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Motion Planning for Domestic Service Robots
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The Basic Motion Planning Problem

With:
I Pose (position and orientation)
I Single rigid body A
I n-dimensional Euclidean space W = Rn

I Static, rigid obstacles Oi in W

Given an initial pose and a goal pose of A in W , find a path c in the form
of a continuous sequence of poses of A that do not collide or contact
with Oi , that will allow A to move from its starting pose to its goal pose
and report failure if such a path does not exist.

O1

O3

O2

qi = c(0)

qg = c(1)

W

A
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Specifications and properties

Six specifications and properties
I Completeness: finding a path if one

exists
I Optimality: finding the optimal path
I Computational complexity
I Robustness against a dynamic

environment
I Robustness against uncertainty
I Kinematic and dynamic constraints

So how do we approach this problem?

Representation and searching!

Sensor
info

Free
space

Path

Motor cmd

Representation

Search

Postprocess
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Environment representations

I The configuration space
• Simplifies the problem: search for a

solution for a single point
• Generic
• Computationally efficient

I Representation methods:

• Exact

• Roadmaps
• Exact cell decomposition

• Approximate

• Approximate cell decompositions
• Sampling-based methods
• Potential fields

I Common assumption: localization
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The configuration space

I Configuration space C

I C-obstacle:
COi = {q ∈ C|A(q) ∩Oi 6= ∅}

I Configuration space obstacle
region: CO = ∪noi=0COi

I Free configuration space:
Cfree = C \ CO

CO1

CO3

CO2

qi = c(0)

Cfree qg = c(1)
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Constructing the configuration space

(a) (b) (c)
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Non-circular robot footprints

x

y
θ

y

x

y

x

θ = 1
4π

θ = 0

A

A

WO

WO

CO
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Exact: Roadmaps

Visibility graph
I Two nodes are connected if the

straight line between them is
collision-free

I dim(C) ≤ 2
I Optimal w.r.t. distance traveled

qi

qg

Deformation retracts
I ‘Shrink’ a space into a

subspace
I (Generalized) Voronoi diagram
I Optimal w.r.t. distance to

obstacles

qg
r(qg)

qi
r(qi )
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Exact and approximate: Cell decompositions

Exact decomposition
I Trapezoidal decomposition
I Sweep line algorithm
I Non-optimal

qi

qg
c1

c2

c3

c4

c5

c6

c7
c9

c8 c12

c11

c10

c13c15

c16

c14

Approximate decomposition
I Obstacle boundaries do not

coincide with cell boundaries
I Free cells, mixed cells and

occupied cells
I Resolution complete

qi

qg
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Approximate: Sampling-based methods

Probabilistic roadmap
I Learning phase: sample

configuration qrand and check
for collisions

I Query phase: connect qi and
qg to roadmap R

I Probabilistically complete
qi

qg

Single-query planner
I Explore relevant subset of Cfree

I (Bidirectional)
Rapidly-exploring Random Tree

I No search algorithm required
I Probabilistically complete,

non-optimal
qg

qi

qnew
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Approximate: Potential fields

qi

qg

qi

qg

I Goal: attractive force
I Obstacles: repulsive forces
I Completeness: local minima
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Search algorithms

I Graphs and costmaps
I Graph search algorithms:

• Uninformed
• Informed
• Local

Sensor
info
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Graphs and costmaps

n1 n4 n6

n2 n7

n3
n5 n8

e1

e3

e4 e5

e6

e7

e8

e9

e10

e11

I Nodes (vertices) and edges
I Including weights: costmap
I Parent: node with subsequent nodes (children)
I Branch: series of nodes connecting the root to a leaf
I Frontier: set of all leaf nodes available for expansion
I Closed list (explored set): nodes that have been visited
I Expansion is determined by function f (n)
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Uninformed search: Breadth-first

2 3 4

6

8 9 10

ng = 14

ni = 1

5

7

11 12 13

ni

2 5

3 7

4 6 8 11

9 12

10 13
ng

I f (n) = g(n), with g(n) a FIFO queue
I All nodes at a certain depth are expanded before going to the next

level
I Complete (if ‘branching’ factor is finite)
I Optimal: only if all edges have equal costs
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Uninformed search: Depth-first
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I f (n) = g(n), with g(n) a LIFO queue
I The most recent expanded node is put the beginning of the stack
I Completeness: if search space is finite
I Not optimal

