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Motivation

Many tasks require a localized robot
I Map is assumed to be available
I Measurements are performed
I Position (x, y, θ) of the robot in map is calculated
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Goal: localization
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Today’s Topics

1. Probability theory

2. Gaussian distributions

3. Robot localization using a particle filter
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Random variable

A random variable is a variable that can take different values, each with
its own probability:

I Side after a coin flip
I Number of pips (dots) after rolling a dice
I Rank and suit of card taken from a deck
I Position of a robot in a room
I . . .

A random variable is represented by an uppercase symbol, its value by a
lowercase symbol:

I X takes a value heads or tails
I X = heads or X = tails
I X ∈

{
heads, tails

}
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Probabilities

Each value a random variable might take is associated with a probability:

I p(X = heads) = 0.5
I p(X = tails) = 0.5
I p(heads) = p(tails) = 0.5

Definitions and properties:
I Set of all possible outcomes is called event space, e.g.,
� = {heads, tails}

I 0 ≤ p(E = e1) ≤ 1
I p(E = e1) ∈ R
I Probability that some event in the event space occurs is one
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Notation
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Dependence versus independence (1/2)

Pick one card from a deck of cards:
I p(hearts) = 1

4

I p(red ) = p(hearts ∪ diamonds) = p(hearts)+ p(diamonds) = 1
2

Note: hearts and diamonds are mutually exclusive, i.e.,
hearts ∩ diamonds = ∅ hence p(hearts ∩ diamonds) = 0

I Ace and spades:

p(ace ∩ spades) = p(ace | spades) · p(spades) =
1

13
·

1
4
=

1
52

Rank and suit of a card are (statistically) independent:
I Two random variables are independent if the probability of one

does not affect the probability of the other.
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Dependence versus independence (2/2)

Two random variables: color C ∈
{

green,blue
}

and bowl B ∈
{

b1,b2
}

.

I p(b1) = p(b2) =
1
2

Dependent event:
I Probability green ball given the bowl identity:

p(green | b1) =
p(green,b1)

p(b1)
=

3/10
1/2

=
3
5

p(green | b2) =
p(green,b2)

p(b2)
=

4/10
1/2

=
4
5
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Rules of probability

Sum rule:
p(X ) =

∑
Y

p(X , Y ),

Example: p(green) = p(green,b1)+ p(green,b2) =
3

10
+

4
10
=

7
10
.

Product rule:

p(X , Y ) = p(Y | X )p(X ),

Example: p(green,b1) = p(green | b1) · p(b1) =
3
5
·

1
2
=

3
10
.

I p(X , Y ) is the joint probability, the probability of X and Y
I p(X | Y ) is the conditional probability, the probability of X given Y
I p(X ) is the marginal probability, the probability of X
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Bayes’ theorem

Combining the sum rule and the product rule leads to Bayes’ theorem:

p(X | Y ) =
p(Y | X )p(X )

p(Y )
,

In words:

posterior ∝ likelihood× prior,

the denominator is usually referred to as normalizing constant.
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Bayes’ theorem: example

Assume a blue ball is observed. What is the probability of the ball being
picked from bowl one?

Using Bayes’ theorem:

p(b1 | blue) =
p(blue | b1)p(b1)

p(blue)
=

2/5 · 1/2
3/10

=
2
3
,

where the normalizing constant equals:

p(blue) = p(blue | b1)p(b1)+ p(blue | b2)p(b2) =
2
5
·

1
2
+

1
5
·

1
2
=

3
10
.
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Bayes’ theorem: conclusion

Before the observing the color of the ball, the prior probability of b1 is 1
2 .

Once told the ball is blue, the posterior probability of b1 is 2
3 .

The evidence is used to update the belief about the identity of the box
that was selected.
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Probability Density Functions

A probability density function f :
I Integral describes the probability of a random variable taking a

value in a given interval:

p(a ≤ X ≤ b ) =
∫ b

a
fX (x)dx .

