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What is (robot) localization?

Compute the robot pose with respect to some frame of 
reference (e.g. a map)
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Why do we need robot localization?

Being able to use a map, requires the pose of our robot with respect to the 
map

Lecture Localisation 13

𝑦

𝑥𝑤𝑜𝑟𝑙𝑑

𝑦

𝑥𝑟𝑜𝑏𝑜𝑡



Why do we need robot localization?

Global path planning: 
we cannot plan a path if we do
not know where we are!
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We need 
to know 
where we 
start!



Why do we need robot localization?

Local path planning:
we need to know the location of 
our waypoints.
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Where is my goal point?



“What” do we localize on?

Today, maps used for localization will be represented by an occupancy grid
• Discretized world in which is cell is either occupied or empty
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http://ais.informatik.uni-freiburg.de/teaching/ws22/mapping/

http://ais.informatik.uni-freiburg.de/teaching/ws22/mapping/


Intermezzo – brief recap on probability theory
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Recap: random variables

Discrete random variable
• X can take on a countable number of values in the set {x1, x2, …, xn}
• P(X=xi), or P(xi), is the probability that the random variable X takes on 

value xi and P(·) is called probability mass function

Continuous random variable
• X takes values in the continuum
• p(X=x), or p(x), is a probability density function and
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Recap: joint and conditional probabilities

Joint probability: P(X=x and Y=y) = P(x,y)
• If X and Y are independent, then 

P(x,y) = P(x) P(y)

Conditional probability: P(x | y) is the probability of x given y
P(x | y) = P(x,y) / P(y)
P(x,y)   = P(x | y) P(y)

• If X and Y are independent, then
P(x | y) = P(x)
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Recap: Bayes theorem

𝑃(𝑥ȁ𝑧) =
𝑃(𝑧ȁ𝑥)𝑃(𝑥)

𝑃(𝑧)
=
likelihood ⋅ prior

evidence
,

𝑃(𝑧) =෍

𝑥

𝑃(𝑧ȁ𝑥)𝑃(𝑥)
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Recap: Bayesian filter

Lecture Localisation 111

Predict 
state

Update 
state

System model that 
describes how the state 

changes over time

Measurement model that 
relates measurements to 
state that must be 
estimated

State – vector with quantities that must be estimated



Recap: Bayesian filter → localization
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Predict 
2D pose

Update 
2D pose

System model that 
describes how the robot 

moved over time (e.g.
using wheel encoders)

Measurement model that 
relates map-related 
measurements to robot 
pose

State – 2D robot pose: x-position, y-position, orientation



Types of localization problems
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?

?

• “Tracking”
• Initial position is known
• Keep track of position while moving

• “Global localization”
• Initial position can be anywhere
• Once position has been found start tracking

• “kidnapped robot”
• Start by tracking
• Trigger global localization when needed

This will be the scenario in the final challenge



Problem statement
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Goal: estimate 2D robot pose   x =

𝑥𝑟
𝑦𝑟
𝜃𝑟

We have:
• Prediction model: 

• 𝑥𝑡 = 𝑓𝑘 𝑥𝑡−1, 𝑢𝑡 , 𝑣𝑡−1
• Knowledge on how state 𝑥 evolves over time – noise represents confidence model

• Measurement model:
• 𝑧𝑡 = ℎ𝑡(𝑥𝑡 , 𝑢𝑡 , 𝑛𝑡)
• Way to relate measurements to the state 𝑥 – noise represents measurement noise



Problem statement: graphical representation

Lecture Localisation 115

𝑦

𝑥𝑤𝑜𝑟𝑙𝑑

𝑥1 = 𝑓1 𝑥0, 𝑢1, 𝑣0

𝑥0

𝑥1

𝑥2

𝑧1 = ℎ1(𝑥1, 𝑢1, 𝑛1)

𝑥2 = 𝑓2 𝑥1, 𝑢2, 𝑣1

𝑧2 = ℎ2(𝑥2, 𝑢2, 𝑛2)



Remark on probability notations

In these slides:

• PDF representing the 2D robot pose: 
𝑝 𝑥𝑡

• PDF representing a measurement: 
𝑝(𝑧𝑡)
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Markov assumption for sequence modeling
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Probabilistic modelling: location prediction
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𝑦

𝑥𝑤𝑜𝑟𝑙𝑑

𝑝(𝑥0)

𝑝(𝑥1)

Use law of total probability:   𝑝 𝑥1 = 𝑝׬ 𝑥1 𝑥0)𝑝 𝑥0 𝑑𝑥0

Remember: this is a PDF, not a vector!



