Motion Planning and Control for Domestic Service Robots

J.J.M. Lunenburg

Motion Planning for Domestic Service Robots

The Basic Motion Planning Problem

With:

- Pose (position and orientation)
- Single rigid body \mathfrak{A}
- n-dimensional Euclidean space $\mathcal{W}=\mathbb{R}^{n}$
- Static, rigid obstacles \mathcal{O}_{i} in \mathcal{W}

Given an initial pose and a goal pose of \mathcal{A} in \mathcal{W}, find a path c in the form of a continuous sequence of poses of \mathcal{A} that do not collide or contact with \mathcal{O}_{i}, that will allow \mathfrak{A} to move from its starting pose to its goal pose and report failure if such a path does not exist.

Specifications and properties

Six specifications and properties

- Completeness: finding a path if one exists
- Optimality: finding the optimal path
- Computational complexity
- Robustness against a dynamic environment
- Robustness against uncertainty
- Kinematic and dynamic constraints

Specifications and properties

Six specifications and properties

- Completeness: finding a path if one exists
- Optimality: finding the optimal path
- Computational complexity
- Robustness against a dynamic environment
- Robustness against uncertainty
- Kinematic and dynamic constraints

So how do we approach this problem?

Specifications and properties

Six specifications and properties

- Completeness: finding a path if one exists
- Optimality: finding the optimal path
- Computational complexity
- Robustness against a dynamic environment
- Robustness against uncertainty
- Kinematic and dynamic constraints

So how do we approach this problem?
Representation and searching!

Environment representations

- The configuration space
- Simplifies the problem: search for a solution for a single point
- Generic
- Computationally efficient

Environment representations

- The configuration space
- Simplifies the problem: search for a solution for a single point
- Generic
- Computationally efficient
- Representation methods:
- Exact
- Roadmaps
- Exact cell decomposition
- Approximate
- Approximate cell decompositions
- Sampling-based methods
- Potential fields

Environment representations

- The configuration space
- Simplifies the problem: search for a solution for a single point
- Generic
- Computationally efficient
- Representation methods:
- Exact
- Roadmaps
- Exact cell decomposition
- Approximate
- Approximate cell decompositions
- Sampling-based methods
- Potential fields

The configuration space

- Configuration space \mathcal{C}
- C-obstacle: $\mathcal{C} \mathcal{O}_{i}=\left\{q \in \mathcal{C} \mid \mathcal{A}(q) \cap \mathcal{O}_{i} \neq \emptyset\right\}$
- Configuration space obstacle region: $\mathcal{C} \mathcal{O}=\cup_{i=0}^{n_{o} \mathcal{C}} \mathcal{O}_{i}$
- Free configuration space:

$$
\mathcal{C}_{\text {free }}=\mathcal{C} \backslash \mathcal{C O}
$$

Constructing the configuration space

(a)

(b)

(c)

Non-circular robot footprints

/department of mechanical engineering

Exact: Roadmaps

Visibility graph

- Two nodes are connected if the straight line between them is collision-free
- $\operatorname{dim}(\mathcal{C}) \leq 2$
- Optimal w.r.t. distance traveled

Deformation retracts

- 'Shrink’ a space into a subspace
- (Generalized) Voronoi diagram
- Optimal w.r.t. distance to obstacles

Exact and approximate: Cell decompositions

Exact decomposition

- Trapezoidal decomposition
- Sweep line algorithm
- Non-optimal

Approximate decomposition

- Obstacle boundaries do not coincide with cell boundaries
- Free cells, mixed cells and occupied cells
- Resolution complete

Approximate: Sampling-based methods

Probabilistic roadmap

- Learning phase: sample configuration $q_{\text {rand }}$ and check for collisions
- Query phase: connect q_{i} and q_{g} to roadmap \mathcal{R}
- Probabilistically complete

Single-query planner

- Explore relevant subset of $\mathcal{C}_{\text {free }}$
- (Bidirectional)

Rapidly-exploring Random Tree

- No search algorithm required
- Probabilistically complete, non-optimal

Approximate: Potential fields

- Goal: attractive force
- Obstacles: repulsive forces
- Completeness: local minima

Search algorithms

- Graphs and costmaps
- Graph search algorithms:
- Uninformed
- Informed
- Local

Graphs and costmaps

- Nodes (vertices) and edges
- Including weights: costmap
- Parent: node with subsequent nodes (children)
- Branch: series of nodes connecting the root to a leaf
- Frontier: set of all leaf nodes available for expansion
- Closed list (explored set): nodes that have been visited
- Expansion is determined by function $f(n)$

Uninformed search: Breadth-first

n_{i}

- $f(n)=g(n)$, with $g(n)$ a FIFO queue
- All nodes at a certain depth are expanded before going to the next level
- Complete (if ‘branching’ factor is finite)
- Optimal: only if all edges have equal costs

