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h i g h l i g h t s

• Target enclosure robot swarm for multiple targets is proposed.
• The analytical verification of a small size swarm of the proposed robot for single target is described.
• The enclosure behavior for 1-, 2-, 3 targets by a larger group (n < 80) is examined by computer simulations.
• The capability to assign robots equally to 2 targets is shown by the extensive computer simulation (n < 200).
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a b s t r a c t

Target enclosure by autonomous robots is useful formany practical applications, for example, surveillance
of disaster sites. Scalability is important for autonomous robots because a larger group is more robust
against breakdown, accidents, and failure. However, since the traditional models have discussed only
the cases in which minimum number of robots enclose a single target, there has been no study on the
utilization of the redundant number of robots. In this paper, to achieve a highly scalable target enclosure
model about the number of target to enclose, we introduce swarm based task assignment capability to
Takayama’s enclosure model. The original model discussed only single target environment but it is well
suited for applying to the environmentswithmultiple targets.We show the robots can enclose the targets
without predefined position assignment by analytic discussion based on switched systems and a series
of computer simulations. As a consequence of this property, the proposed robots can change their target
according to the criterion about robot density while they enclose multiple targets.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we propose a robotic swarm model that can allo-
cate robots to an unspecified number of targets. This robotic swarm
has no leader and no supervisor. In this model, each autonomous
robotmoves according to Takayama’s target enclosuremodel but a
new reference rule is introduced. By this reference rule, the robots
do not need to keep the predefined assigned position of circular
formation, so that it is possible for each robot to switch its tar-
get. Additionally, density based target selection rule is adopted
to achieve stable target enclosure. The performance is verified by
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computer simulation. There are 3 advantages of this model over
leader-following approaches [1,2] which are as follows. First, it is
unnecessary to control the number of leaders. Second, the robots
do need to be identified by other robots. Third, no communication
between robots is required.

Target enclosure, is useful for monitoring disaster sites, and
thus it has recently become an important goal for multiple robots.
Robots can operate in dangerous circumstances, replacing human
presence.

Disaster sites are usually far from an operator. In this case, a
group of robots cannot confirm in advance the exact number of
sites that should be surveilled. Therefore, redundancy in the num-
ber of robot employed is desirable, and this enables the group of
robots to accept a larger number of targets. For this purpose, the
tasks of target allocation and target enclosure must be performed
simultaneously.
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Fig. 1. Examples of enclosure formation for 2 targets.
However, it seems to be difficult formost of the target enclosure
models proposed so far to realize this requirement because of
following 2 reasons. Firstly, there are no researches which discuss
multiple targets enclosure environment. Secondly, except for the
study of Kobayashi et al. [3], all other studies require that a
particular arrangement of the robots be maintained in order to
build a target enclosure.

For example, Yamaguchi [4] discussed a target capturing task in
which the robotsmustmaintain a chain structure. Kim et al. [5] dis-
cussed the target enclosure problem; in their solution, each robot
needs information on the relative speed of one robot and relative
geographical relation to its target to determine its behavior. If the
relationship between a robot and its reference robot is considered
as a link in graph theory, the graph of the group of robots must
follow a Hamiltonian cycle.

When a robot changes the target to be enclosed, the following
two events should be considered: withdrawal and join a group of
robots. In the former, the remaining robots in the groupmustmain-
tain the constraint of the Hamiltonian cycle without the removed
robot. In the latter, a group that satisfies theHamiltonian cycle con-
dition and the new member must form a new Hamiltonian cycle.
Fig. 1 shows these events by the example when 7 robots have to
enclose 2 targets. When the robots with wrong formation (B) will
change to the reasonable formation (A), they have to decide who
bears off. When the robots are with formation (D), one robot of
around Target 1 should go bywithdrawal and join the cycle of No. 1
and No. 2 around Target 2. As far as we know, discussion of these
events is very few when there are no restrictions on the timing of
withdrawal and accedence of robots.