Probabilistic modelling: sensor update
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𝑦

𝑥𝑤𝑜𝑟𝑙𝑑

𝑝(𝑥0)

𝑝(𝑥1)

𝑝(𝑧𝑡ȁ𝑥𝑡)

Use Bayes’ rule: 𝑝 𝑥1 𝑧1 =
𝑝 𝑧1 𝑥1 𝑝(𝑥1)

𝑝(𝑧1)

𝑝 𝑥1 = න 𝑝 𝑥1 𝑥0) 𝑝 𝑥0 𝑑𝑥0



Probabilistic modelling: sensor update
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𝑦

𝑥𝑤𝑜𝑟𝑙𝑑

𝑝(𝑥0)

𝑝(𝑥1)

𝑝(𝑧𝑡ȁ𝑥𝑡)
𝑝 𝑥1 = න 𝑝 𝑥1 𝑥0) 𝑝 𝑥0 𝑑𝑥0

𝑝 𝑥1 𝑧1 =
𝑝 𝑧1 𝑥1 𝑝(𝑥1)

𝑝(𝑧1)



Probabilistic modelling: overview of steps

Initialize
• 𝑝(𝑥𝑡−1)

• Predict robot pose in next timestep using prediction model:

𝑝 𝑥𝑡ȁ 𝑧1:𝑡−1 = න𝑝 𝑥𝑡 𝑥𝑡−1)𝑝 𝑥𝑡−1 𝑧1:𝑡−1 𝑑𝑥𝑡−1

• Update robot pose using measurement model

𝑝 𝑥𝑡 𝑧𝑡 =
𝑝 𝑧𝑡 𝑥𝑡 𝑝 𝑥𝑡 𝑧1:𝑡−1)

𝑝(𝑧𝑡ȁ𝑧1:𝑡−1)
,

where: 𝑝(𝑧𝑡ȁ𝑧1:𝑡−1) 𝑝׬ = 𝑧𝑡 𝑥𝑡 𝑝 𝑥𝑡 𝑧1:𝑡−1 𝑑𝑥𝑡

• Repeat
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(normalization constant)

The integrals can be hard to 
compute! How about an 

approximation?



Particle filter idea

• Approximate a PDF representing a continuous random variable by a set 
of N ‘particles’

• Each particle represents a possible value of the state
(i.e. each particle is a 3D vector representing a 2D robot pose)

• Use prediction and update steps introduced on previous slide
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Particle filter intuition

Problem: we cannot sample from the unknown 
distribution we would like to estimate 
• Sample from "Proposal distribution“ (𝑞) instead
• Use weights to compensate for sampling from q

The particle filter represents a distribution by a set of weighted samples!

Example 
“proposal 

distribution“
(𝑞)



Particle filter properties

Advantages:
• Hard-to-compute integrals turn into summations over N particles
• Particles can be distributed over map in any form→ flexibility in ‘shape’

of PDF
• Prediction and measurement models have minimal restrictions (e.g.

noise can be non-Gaussian, models van be non-linear)

Disadvantages:
• Computational load proportional to number of particles N
• Number of required particles scales poorly with dimension of state 

(which is 3 in our case)
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Particle filtering: representing the 

PDF by a set of weighted points

• 𝑝 𝑥0:𝑡 𝑧0:𝑡) ≈ σ𝑖=1
𝑁𝑠 𝑤𝑡

𝑖 𝛿 𝑥0:𝑡 − 𝑥0:𝑡
𝑖 = Ƹ𝑝 𝑥0:𝑡 𝑧0:𝑡)

• 𝛿(𝑥) = ቊ
0 𝑥 = 0
∞ 𝑥 = 0

• 𝛿׬ 𝑥 𝑑𝑥 = 1

• 𝑤𝑡
𝑖 ∝

𝑝(𝑥𝑡
𝑖)

𝑞(𝑥𝑡
𝑖)

 the weight compensates for the proposal density

• σ𝑖=1
𝑁𝑠 𝑤𝑡

𝑖 = 1
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coordinatesweight



Initializing a particle filter for robot localization

We have assumed an initial guess is available
• Sample N particles from the initial guess

(e.g., a uniform distribution over a part of the map)
• Set all particle weights wi to 1/N
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Prediction step

• Move each of the particles according to our model: 𝑓 𝑥𝑖 , 𝑢, 𝑣
• 𝑥𝑖: each of the particle states
• 𝑢: control input that might be available (same for all particles)
• 𝑣: independent noise sample (different for each particle) → ‘diversifies’ particles

• Values weights do not change
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Predictions only – what about measurements?
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• We can keep repeating this 
prediction step

• Our estimate will diverge

• How do we incorporate 
measurements?