• Example: put goal at node 5
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Uninformed search: Dijkstra’s Algorithm

I f (n) = g(n), with g(n) a priority queue
I The node with the lowest cost is expanded
I Completeness: if search space is finite
I Optimal

ni

n2

n3

n4

ng

6

8

12

22

7

I 6 < 8 → expand n2

I 8 < 6+ 12 → expand
n3

I ng reached, but
8+ 22 > 6+ 12

Why not use knowledge of the goal location?
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Informed search: Greedy best-first

I f (n) = h (n), with h (n) a heuristic (distance) function
I Expands the node closest to the goal
I Complete
I Non-optimal (see figure)
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Informed search: A*

I f (n) = g(n)+ h (n), with g(n) costs to reach a node and h (n)
heuristic to reach the goal

I Takes both costs into account
I Complete
I Optimal if the heuristic function is consistent:

• h (n) ≤ c(n → n ′)+ h (n ′)
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Local search

I Workspace is represented as a potential field
I Use a single current node:

• Discrete: neighboring node with the lowest cost
• Continuous: Direction of steepest gradient

I Completeness: local search methods can get stuck in local minima
I Non-optimal: no path is retained
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Extending the basic motion planning problem

I The path resulting from searching the
representation is not yet suitable for
execution

I Kinodynamic constraints
I Dynamic environments
I Uncertainty

Sensor
info

Free
space

Path

Motor cmd

Representation

Search

Postprocess



21/30

/w

Extending the basic motion planning problem

I The path resulting from searching the
representation is not yet suitable for
execution

I Kinodynamic constraints

I Dynamic environments
I Uncertainty

Sensor
info

Free
space

Path

Motor cmd

Representation

Search

Postprocess



21/30

/w

Extending the basic motion planning problem

I The path resulting from searching the
representation is not yet suitable for
execution

I Kinodynamic constraints
I Dynamic environments

I Uncertainty

t1 t2 t3

C(t1) C(t2) C(t3)
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Kinematic and dynamic constraints

Decoupled trajectory planning
I Path planning: collision free path c in Cfree

I Transform c into c ′, satisfying non-holonomic constraints
I Compute timing function such that c ′(t) satisfies kinodynamic

constraints

Direct trajectory planning
I Searching on a lattice
I Sampling based methods:

select input at random from set
of admissible controls

Motion primitives
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Robustness against uncertainty

Re-planning (of an entire path)
I Re-planning from the current situation
I Reuse information of previous searches (incremental search)
I The planner can return an (approximate and suboptimal) plan at any

time (anytime planning)

What if the environment is unknown?
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Reactive planners

I Feedback controller

I Potential field methods
I Receding horizon control (model

predictive control)

• Optimization over a finite horizon
• Dynamic window approach: search

for translational and rotational
velocity
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Hierarchical planning

I Reduction of complexity: divide the planning problem into global
and local planner

• Global planner: computes a path from start to goal
• Local planner: satisfy kinodynamic constraints

I Topological maps

• Abstract representation that describes relationships between
features of the environment

• Compact and stable w.r.t. sensor noise and uncertainty

How is motion planning applied in TU/e?
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Examples: Motion Planning for RoboCup

Camera

Hat

Mirror (under hat)

Kicker
Ballhandling

Omni-wheel

I Soccer pitch
I 12 m× 18 m
I Known environment
I Dynamic obstacles (hostile)
I 3 m/s

Kinect

Laser scannerOmni-wheel

Lifting mechanism

Arm

I House/care environment
I Arbitrary size
I Partially unknown
I Static and dynamic obstacles
I 1 m/s
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Motion planning for MSL soccer robots

qi
qg

(x(c), y(c))

c = 1

c = 0

amax

y

x

ar

at

I Voronoi diagram representation, searched with Dijkstra’s algorithm
I Shortcut algorithm to cut-off sharp turns
I Time-optimal trajectory through waypoints using Bézier curves
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AMIGO: Environment representation

I Use Octomap for 3D navigation
I Project columns to 2D costmap and

inflate costs and uncertainty for
navigation

I Certainty decays over time instead
of known/unknown

• A wall never moves
• People are likely to move
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AMIGO: Global and local planner

I Global planner
• A* Planner

I Local planner
• Line collision check
• Velocities based on

safety
• Assumptions on

moving obstacles
• Desired: DWA/MPC
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Questions

Questions?