Uninformed search: Breadth-first

- $f(n)=g(n)$, with $g(n)$ a FIFO queue
- All nodes at a certain depth are expanded before going to the next level
- Complete (if ‘branching’ factor is finite)
- Optimal: only if all edges have equal costs

Uninformed search: Breadth-first

- $f(n)=g(n)$, with $g(n)$ a FIFO queue
- All nodes at a certain depth are expanded before going to the next level
- Complete (if ‘branching’ factor is finite)
- Optimal: only if all edges have equal costs

Uninformed search: Breadth-first

- All nodes at a certain depth are expanded before going to the next level
- Complete (if ‘branching’ factor is finite)
- Optimal: only if all edges have equal costs

Uninformed search: Breadth-first

- All nodes at a certain depth are expanded before going to the next level
- Complete (if ‘branching’ factor is finite)
- Optimal: only if all edges have equal costs

Uninformed search: Breadth-first

- All nodes at a certain depth are expanded before going to the next level
- Complete (if ‘branching’ factor is finite)
- Optimal: only if all edges have equal costs

Uninformed search: Breadth-first

- $f(n)=g(n)$, with $g(n)$ a FIFO queue
- All nodes at a certain depth are expanded before going to the next level
- Complete (if ‘branching’ factor is finite)
- Optimal: only if all edges have equal costs

Uninformed search: Depth-first

- The most recent expanded node is put the beginning of the stack
- Completeness: if search space is finite
- Not optimal
- Example: put goal at node 5
/department of mechanical engineering

Uninformed search: Depth-first

- The most recent expanded node is put the beginning of the stack
- Completeness: if search space is finite
- Not optimal
- Example: put goal at node 5
/department of mechanical engineering

Uninformed search: Depth-first

- The most recent expanded node is put the beginning of the stack
- Completeness: if search space is finite
- Not optimal
- Example: put goal at node 5

Uninformed search: Depth-first

- The most recent expanded node is put the beginning of the stack
- Completeness: if search space is finite
- Not optimal
- Example: put goal at node 5

Uninformed search: Depth-first

- The most recent expanded node is put the beginning of the stack
- Completeness: if search space is finite
- Not optimal
- Example: put goal at node 5

Uninformed search: Depth-first

- The most recent expanded node is put the beginning of the stack
- Completeness: if search space is finite
- Not optimal
- Example: put goal at node 5

Uninformed search: Depth-first

- The most recent expanded node is put the beginning of the stack
- Completeness: if search space is finite
- Not optimal
- Example: put goal at node 5

Uninformed search: Dijkstra's Algorithm

- $f(n)=g(n)$, with $g(n)$ a priority queue
- The node with the lowest cost is expanded
- Completeness: if search space is finite
- Optimal

Uninformed search: Dijkstra's Algorithm

- $f(n)=g(n)$, with $g(n)$ a priority queue
- The node with the lowest cost is expanded
- Completeness: if search space is finite
- Optimal

- $6<8 \rightarrow$ expand n_{2}

Uninformed search: Dijkstra's Algorithm

- $f(n)=g(n)$, with $g(n)$ a priority queue
- The node with the lowest cost is expanded
- Completeness: if search space is finite
- Optimal

- $6<8 \rightarrow$ expand n_{2}
- $8<6+12 \rightarrow$ expand n_{3}

Uninformed search: Dijkstra's Algorithm

- $f(n)=g(n)$, with $g(n)$ a priority queue
- The node with the lowest cost is expanded
- Completeness: if search space is finite
- Optimal

- $6<8 \rightarrow$ expand n_{2}
- $8<6+12 \rightarrow$ expand n_{3}
- n_{g} reached, but $8+22>6+12$

Uninformed search: Dijkstra's Algorithm

- $f(n)=g(n)$, with $g(n)$ a priority queue
- The node with the lowest cost is expanded
- Completeness: if search space is finite
- Optimal

- $6<8 \rightarrow$ expand n_{2}
- $8<6+12 \rightarrow$ expand n_{3}
- n_{g} reached, but $8+22>6+12$

Why not use knowledge of the goal location?

Informed search: Greedy best-first

- $f(n)=h(n)$, with $h(n)$ a heuristic (distance) function
- Expands the node closest to the goal
- Complete
- Non-optimal (see figure)

Informed search: A*

- $f(n)=g(n)+h(n)$, with $g(n)$ costs to reach a node and $h(n)$ heuristic to reach the goal
- Takes both costs into account
- Complete
- Optimal if the heuristic function is consistent:

$$
h(n) \leq c\left(n \rightarrow n^{\prime}\right)+h\left(n^{\prime}\right)
$$

- Workspace is represented as a potential field
- Use a single current node:
- Discrete: neighboring node with the lowest cost
- Continuous: Direction of steepest gradient
- Completeness: local search methods can get stuck in local minima
- Non-optimal: no path is retained