Incorporate sensor data by weighing with Bayes’ rule

• Use predicted density as a proposal density
• Update particle weights using Bayes’ rule (do not change particle 

locations):

𝑤𝑡 =
1

𝑐
𝑝 𝑧𝑡ȁ𝑥𝑡

𝑖 𝑤𝑡−1 , where c is a normalizing constant

Lecture Localisation 129



Resampling

After a few time steps, all but one particle will have a weight of 0
• Resample (with replacement) each particle using its weight as a probability of 

being chosen
• low-weight particles disappear, high-weight particles are duplicated
• Reset the weight to 1/N
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Multinomial resampling – implementation

Example with 5 particles

0.1 0.2 0.5 0.05 0.15     (particle weights)

Sample from a uniform distribution U(0,1) → Ns = five times
• Sample between 0 and 0.1 → duplicate particle one
• Sample between 0.1 and 0.3 → duplicate particle two
• Sample between 0.3 and 0.8 → duplicate particle three
• …
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0   0.1       0.3 0.8 0.85   1.0  (cumulative sum weights)



Pseudocode

For more detailed information see:
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Elfring, J.; Torta, E.; van de Molengraft, R. Particle Filters: A Hands-On Tutorial. Sensors 2021, 21, 438. https://doi.org/10.3390/s21020438

F. Gustafsson, "Particle filter theory and practice with positioning applications," in IEEE Aerospace and Electronic Systems Magazine, vol. 25, no. 7, pp. 53-82, 
July 2010, doi: 10.1109/MAES.2010.5546308

https://doi.org/10.3390/s21020438


Particle filter: example animation

• Note how the weighing and 
resampling steps aren’t explicitly 
visualized here.

• Only the result the prediction is shown
• Uniform weights

• Rotation is also part of each sample
• (samples are a random state of x, y, 

theta)

• Next: how to compute 𝑝 𝑧𝑡 𝑥𝑡
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Time for a break!

After the break:

• How to calculate 𝑝(𝑧𝑡ȁ𝑥𝑡)
• How to initialize a particle filter
• Obtaining a pose from the particle filter
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Welcome back!
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To discuss:

• How to calculate 𝑝(𝑧𝑡ȁ𝑥𝑡)
• How to initialize a particle filter
• Obtaining a pose from the particle filter



Recursive State Estimation
Beam-based model 

For now, let’s define a measurement as a vector of ranges:

• 𝑧𝑘 =

(𝑟0, 𝜃0)
(𝑟1, 𝜃1)

⋮
(𝑟2, 𝜃2)

,

• Given a map, a robot pose, and appropriate algorithms we can 

generate a prediction of this measurement should be

• 𝑧𝑘
∗ =

(𝑟0
∗, 𝜃0)

(𝑟1
∗, 𝜃1)
⋮

(𝑟2
∗, 𝜃2)
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Recursive State Estimation
Beam-based model 

Appropriate algorithms?

A family of algorithms called Ray casters.

Don’t worry about them for now,

we have provided you with one for the assignment :) 

Department of Mechanical Engineering – Control Systems Technology 37



Recursive State Estimation
Beam-based model 
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Observe that we now have a measurement and a measurement 

prediction in the ideal (modeled) case.

Core Idea:

The mismatch between the two tell us something about whether 

the robot pose is correct.



Recursive State Estimation
Beam-based model 
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How to quantify this

mismatch as a probability 𝑝 𝑧𝑡 𝑥𝑡 ?

• For a single ray, we identify four sources of “disturbances”
1. Local measurement noise

2. Unexpected obstacles (object not present in the map)

3. Failures (Glass, Black obstacles)

4. Random measurements

• We assign each source a distribution and probability of occurring



Recursive State Estimation – beam-based model 
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Local Measurement Noise

𝑝𝑠ℎ𝑜𝑟𝑡 𝑧𝑡
𝑘 𝑥𝑡, 𝑚) = ቊ 𝜂 𝒩(𝑧𝑡

𝑘; 𝑧𝑡
𝑘∗, 𝜎ℎ𝑖𝑡

2 ) 𝑖𝑓 0 ≤ 𝑧𝑡
𝑘 ≤ 𝑧𝑚𝑎𝑥

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Evaluating a Gaussian does not guarantee 𝑝𝑠ℎ𝑜𝑟𝑡 is between 0 and 1, 

which is why a normalizer is needed:

𝜂 = න
0

𝑧𝑚𝑎𝑥

𝒩 𝑧𝑡
𝑘; 𝑧𝑡

𝑘∗, 𝜎ℎ𝑖𝑡
2 𝑑𝑧𝑡

𝑘

−1

𝑧𝑡
𝑘 : measured range

𝑧𝑡
𝑘∗: true range
𝜎ℎ𝑖𝑡: std. dev. measurement noise

𝒩(𝑥; 𝜇, 𝜎ℎ𝑖𝑡
2 ): evaluate Gaussian 

with mean 𝜇 and standard 

deviation 𝜎 at x



Recursive State Estimation – beam-based model 
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Could be that the robot measures unexpected obstacles (measure 

nearby objects not in the map). Modeled via exponential 

distribution.

𝑝𝑠ℎ𝑜𝑟𝑡 𝑧𝑡
𝑘 𝑥𝑡, 𝑚) = ൝ 𝜂𝜆𝑠ℎ𝑜𝑟𝑡𝑒

−𝜆𝑠ℎ𝑜𝑟𝑡 𝑧𝑡
𝑘

𝑖𝑓 0 ≤ 𝑧𝑡
𝑘 ≤ 𝑧𝑡

𝑘∗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝜂 =
1

1 − 𝑒−𝜆𝑠ℎ𝑜𝑟𝑡 𝑧𝑡
𝑘∗



Recursive State Estimation – beam-based model 
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Well-known measurement failures happen on black or non-reflective 

objects or glass. In that case typically, a max range measurement is 

returned. 

𝑝𝑚𝑎𝑥 𝑧𝑡
𝑘 𝑥𝑡 , 𝑚 = ቊ1 𝑧𝑘

𝑡 = 𝑧𝑚𝑎𝑥

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Recursive State Estimation – beam-based model 
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Random measurements that are entirely unexplained may occur 

(although not frequently):

𝑝𝑟𝑎𝑛𝑑 𝑧𝑡
𝑘 𝑥𝑡 , 𝑚 = ቐ

1

𝑧𝑚𝑎𝑥
𝑖𝑓 0 ≤ 𝑧𝑘

𝑡 < 𝑧𝑚𝑎𝑥

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Recursive State Estimation – beam-based model 

Department of Mechanical Engineering – Control Systems Technology 44

Taking the weighted average of these distributions yields the overall model:

𝑝 𝑧𝑡
𝑘 𝑥𝑡 , 𝑚 = 𝑧ℎ𝑖𝑡 𝑝ℎ𝑖𝑡 𝑧𝑡

𝑘 𝑥𝑡 , 𝑚 + 𝑧𝑠ℎ𝑜𝑟𝑡𝑝𝑠ℎ𝑜𝑟𝑡 𝑧𝑡
𝑘 𝑥𝑡 , 𝑚 +

𝑧𝑚𝑎𝑥𝑝𝑚𝑎𝑥 𝑧𝑡
𝑘 𝑥𝑡 , 𝑚 + 𝑧𝑟𝑎𝑛𝑑𝑝𝑟𝑎𝑛𝑑 𝑧𝑡

𝑘 𝑥𝑡 , 𝑚



Recursive State Estimation – beam-based model 
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Probability of entire measurement vector by assuming independence of rays.

• Does this assumption really hold true?
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Particle filter: example animation

• Sensor data not explicitly shown in 
this animation

• Particles are resampled based on 
the sensor model



Estimating the pose from a 
particle filter
Remember:

• 𝑝 𝑥0:𝑡 𝑧0:𝑡) ≈ σ𝑖=1
𝑁𝑠 𝑤𝑡

𝑖 𝛿(𝑥0:𝑘 − 𝑥0:𝑘
𝑖 )

• 𝐸 𝑥𝑡 ≈ σ𝑖=1
𝑁 𝑤𝑡

𝑖 𝑥0:𝑡
𝑖

• Is this a good pose estimate to use?
• When is it, when is it not?
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Initializing a particle filter

• Decide on the number of particles N

• Draw N particles from the initial 
distribution

• Run consecutive update/prediction 
steps!
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Initial distribution



This week’s exercise

• Particle filter predictions

• Generate new samples from the 
proposal distribution 𝑝(𝑥𝑡+1ȁ𝑥𝑡)

• Skip Bayes’ update

• What happens to the prediction 
over time?

• What would be the benefit of 
adding measurement updates?
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Next week’s exercise 

• Measurement data updates!

• Update the weight of our particles 
using Bayes’ rule.

• Close the loop by resampling the 
particles.

• Fully functioning particle filter!
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