{2}=\frac{3}{10}$.

- $p(X, Y)$ is the joint probability, the probability of X and Y
- $p(X \mid Y)$ is the conditional probability, the probability of X given Y
- $p(X)$ is the marginal probability, the probability of X

Bayes' theorem

Combining the sum rule and the product rule leads to Bayes' theorem:

$$
p(X \mid Y)=\frac{p(Y \mid X) p(X)}{p(Y)}
$$

In words:
posterior \propto likelihood \times prior,
the denominator is usually referred to as normalizing constant.

Bayes' theorem: example

Assume a blue ball is observed. What is the probability of the ball being picked from bowl one?

Using Bayes’ theorem:

$$
p\left(b_{1} \mid \text { blue }\right)=\frac{p\left(\text { blue } \mid b_{1}\right) p\left(b_{1}\right)}{p(\text { blue })}=\frac{2 / 5 \cdot 1 / 2}{3 / 10}=\frac{2}{3},
$$

where the normalizing constant equals:
$p($ blue $)=p\left(\right.$ blue $\left.\mid b_{1}\right) p\left(b_{1}\right)+p\left(\right.$ blue $\left.\mid b_{2}\right) p\left(b_{2}\right)=\frac{2}{5} \cdot \frac{1}{2}+\frac{1}{5} \cdot \frac{1}{2}=\frac{3}{10}$.

Bayes' theorem: conclusion

Before the observing the color of the ball, the prior probability of b_{1} is $\frac{1}{2}$.
Once told the ball is blue, the posterior probability of b_{1} is $\frac{2}{3}$.
The evidence is used to update the belief about the identity of the box that was selected.

Probability Density Functions

A probability density function f :

- Integral describes the probability of a random variable taking a value in a given interval:

$$
p(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) d x
$$

- Is nonnegative everywhere
- Can have an arbitrary number of dimensions
- The integral over the entire event space Ω equals one:

$$
\int_{\Omega} f(x) d x=1
$$

Gaussian distribution properties

Continuous probability density function.

- Characterized by a mean vector $\boldsymbol{\mu}$ and a covariance matrix $\boldsymbol{\Sigma}$:

$$
\mathcal{N}(\boldsymbol{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{\sqrt{(2 \pi)^{n}|\boldsymbol{\Sigma}|}} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}(\boldsymbol{x}-\boldsymbol{\mu})\right),
$$

where $\boldsymbol{\mu} \in \mathbb{R}^{n}, \boldsymbol{\Sigma} \in \mathbb{R}^{n \times n}$ is positive-definite and $|\cdot|$ represents the determinant.

- Gaussian is conjugate to itself: if likelihood and prior are Gaussian distributions, the posterior will be Gaussian too
- Gaussian distribution is unimodal

Covariance matrix

- Diagonal elements: variance in each of the dimensions
- Off-diagonal elements: how do two dimensions vary together
- Symmetric

$$
\begin{array}{ll}
\boldsymbol{\Sigma}_{1}=\left[\begin{array}{cc}
1.5 & 0 \\
0 & 1.5
\end{array}\right], & \boldsymbol{\Sigma}_{2}=\left[\begin{array}{cc}
1.5 & 0 \\
0 & 3.0
\end{array}\right], \\
\boldsymbol{\Sigma}_{3}=\left[\begin{array}{ll}
1.5 & 1.0 \\
1.0 & 1.5
\end{array}\right], & \boldsymbol{\Sigma}_{4}=\left[\begin{array}{ll}
1.5 & 0.2 \\
0.2 & 1.5
\end{array}\right] .
\end{array}
$$

Localization

General State Estimation problem

Estimate a hidden state \boldsymbol{x}_{k} using measurements $\boldsymbol{z}_{\boldsymbol{k}}$ related to this state.

State Estimation and Robot localization

In general:

- A state is a random variable that evolves over time (at discrete time steps)
- A motion model or process model describes how a state evolves over time
- Markov assumption: the history of state $\boldsymbol{x}_{\boldsymbol{k}}$ is adequately summarized by the previous state only, i.e.,

$$
p\left(\boldsymbol{x}_{k} \mid \boldsymbol{x}_{k-1}, \ldots, \boldsymbol{x}_{0}\right)=p\left(\boldsymbol{x}_{k} \mid \boldsymbol{x}_{k-1}\right)
$$

During the remainder of this presentation:

- The state contains the robot position
- The motion model represents the robot's motion

Particle Filter

Idea: Approximate posterior by many guesses, density of guesses is posterior distribution

- Each guess is named a particle
- Map is assumed to be available
- Prediction step: apply robot movements to set of particles
- Up-date step: determine consistency measurement and particle (and keep consistent particles, remove inconsistent particles)

Particle Filter: 1D example

- Resampling avoids degeneracy: very few particles with high weight
- Noise in measurement and motion models avoids impoverishment

Particle Filter: implementation

- Each particle is a <weight,state» pair
- Collection of n particles represented by the set S
function ParticleFilter(S, u, z)
$S^{\prime}=\emptyset, \eta=0$
for $i \leftarrow 1$ to n do
Sample index $j \sim\{w\}$ with replacement
Sample possible successor state: $x^{\prime} \sim p\left(x^{\prime} \mid u, s_{j}\right)$
Compute new weight: $w^{\prime}=p\left(z \mid x^{\prime}\right)$
Add new particle: $S^{\prime}=S^{\prime} \cup\left\{<x^{\prime}, w^{\prime}>\right\}$
Update auxiliary variable: $\eta=\eta+w^{\prime}$
end for
for $m \leftarrow 1$ to n do
Normalize weight: $w_{m}=\frac{1}{\eta} w_{m}$
end for
end function

Particle Filters: pros and cons

Advantages:

- Allows for complex and multimodal distributions and non-linear models
- Easy to implement
- Computational effort 'where needed'

Disadvantages:

- Problems when number of particles is low
- Does not scale well to high dimensional spaces

Particle Filters: good to know

- Many particle filter variants exist, main difference: resampling approach
- Algorithm introduced today has many different names:
- Sampling Importance Resampling filter
- Bootstrap filter
- Monte Carlo filter
- CONDENSATION algorithm

Particle filters are applied successfully in many, many applications!

Further Reading

Introduction to particle filters:

- David Salmond and Neil Gordon, An introduction to particle filters (includes Matlab code example):
http://dip.sun.ac.za/~herbst/MachineLearning/
ExtraNotes/ParticleFilters.pdf

Basic probability theory, particle filters and much more:

- Sebastian Thrun, Wolfram Burgard, Dieter Fox, Probabilistic Robotics, MIT Press, 2005

Random variables, Bayes' theorem, Gaussian distribution and more:

- http://en.wikipedia.org/wiki/Random_variable
- http://en.wikipedia.org/wiki/Bayes' _theorem
- http://en.wikipedia.org/wiki/Multivariate_ normal_distribution