Extending the basic motion planning problem

- The path resulting from searching the representation is not yet suitable for execution

Extending the basic motion planning problem

- The path resulting from searching the representation is not yet suitable for execution
- Kinodynamic constraints

Extending the basic motion planning problem

- The path resulting from searching the representation is not yet suitable for execution
- Kinodynamic constraints
- Dynamic environments

/ department of mechanical engineerint
$e\left(t_{3}\right)_{g}$

Extending the basic motion planning problem

- The path resulting from searching the representation is not yet suitable for execution
- Kinodynamic constraints
- Dynamic environments
- Uncertainty

Kinematic and dynamic constraints

Decoupled trajectory planning

- Path planning: collision free path c in $\mathcal{C}_{\text {free }}$
- Transform c into c^{\prime}, satisfying non-holonomic constraints
- Compute timing function such that $c^{\prime}(t)$ satisfies kinodynamic constraints

Kinematic and dynamic constraints

Decoupled trajectory planning

- Path planning: collision free path c in $\mathcal{C}_{\text {free }}$
- Transform c into c^{\prime}, satisfying non-holonomic constraints
- Compute timing function such that $c^{\prime}(t)$ satisfies kinodynamic constraints

Direct trajectory planning

- Searching on a lattice
- Sampling based methods: select input at random from set of admissible controls

Kinematic and dynamic constraints

Decoupled trajectory planning

- Path planning: collision free path c in $\mathcal{C}_{\text {free }}$
- Transform c into c^{\prime}, satisfying non-holonomic constraints
- Compute timing function such that $c^{\prime}(t)$ satisfies kinodynamic constraints

Direct trajectory planning

- Searching on a lattice
- Sampling based methods: select input at random from set of admissible controls

Motion primitives

Robustness against uncertainty

Re-planning (of an entire path)

- Re-planning from the current situation
- Reuse information of previous searches (incremental search)
- The planner can return an (approximate and suboptimal) plan at any time (anytime planning)

Robustness against uncertainty

Re-planning (of an entire path)

- Re-planning from the current situation
- Reuse information of previous searches (incremental search)
- The planner can return an (approximate and suboptimal) plan at any time (anytime planning)

What if the environment is unknown?

Reactive planners

- Feedback controller

Reactive planners

- Feedback controller
- Potential field methods

Reactive planners

- Feedback controller
- Potential field methods
- Receding horizon control (model predictive control)
- Optimization over a finite horizon
- Dynamic window approach: search for translational and rotational velocity

- Reduction of complexity: divide the planning problem into global and local planner
- Global planner: computes a path from start to goal
- Local planner: satisfy kinodynamic constraints
- Reduction of complexity: divide the planning problem into global and local planner
- Global planner: computes a path from start to goal
- Local planner: satisfy kinodynamic constraints
- Topological maps
- Abstract representation that describes relationships between features of the environment
- Compact and stable w.r.t. sensor noise and uncertainty

Hierarchical planning

- Reduction of complexity: divide the planning problem into global and local planner
- Global planner: computes a path from start to goal
- Local planner: satisfy kinodynamic constraints
- Topological maps
- Abstract representation that describes relationships between features of the environment
- Compact and stable w.r.t. sensor noise and uncertainty

How is motion planning applied in TU/e?

Examples: Motion Planning for RoboCup

- Soccer pitch
- $12 \mathrm{~m} \times 18 \mathrm{~m}$
- Known environment
- Dynamic obstacles (hostile)
- $3 \mathrm{~m} / \mathrm{s}$
- House/care environment
- Arbitrary size
- Partially unknown
- Static and dynamic obstacles
- $1 \mathrm{~m} / \mathrm{s}$

Motion planning for MSL soccer robots

- Voronoi diagram representation, searched with Dijkstra's algorithm
- Shortcut algorithm to cut-off sharp turns
- Time-optimal trajectory through waypoints using Bézier curves

AMIGO: Environment representation

- Use Octomap for 3D navigation
- Project columns to 2D costmap and inflate costs and uncertainty for navigation
- Certainty decays over time instead of known/unknown
- A wall never moves
- People are likely to move

AMIGO: Global and local planner

- Global planner
- A* Planner
- Local planner
- Line collision check
- Velocities based on safety
- Assumptions on moving obstacles
- Desired: DWA/MPC

AMIGO: Global and local planner

- Global planner
- A* Planner
- Local planner
- Line collision check
- Velocities based on safety
- Assumptions on moving obstacles
- Desired: DWA/MPC

AMIGO: Global and local planner

- Global planner
- A* Planner
- Local planner
- Line collision check
- Velocities based on safety
- Assumptions on moving obstacles
- Desired: DWA/MPC

AMIGO: Global and local planner

- Global planner
- A* Planner
- Local planner
- Line collision check
- Velocities based on safety
- Assumptions on moving obstacles
- Desired: DWA/MPC

Questions

Questions?