Therefore, firstly,we propose a new reference rulewhichmakes
this condition of maintaining a Hamiltonian cycle to achieve target
enclosure relaxed. We focused on the study of Takayama et al. [6].
In their model, each robot needs information of one neighbor
and its target. As in other studies, this model also requires the
Hamiltonian cycle constraint. However, in this paper, we show
that thismodel can realize target enclosurewithout this constraint
when each robot bases its behavior on information from its nearest
neighboring robot [7]. Therefore, in our model, robots can change
targets without considering the above two events.

Note that the reference relationships among more than
four robots in the proposed nearest neighbor model are often
unconnected in the graph theoretical sense [8,9]. Therefore, it is
not easy to discuss this issue using a graph laplacian, which is the
primary analytical approach used for multi-robot systems. In this
paper, the theory of switched systems [10] is adopted for analyzing
groups of less than five robots. A series of computer simulations are
used for larger groups.

Target assignment function for a group of robots is achieved
also by distributed manner. Robots can change their target by
themselves. However, they fail to enclose multiple targets when
toomany robots change their target simultaneously. Therefore, we
introduce density based target change rulewhich is inspired by the
task allocation mechanism of swarm robotics research [11]. This
work proposed a method to collect a necessary number of robots
from a group of robots without bidirectional communication and
high individual identification capabilities.

This paper is composed as follows. First, Takayama’s work
is introduced. Next, our method based on the reference of the
nearest neighbor is shown. In Section 3.2, the practical asymptotic
stability of the small size group is proved analytically. Then, by the
computer simulations, we show the ability of the target enclosure
task of the larger group. Finally, the target allocation capability of
this model by using a simple local interaction based task allocation
method [11] is shown by computer simulations.

2. Takayama’s target enclosure model

Firstly, Takayama’s target enclosure model is explained.

2.1. Takayama’s target enclosure model

In this section, we assume that all agents choose the same tar-
get.We assume that on a two-dimensional (2D) plane, there is only
one target O at the origin and n agents. Additionally, we suppose
that all of agents have same ability and they can know relative po-
sition to the targets and the other robots. Fig. 2 illustrates the case
of n = 5. Robots are numbered counterclockwise as P1, . . . , Pn, and
ri is the position vector of the robot Pi. In the target enclosure task,
each robot moves to the corresponding white marker.

To achieve this task, Takayama et al. [6] proposed the follow-
ing model. Each robot determines its control input, speed vi, and
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Fig. 2. Process of target enclosure using five robots.

Fig. 3. Model of Takayama’s target enclosure: α, β .

angular velocity ωi using two aspects of angular information: rela-
tive angles with respect to the target and an anterior neighboring
robot, denoted as αi and βi, respectively (See Fig. 3). As a result,
rotational movement occurs with a central focus on the target

vi = f βi (1)
ωi = vi/r̄ − k cosαi, (2)

where the parameters r̄, k, and f > 0 are specified beforehand.
Pi+1 is the robot to which Pi refers, and r̄ is the expected distance
to the target. In Takayama et al.’s model, the ith robot refers to the
i + 1th robot, and the nth robot refers to the first robot P1. That is,
if the relationship between a robot and its reference robot is con-
sidered as a link in graph theory, the graph of the group of robots
must be a Hamiltonian cycle. The authors proved the convergence
to the goal state of the target enclosure under this constraint.

Takayama et al. reported the following three characteristics of
their model. (E1) The distance between the target and each robot
converges to r̄ . (E2) The speed vector Vi and the vector (O− Pi) are
orthogonal. (E3) The gaps between a robot and its neighbors are
equalized, i.e., φi =

2π
n .

2.2. Definition of enclosure task

In this paper, the target enclosure task for an n-robot group is
defined as follows. The task consists of determining the distance to
the target and equalizing the gap angle.
Fig. 4. An example of Takayama et al.’s model for a three-robot group. Open
markers indicate start points, and filled markers indicate final locations. This figure
visualizes each robot approaching the target along a circular orbit.

