Motion Planning and Control for Domestic Service Robots

J.J.M. Lunenburg

Technische Universiteit **Eindhoven** University of Technology

September 17, 2013

Where innovation starts

TU

Motion Planning for Domestic Service Robots

With:

- Pose (position and orientation)
- Single rigid body A
- n-dimensional Euclidean space $W = \mathbb{R}^n$
- Static, rigid obstacles O_i in W

Given an initial pose and a goal pose of \mathcal{A} in \mathcal{W} , find a path c in the form of a continuous sequence of poses of \mathcal{A} that do not collide or contact with \mathcal{O}_i , that will allow \mathcal{A} to move from its starting pose to its goal pose and report failure if such a path does not exist.

Specifications and properties

Six specifications and properties

- Completeness: finding a path if one exists
- Optimality: finding the optimal path
- Computational complexity
- Robustness against a dynamic environment
- Robustness against uncertainty
- Kinematic and dynamic constraints

Specifications and properties

Six specifications and properties

- Completeness: finding a path if one exists
- Optimality: finding the optimal path
- Computational complexity
- Robustness against a dynamic environment
- Robustness against uncertainty
- Kinematic and dynamic constraints

So how do we approach this problem?

Specifications and properties

Six specifications and properties

- Completeness: finding a path if one exists
- Optimality: finding the optimal path
- Computational complexity
- Robustness against a dynamic environment
- Robustness against uncertainty
- Kinematic and dynamic constraints

So how do we approach this problem?

Representation and searching!

Environment representations

- The configuration space
 - Simplifies the problem: search for a solution for a single point
 - Generic
 - Computationally efficient

Environment representations

- The configuration space
 - Simplifies the problem: search for a solution for a single point
 - Generic
 - Computationally efficient
- Representation methods:
 - Exact
 - Roadmaps
 - Exact cell decomposition
 - Approximate
 - Approximate cell decompositions
 - Sampling-based methods
 - Potential fields

Environment representations

- The configuration space
 - Simplifies the problem: search for a solution for a single point
 - Generic
 - Computationally efficient
- Representation methods:
 - Exact
 - Roadmaps
 - Exact cell decomposition
 - Approximate
 - Approximate cell decompositions
 - Sampling-based methods
 - Potential fields
- Common assumption: localization

The configuration space

- Configuration space C
- C-obstacle:

 $\mathcal{CO}_i = \{ q \in \mathcal{C} | \mathcal{A}(q) \cap \mathcal{O}_i \neq \emptyset \}$

- Configuration space obstacle region: $C\mathcal{O} = \bigcup_{i=0}^{n_0} C\mathcal{O}_i$
- Free configuration space: $C_{\text{free}} = C \setminus CO$

Constructing the configuration space

7/30

Non-circular robot footprints

/department of mechanical engineering

8/30

Exact: Roadmaps

Visibility graph

- Two nodes are connected if the straight line between them is collision-free
- dim(\mathcal{C}) ≤ 2
- Optimal w.r.t. distance traveled

Deformation retracts

- 'Shrink' a space into a subspace
- (Generalized) Voronoi diagram
- Optimal w.r.t. distance to obstacles

Exact and approximate: Cell decompositions

Exact decomposition

- Trapezoidal decomposition
- Sweep line algorithm
- Non-optimal

- Obstacle boundaries do not coincide with cell boundaries
- Free cells, mixed cells and occupied cells
- Resolution complete

10/30

Approximate: Sampling-based methods

Probabilistic roadmap

- Learning phase: sample configuration q_{rand} and check for collisions
- Query phase: connect q_i and q_g to roadmap R
- Probabilistically complete
- Single-query planner
 - Explore relevant subset of C_{free}
 - (Bidirectional)
 Rapidly-exploring Random Tree
 - No search algorithm required
 - Probabilistically complete, non-optimal

Approximate: Potential fields

- Goal: attractive force
- Obstacles: repulsive forces
- Completeness: local minima

Search algorithms

- Graphs and costmaps
- Graph search algorithms:
 - Uninformed
 - Informed
 - Local

Graphs and costmaps

- Nodes (vertices) and edges
- Including weights: costmap
- Parent: node with subsequent nodes (children)
- Branch: series of nodes connecting the root to a leaf
- Frontier: set of all leaf nodes available for expansion
- Closed list (explored set): nodes that have been visited
- Expansion is determined by function f(n)