I Is nonnegative everywhere
I Can have an arbitrary number of dimensions
I The integral over the entire event space� equals one:∫

�

f (x)dx = 1.
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Gaussian distribution properties

Continuous probability density function.
I Characterized by a mean vector µ and a covariance matrix 6:

N (x;µ,6) =
1

√
(2π)n |6|

exp
(
−

1
2
(x − µ)T6(x − µ)

)
,

where µ ∈ Rn , 6 ∈ Rn×n is positive-definite and | · | represents the
determinant.

I Gaussian is conjugate to itself: if likelihood and prior are Gaussian
distributions, the posterior will be Gaussian too

I Gaussian distribution is unimodal



16/25

/w

Covariance matrix

I Diagonal elements: variance in each of the dimensions
I Off-diagonal elements: how do two dimensions vary together
I Symmetric

61 =

[
1.5 0
0 1.5

]
, 62 =

[
1.5 0
0 3.0

]
,

63 =

[
1.5 1.0
1.0 1.5

]
, 64 =

[
1.5 0.2
0.2 1.5

]
.
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Localization
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General State Estimation problem

Estimate a hidden state xk using measurements zk related to this state.

· · · xk−1 xk xk+1 · · ·

zk−1 zk zk+1
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State Estimation and Robot localization

In general:
I A state is a random variable that evolves over time (at discrete time

steps)
I A motion model or process model describes how a state evolves

over time
I Markov assumption: the history of state xk is adequately

summarized by the previous state only, i.e.,
p(xk | xk−1, . . . , x0) = p(xk | xk−1)

During the remainder of this presentation:
I The state contains the robot position
I The motion model represents the robot’s motion
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Particle Filter

Idea: Approximate posterior by many guesses, density of guesses is
posterior distribution

I Each guess is named a particle
I Map is assumed to be available
I Prediction step: apply robot movements to set of particles
I Up-date step: determine consistency measurement and particle

(and keep consistent particles, remove inconsistent particles)
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Particle Filter: 1D example

I Resampling avoids degeneracy: very few particles with high weight
I Noise in measurement and motion models avoids impoverishment
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Particle Filter: implementation

I Each particle is a <weight,state> pair
I Collection of n particles represented by the set S

function PARTICLEFILTER(S , u, z)
S ′ = ∅, η = 0
for i ← 1 to n do

Sample index j ∼ {w} with replacement
Sample possible successor state: x ′ ∼ p(x ′ | u, sj )

Compute new weight: w ′ = p(z | x ′)
Add new particle: S ′ = S ′ ∪ {< x ′,w ′ >}
Update auxiliary variable: η = η + w ′

end for
for m ← 1 to n do

Normalize weight: wm =
1
η

wm

end for
end function
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Particle Filters: pros and cons

Advantages:
I Allows for complex and multimodal distributions and non-linear

models
I Easy to implement
I Computational effort ‘where needed’

Disadvantages:
I Problems when number of particles is low
I Does not scale well to high dimensional spaces
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Particle Filters: good to know

I Many particle filter variants exist, main difference: resampling
approach

I Algorithm introduced today has many different names:
• Sampling Importance Resampling filter
• Bootstrap filter
• Monte Carlo filter
• CONDENSATION algorithm

Particle filters are applied successfully in many, many applications!
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Further Reading

Introduction to particle filters:
I David Salmond and Neil Gordon, An introduction to particle filters

(includes Matlab code example):
http://dip.sun.ac.za/~herbst/MachineLearning/
ExtraNotes/ParticleFilters.pdf

Basic probability theory, particle filters and much more:
I Sebastian Thrun, Wolfram Burgard, Dieter Fox, Probabilistic

Robotics, MIT Press, 2005

Random variables, Bayes’ theorem, Gaussian distribution and more:
I http://en.wikipedia.org/wiki/Random_variable

I http://en.wikipedia.org/wiki/Bayes’_theorem

I http://en.wikipedia.org/wiki/Multivariate_
normal_distribution

http://dip.sun.ac.za/~herbst/MachineLearning/ExtraNotes/ParticleFilters.pdf
http://dip.sun.ac.za/~herbst/MachineLearning/ExtraNotes/ParticleFilters.pdf
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Bayes'_theorem
http://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://en.wikipedia.org/wiki/Multivariate_normal_distribution
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