The distance task is

Ed =

n
i=1

(ri − r̄)2. (3)

The angle equalization task is

Ea =

n
i=1


φi −

2π
n

2

. (4)

Because of these two requirements, the robots are deployed evenly
on a circle having a radius of r̄ .

2.3. An example of enclosure process

A set of computer simulations was conducted to verify charac-
teristics (E1)–(E3).

The simulation conditions were as follows. The target was at
the origin of a 100 × 100 2D plane field. The initial positions of
three robots were randomly specified, and it was assumed that
r̄ = 20 m. The robots’ trajectories are shown in Fig. 4. Their initial
positions are indicated by open markers, and their final positions
are noted by filled markers. One robot started its motion near the
origin; the other two were at least 20 units away from the origin.
This figure shows that each robot converged to a circle having a
diameter r̄ of 20 units. The gaps between these robots also became
equal, i.e., φi = 2π/n = 2π/3.

3. Nearest neighboring robot as the reference

In this paper, the robots observed by the ith robot are consid-
ered to be its reference robots. In the original Takayama et al.’s
model, the ith robot Pi’s reference robot is the i + 1th robot Pi+1.
This relationship forms a Hamiltonian cycle. As mentioned above,
this constraint makes target allocation behavior difficult. It also
causes the scalability problem. Each robot must identify its refer-
ence robot from the group of robots. This typically becomes diffi-
cult as the group size increases.
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Fig. 5. Unconnected pattern of reference relationships in a four-robot group.

Therefore, we examine a new reference robot scheme in which
each robot considers its anterior neighboring robot as its reference
robot. Each robot controls itself as described in Eqs. (1) and (2), but
it chooses its nearest neighbor as its reference robot. If possible,
the robots can change their target during the target allocation task.
Such a system also has higher scalability because individual robots
need not be identified to observe the nearest robot.

3.1. Problems in verification of the proposed reference model

In the work of Takayama et al. [6], the model was proven ana-
lytically by two approaches, convergence of the distance between
the target and robots and convergence of the distance between
robots. The former convergence holds true for our proposedmodel.
In contrast, the result of the latter approach in which the angle
between each adjacent robot converges to 2π/n does not apply
in our proposed model because Takayama et al.’s proof assumes
that the relationship between the robot and its reference robot is
static and robots are connected in the graph theory sense, as in
Refs. [12,8,9,6]. However, this assumption is inadequate for the fol-
lowing reasons.

1. The reference relationship in the proposed model changes
dynamically. For example, there are six graphical patterns for
the three-robot group.

2. The graph is not connectedwhen n > 3. If n ≤ 3, then the graph
is dynamic but connected (at least, it is weakly connected as a
digraph). However, when n > 3, unconnected patterns appear,
as shown in Fig. 5.

Because of these two differences, alternative approaches of verify-
ing the proposed model are required.

3.2. Verification of the proposed nearest neighbor reference model

In this section, switched systems theory is adopted to verify the
convergence of the angle between a pair of neighboring robots in
the four-robot groups.

3.3. Verification using switched system

The results of the switched system are used here. Instead of the
graph laplacian, the Poincaré–Bendixson theorem [13] can be used,
but this theorem is generally applicable only to systems with two
variables. In contrast, the results of the switched system adopted
here can be used to examine the convergence property of a small
group of robots.
3.4. Switched systems

A switched system is defined as [10,14]

ẋ = fs(x), (5)

where x ∈ Rn is a continuous state variable, and ẋ is its derivative.
Furthermore, S is a set of discrete values s, and s is static even
if t and/or x change. In this case, Ref. [14] proves the sufficient
condition for the practical asymptotic stability of the switched
system. Let V (x) be a continuous differentiable positive definite
function. In addition, we assume that a set of positive values Ωρ =

{x ∈ Rn
: V (x) ≤ ρ} is bounded. In this case, the switched system

exhibits practical asymptotic stability for any D ⊂ Ωρ when the
following conditions are satisfied.