14/30

• f(n) = g(n), with $\overline{g(n)}$ a FIFO queue

- All nodes at a certain depth are expanded before going to the next level
- Complete (if 'branching' factor is finite)
- Optimal: only if all edges have equal costs

ni

- All nodes at a certain depth are expanded before going to the next level
- Complete (if 'branching' factor is finite)
- Optimal: only if all edges have equal costs

- All nodes at a certain depth are expanded before going to the next level
- Complete (if 'branching' factor is finite)
- Optimal: only if all edges have equal costs

- All nodes at a certain depth are expanded before going to the next level
- Complete (if 'branching' factor is finite)
- Optimal: only if all edges have equal costs

- All nodes at a certain depth are expanded before going to the next level
- Complete (if 'branching' factor is finite)
- Optimal: only if all edges have equal costs

4

• f(n) = g(n), with g(n) a FIFO queue

- All nodes at a certain depth are expanded before going to the next level
- Complete (if 'branching' factor is finite)
- Optimal: only if all edges have equal costs

13 $h_g = 14$

 $n_i =$

5

11

8

12

4

• f(n) = g(n), with g(n) a FIFO queue

- All nodes at a certain depth are expanded before going to the next level
- Complete (if 'branching' factor is finite)
- Optimal: only if all edges have equal costs

13 $h_g = 14$

 $n_i =$

5

11

8

12

• f(n) = g(n), with g(n) a LIFO queue

- The most recent expanded node is put the beginning of the stack
- Completeness: if search space is finite
- Not optimal
 - Example: put goal at node 5

/department of mechanical engineering

16/30

ni

 2^{n_i}

• f(n) = g(n), with g(n) a LIFO queue

- The most recent expanded node is put the beginning of the stack
- Completeness: if search space is finite
- Not optimal
 - Example: put goal at node 5

• f(n) = g(n), with g(n) a LIFO queue

- The most recent expanded node is put the beginning of the stack
- Completeness: if search space is finite
- Not optimal
 - Example: put goal at node 5

• f(n) = g(n), with g(n) a LIFO queue

- The most recent expanded node is put the beginning of the stack
- Completeness: if search space is finite
- Not optimal
 - Example: put goal at node 5

• f(n) = g(n), with g(n) a LIFO queue

- The most recent expanded node is put the beginning of the stack
- Completeness: if search space is finite
- Not optimal
 - Example: put goal at node 5

• f(n) = g(n), with g(n) a LIFO queue

- The most recent expanded node is put the beginning of the stack
- Completeness: if search space is finite
- Not optimal
 - Example: put goal at node 5

2

8

+ 12

 $n_i = 1$

5

11

• f(n) = g(n), with g(n) a LIFO queue

- The most recent expanded node is put the beginning of the stack
- Completeness: if search space is finite
- Not optimal
 - Example: put goal at node 5

- f(n) = g(n), with g(n) a priority queue
- The node with the lowest cost is expanded
- Completeness: if search space is finite
- Optimal

- f(n) = g(n), with g(n) a priority queue
- The node with the lowest cost is expanded
- Completeness: if search space is finite
- Optimal

• 6 < 8 \rightarrow expand n_2

- f(n) = g(n), with g(n) a priority queue
- The node with the lowest cost is expanded
- Completeness: if search space is finite
- Optimal

▶ $6 < 8 \rightarrow \text{expand } n_2$ ▶ $8 < 6 + 12 \rightarrow \text{expand}$ n_3

17/30

- f(n) = g(n), with g(n) a priority queue
- The node with the lowest cost is expanded
- Completeness: if search space is finite
- Optimal

- 6 < 8 \rightarrow expand n_2
- ▶ $8 < 6 + 12 \rightarrow expand$

n₃

n_g reached, but
 8 + 22 > 6 + 12

Uninformed search: Dijkstra's Algorithm

- f(n) = g(n), with g(n) a priority queue
- The node with the lowest cost is expanded
- Completeness: if search space is finite
- Optimal

• $6 < 8 \rightarrow \text{expand } n_2$

▶ $8 < 6 + 12 \rightarrow expand$

n3

n_g reached, but
 8 + 22 > 6 + 12

Why not use knowledge of the goal location?

Informed search: Greedy best-first

- f(n) = h(n), with h(n) a heuristic (distance) function
- Expands the node closest to the goal
- Complete
- Non-optimal (see figure)

Informed search: A*

- f(n) = g(n) + h(n), with g(n) costs to reach a node and h(n)
 heuristic to reach the goal
- Takes both costs into account
- Complete
- Optimal if the heuristic function is consistent:
 - $h(n) \leq c(n \rightarrow n') + h(n')$

Local search

- Workspace is represented as a potential field
- Use a single current node:
 - Discrete: neighboring node with the lowest cost
 - Continuous: Direction of steepest gradient
- Completeness: local search methods can get stuck in local minima
- Non-optimal: no path is retained

 The path resulting from searching the representation is not yet suitable for execution

- The path resulting from searching the representation is not yet suitable for execution
- Kinodynamic constraints

- The path resulting from searching the representation is not yet suitable for execution
- Kinodynamic constraints

a.