(a) min
s∈S

∂V
∂x

fs(x) < 0, ∀x ∈ Ωρ − {0} (6)

(b) 0 ∈ Int(C), (7)

where Int(C) is the interior of (C). C is given as

C = conv({fs(0) : s ∈ S})

=


s∈S

λsfs(0) : λs ≥ 0,

s∈S

λs = 1


. (8)

We assume that a sufficient time has passed so that all the
robots are near their common target. Furthermore, we assume that
the distance between the robots and the target is r̄ , and each robot
determines its nearest neighbor using only the angle with respect
to its neighbor. In this case, the angle φi between the ith robot and
its reference robot is expressed as follows:

Case 1: φi+1 ≥ φi, φi ≥ φi−1

dφi

dt
=

b
2
(−φi + φi−1). (9)

Case 2: φi+1 < φi, φi ≥ φi−1

dφi

dt
=

b
2
(φi+1 + φi−1 − 2π). (10)

Case 3: φi+1 ≥ φi, φi < φi−1

dφi

dt
= b(π − φi). (11)

Case 4: φi+1 < φi, φi < φi−1

dφi

dt
=

b
2
(φi+1 − φi) (12)

where b = f /r̄ . In this case, the dynamics of their angles is
considered to represent a switched system according to each
robot’s three angles φi−1, φi, and φi+1. The heading direction di of
the ith robot can be described by φi−1 and φi as follows:

di =


1 (φi ≥ φi−1)
0 (otherwise) (13)

where ‘‘0’’ and ‘‘1’’ indicate a counterclockwise and clockwise
heading direction, respectively. By using Eq. (13), Eqs. (9)–(12) are
written as follows:

φ̇ = Asφ + Bs (14)

φ = [φ1 . . . φi . . . φn]
T (15)
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As,i,j =



b
2
di (j = i − 1)

−b
2

(di+1 − di + 1) (j = i)

b
2
(1 − di+1) (j = i + 1)

0 (otherwise)

(16)

Bi = π(di+1 − di) (17)

s = {d1, . . . , di, . . . , dn} ∈ {0, 1}n (18)

where φn = 2π −
n−1

i=1 φi. For simplicity, let b = 1 in the remain-
der of this paper. In the next subsection, we prove the practical
asymptotic stability of the system represented by Eq. (14).

3.5. A four-robot group

In this section, we discuss the practical asymptotic stability of
a four-robot system. A four-robot group has 14 control inputs,
s = {{1, 0, 1, 0}, {1, 0, 0, 1}, {0, 1, 1, 0}, {0, 1, 0, 1}, {0, 0, 1, 1},
{1, 1, 1, 0}, {1, 1, 0, 1}, {1, 0, 1, 1}, {0, 1, 1, 1}}.

When s = {1, 0, 0, 0}, the result of the left of Eq. (6) in this case
by using Eq. (16) isw(φ) = −4π2

−3φ2
1 −4φ1φ2−3φ2

2 +6π(φ1+

φ2) + 8πφ3 − 6φ1φ3 − 4φ2φ3 − 4φ2
3 . Therefore, the maximum of

w(φ) in the given range is calculated by a Lagrange multiplier. We
rewrite z(φ) = −w(φ) as a minimization problem.

The set of constraints representing the control input s =

{1, 0, 0, 0} isφ1 > φ4∧φ2 < φ1∧φ3 < φ2∧φ4 < φ3∧φ1, φ2, φ3 >
0, φ4 > 0. We define the following functions from this condition
by adding equal conditions for convenience.

g1(φ) = 2π − 2φ1 − φ2 − φ3 ≤ 0
g2(φ) = φ2 − φ1 ≤ 0
g3(φ) = φ3 − φ2 ≤ 0
g4(φ) = −φ1 ≤ 0
g5(φ) = −φ2 ≤ 0
g6(φ) = −φ3 ≤ 0
g7(φ) = −2π + φ1 + φ2 + φ3 ≤ 0 (19)
∇g1 = [−2 − 1 − 1]T , ∇g2 = [−1 1 0]T

∇g3 = [0 − 1 1]T , ∇g4 = [−1 0 0]T

∇g5 = [0 − 1 0]T , ∇g6 = [0 0 − 1]T

∇g7 = [1 1 1]T . (20)

Then, the following Karush–Kuhn–Tucker conditions are obtained
from ∇z(φ) +

7
i ∇gi(φ) = 0.

6φ1 + 4φ2 − 6π + 6φ3 − 2u1 − u2 − u4 + u8 = 0
4φ1 + 6φ2 − 6π + 4φ3 − u1 + u2 − u3 − u5 + u7 = 0
6φ1 + 4φ2 − 8π + 8φ3 − u1 + u3 − u6 + u7 = 0
u1(2π − 2φ1 − φ2 − φ3) = 0, u1 ≥ 0
u2(φ2 − φ1) = 0, u2 ≥ 0
u3(φ3 − φ2) = 0, u3 ≥ 0
u4(−φ1) = 0, u4 ≥ 0
u5(−φ2) = 0, u5 ≥ 0
u6(−φ3) = 0, u6 ≥ 0
u7(−2π + φ1 + φ2 + φ3) = 0, u7 ≥ 0. (21)

This equation reveals that the maximum of w(φ) in the given
range is w(φ) = 0 at φ1 = φ2 = φ3 = φ4 =

π
2 . Therefore, Eq. (6)

is satisfied when this control signal s is activated.
We verify the maximum of w(φ) for all other s values in a

similar manner.
Fig. 6. Time to achieve enclosure for 6-robot group.

Table 1
Time to enclose.

The number of robots Average of time S.D.

3 813.123 125.737
4 847.660 102.825
6 874.143 96.921

12 1044.371 115.408
24 1723.476 396.054
48 3799.725 1275.433

When s = {0, 1, 0, 0}, w(φ) = −4π2
− 4φ2

1 − φ2
2 − 2φ2φ3 −

3φ2
3 − 2φ1(φ2 + 2φ3) + 2π(4φ1 + φ2 + 2φ3). The maximum of

w(φ) is 0 at (φ1, φ2, φ3) = (π
2 , π

2 , π
2 ).

In the samemanner as these cases, the maximum of w(φ) in all
of the remaining cases, is 0.

Therefore, Eq. (6) is satisfied for any control input s. Further-
more, C = {0} satisfies 0 ∈ Int(C) because φ1 = φ2 = φ3 = φ4 =
π
2 is a fixed point for which fs(φ) = 0 for all fs. Therefore, Eq. (7) is
satisfied.

3.6. Verification of target enclosure task for larger groups by computer
simulations

The discussion above showed that the proposed model can
achieve angle equalization for a small group. However, we did not
provide the proof of the distance task represented by Eq. (3). In
addition, we did not verify the performance for groups of more
than four robots. Therefore, in this section, we discuss the ability
to achieve target enclosure by using computer simulations.

We examined from 3- to 48-robot groups (Table 1). There was
only one target at the origin, and it was assumed that r̄ = 20.
The initial position of a robot was specified inside a 100 × 100
rectangular region by a 2D uniform random number generator.
We counted the time to achieve target enclosure as the time until
Ed + Ea < 0.5 in Eqs. (3) and (4). This simulation was repeated 100
times for each group size.

Fig. 6 shows the result for the 6-robot groups. The x-axis of the
graph indicates the time required to achieve enclosure, and the
y-axis denotes the frequency. For the three-robot system, the
average time required for enclosure is 813.123, and the standard
deviation is 125.737. For the four-robot system, the average time



M. Kubo et al. / Robotics and Autonomous Systems 62 (2014) 1294–1304 1299
is 847.660 and the standard deviation is 102.825. For the six-robot
system, the average time is 874.143 and the standard deviation is
96.921. For the 12-robot system, the average time is 1044.371 and
the standard deviation is 115.408.

Thus, as the number of robots increases, the time required to
achieve target enclosure increases. However, in every simulation
setting, the task was accomplished.