X

/depa

Dynamic environments

- The path resulting from searching the representation is not yet suitable for execution
- Kinodynamic constraints
- Dynamic environments
- Uncertainty

Decoupled trajectory planning

- Path planning: collision free path c in C_{free}
- Transform c into c', satisfying non-holonomic constraints
- Compute timing function such that c'(t) satisfies kinodynamic constraints

Decoupled trajectory planning

- Path planning: collision free path c in C_{free}
- Transform c into c', satisfying non-holonomic constraints
- Compute timing function such that c'(t) satisfies kinodynamic constraints
- Direct trajectory planning
 - Searching on a lattice
 - Sampling based methods: select input at random from set of admissible controls

Decoupled trajectory planning

- Path planning: collision free path c in C_{free}
- Transform c into c', satisfying non-holonomic constraints
- Compute timing function such that c'(t) satisfies kinodynamic constraints
- Direct trajectory planning
 - Searching on a lattice
 - Sampling based methods: select input at random from set of admissible controls

Motion primitives

Re-planning (of an entire path)

- Re-planning from the current situation
- Reuse information of previous searches (incremental search)
- The planner can return an (approximate and suboptimal) plan at any time (anytime planning)

Re-planning (of an entire path)

- Re-planning from the current situation
- Reuse information of previous searches (incremental search)
- The planner can return an (approximate and suboptimal) plan at any time (anytime planning)

What if the environment is unknown?

23/3

Reactive planners

Feedback controller

Reactive planners

- Feedback controller
- Potential field methods

Reactive planners

- Feedback controller
- Potential field methods
- Receding horizon control (model predictive control)
 - Optimization over a finite horizon
 - Dynamic window approach: search for translational and rotational velocity

Hierarchical planning

- Reduction of complexity: divide the planning problem into global and local planner
 - Global planner: computes a path from start to goal
 - Local planner: satisfy kinodynamic constraints

Hierarchical planning

- Reduction of complexity: divide the planning problem into global and local planner
 - Global planner: computes a path from start to goal
 - Local planner: satisfy kinodynamic constraints
- Topological maps
 - Abstract representation that describes relationships between features of the environment
 - Compact and stable w.r.t. sensor noise and uncertainty

Hierarchical planning

- Reduction of complexity: divide the planning problem into global and local planner
 - Global planner: computes a path from start to goal
 - Local planner: satisfy kinodynamic constraints
- Topological maps
 - Abstract representation that describes relationships between features of the environment
 - Compact and stable w.r.t. sensor noise and uncertainty

How is motion planning applied in TU/e?

Examples: Motion Planning for RoboCup

- Soccer pitch
- 12 m × 18 m
- Known environment
- Dynamic obstacles (hostile)
- ▶ 3 m/s

- House/care environment
- Arbitrary size
- Partially unknown
- Static and dynamic obstacles
- ▶ 1 m/s

Motion planning for MSL soccer robots

- Voronoi diagram representation, searched with Dijkstra's algorithm
- Shortcut algorithm to cut-off sharp turns
- Time-optimal trajectory through waypoints using Bézier curves

AMIGO: Environment representation

- Use Octomap for 3D navigation
- Project columns to 2D costmap and inflate costs and uncertainty for navigation
- Certainty decays over time instead of known/unknown
 - A wall never moves
 - People are likely to move

- Global planner
 - A* Planner
- Local planner
 - Line collision check
 - Velocities based on safety
 - Assumptions on moving obstacles
 - Desired: DWA/MPC

29/30

- Global planner
 - A* Planner
- Local planner
 - Line collision check
 - Velocities based on safety
 - Assumptions on moving obstacles
 - Desired: DWA/MPC

29/30

- Global planner
 - A* Planner
- Local planner
 - Line collision check
 - Velocities based on safety
 - Assumptions on moving obstacles
 - Desired: DWA/MPC

- Global planner
 - A* Planner
- Local planner
 - Line collision check
 - Velocities based on safety
 - Assumptions on moving obstacles
 - Desired: DWA/MPC

29/30

Questions

Questions?