Algorithm 1Multiple Targets Enclosure Agent Algorithm
ifmodei attribute of agent i is Enclosuremode then

Keep enclosing its nearest target with its nearest agent in
Enclosuremode.
if |ri − ri,neighbor | < rm then

Set its modei attribute to Target selecting mode with proba-
bility pet

end if
else if itsmodei attribute is Target selecting mode then

Choose a target to go randomly, except for the nearest.
repeat

Go to the target.
until the target is not its nearest target.
Set itsmodei attribute to Enclosuremode.

end if

4. Enclosure of the unspecified number of targets

In this section, a new target enclosure robotic swarm of which
robots adopt the proposed nearest neighbor reference is proposed.

The robotic swarm with the proposed reference model does
not need keep the Hamiltonian structure. Therefore, each robot
can join/leave a target without acceptance by the other members.
The remaining problem is on how to reach a balanced assignment
for multiple targets by local interaction. The number of robots to
enclose each target should be equalized.

We introduce a task assignment technique and an information
transmission technique of swarm robotics fashion [11]. This work
proposes a method to collect the necessary number of children
robots by intensity of light of the bulb installed on the robots. The
robots are very simple so that they do not have any communication
capability and they have low individual identification capabilities.
There are 2 types of robots; the parent robot has yellow bulb and a
group of children robots have green bulb. The yellow light of the
parent robot attracts child robots. The green light intensity gets
stronger as more child robots gather. If the intensity of green light
is stronger than the defined threshold, the child robot leaves. This
simple schema can allocate robots to tasks efficiently.

Aswith this schema, the robot in ourmodel changes itsmode by
simple interaction. Each robot leaves its current target and shifts to
another when it is congested. As many robots are on an enclosure
circular orbit, each of their gap is getting short. Therefore, a robot
can detect congestion by distance to its nearest neighbor. If a
robot repeatedly detects robots too close, the robot gives up the
enclosure about its current target and goes to another target.

Algorithm 1 denotes operations of agent i. To achieve swarm for
multiple targets, we introduce modes. Firstly, modei is introduced
to represent current state of agent i.Modei has one of the following
2 modes, namely, Enclosuremode and Target selecting mode. The
first mode indicates that an agent engages in the aforementioned
target enclosure task. On the other hand, Target selecting mode
means that the robot is trying to change its target. Also,we suppose
each agent can sense the mode of its neighboring agents.

When it is in Enclosuremode, agent i encloses its nearest target
while it is referring to its nearest agent. However, if the distance be-
tween the referring agent is too short, namely |ri − ri,neighbor | < rm,
Fig. 7. A scene in the middle of a run (n = 30).

Fig. 8. A scene in the end of a run (n = 30).

agent i changes its mode to Target selecting mode with probability
pet per unit time. The parameter rm is designated minimum inter-
robot distance.

rm has 2 different roles. The first role is threshold for the switch-
ing of the modes. We could use a continuous function as this
switching rule but we adopted this simplest way. As rm increases,
agents will change their target more frequently. If this parameter
is small, the agent could keep a particular target enclosing contin-
uously. This trend could prohibit them from reaching a balanced
assignment. Another role is a safety margin to avoid collision with
the other agents. It is unusable and dangerous if the robots are too
close. Usually, the distance is limited in advance from this safety
point of view.

When agent i is in Target selecting mode, this agent goes to one
of the new targets directly. It does not enclose any targets during
this mode. Agent i changes its mode to Enclosuremode when the
target is its nearest target and it starts to enclose the target.

We adopt a random selection as the target selection method
when the robot in Target selecting mode selects a new target, and
this is one of the simplest ways. An agent selects a target randomly
from all of targets except for the nearest one. Initially, all of
agents are in Enclosuremode. Each agent tries to enclose its nearest
target.

5. Computer simulation

In the first part of this section, we explain the process of
multiple target enclosure by mainly using the condition with 2
targets. Next, we verify the effects of the 2 main parameters of the
proposed algorithm, pet , rm, and noises. In the last part, we discuss
the performance of the proposed algorithm in the conditions with
5–20 targets and 200 agents.

5.1. Basic process of enclosure for multiple targets

The results of computer simulation of the enclosure algorithm
are shown in this section. Figs. 7 and 8 illustrate a run with 2
targets. The number of robot n is 30. r̄ = 4, rm = 0.5, pet = 0.01.
There 2 targets are 15 away.
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Fig. 9. An initial scene in a run (n = 80).

Fig. 10. An intermediate scene in a run (n = 80).

Fig. 7 shows a scene of middle of this run. On the other hand,
Fig. 8 illustrates a snapshot of the end of this run. Initially, all
of the 30 robots are deployed at random around the right hand
side region of the field. Initially, they try to enclose their nearest
target. Therefore, at the beginning, most of the robots enclose the
right hand side target. This overconcentration causes congestion.
Therefore, the No. 2 and No. 20 robots in Fig. 7 change their mode
to Target selecting mode. These robots are depicted by the red filled
circle. Right after this scene, these robotswent to the left side target
and the number of robots who enclose the left target increased.
Finally, in this run, the number of robots of the left and the right
hand side targets were 11 and 19, respectively. The balance seems
to be influenced by rm. This result is reasonable so that we confirm
that the proposed robots can enclose multiple targets.

In the same manner, the behavior of 80 agents with 3 targets
is shown by Figs. 9–11. All of agents approach the target from the
upper right. Initially, all agents to try to enclose the right side tar-
get. Therefore, some congestion occurred as in Fig. 9. Consequently,
Fig. 11. A final scene in a run (n = 80).

Fig. 12. Balance of 2 targets.

some of the agents change their mode and select one of the 2 re-
maining targets randomly (Fig. 10). Finally, they achieve a balanced
target enclosure as shown in Fig. 11.

5.2. Verification of capability of equalization of the proposed
algorithm: pet

In the last experiment,we showed the example of procedures of
enclosure with a small number of targets. In the following sections
we analyze our algorithm in detail.

In this section, we verify capability of equalization of the
proposed algorithm. We adopt the same experiment setting as the
case of 2 targets except for n and pet . The number of robots for
the closer target (the right hand side) of a different pair of the
number of robots n and the switching parameter pet are counted.
As schematized later (Fig. 14), to count the number of agents
enclosing a target, we set a donut-like region which has radius r̄
and width 0.1 and the agent in that region was counted up.

Fig. 12 shows the contour graphof the result. The 8 contour lines
are generated by the average of the number of robots for the closer
target. At least 100 times runs are performed for each pair of n and
pet . The x-axis indicates the number of robots. The y-axis represents
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Fig. 13. Minimum inter-robot distance rm (n = 150).

the probability pet . A successful run is corresponding to regions at
contour line = 0.5.

The circumference of an enclosure circle of r̄ = 4 is 25.13.
Simply speaking, if the number of the robots is equal to or less
than 50 (<50.26) robots do not to detect any congestion because
rm = 0.5.

The line of 0.5 between 2 ≤ n ≤ 40 is depicted almost
vertically. Also, there is region of large portion when pet < 0.001.
This suggests we have to set pet carefully for each n. If the pet is too
small, almost all robots stick to the closer target.

When the number of robots n is larger than 65, there is no
large portion region. As Fig. 7 illustrates, at the beginning of each
run, a large portion of robots encloses the right hand side target.
Therefore, the equalization function seems to be valid. Also, the
contour line = 0.5 is illustrated horizontally at least until n = 200.
We can set pet easily for achieving a balanced target enclosure.

By these experiments, we demonstrated that our proposed
enclosure algorithm by the modified Takayama model can enclose
a small number of targets adequately.

5.3. Changes of the number of agents enclosing for a target by
minimum inter-robot distance rm

In the last experiments, minimum inter-robot distance rm
which controls mode transition is fixed as 0.5 a priori. When at
least 1 agent is inside the corresponding circular region defined by
rm, the agent tries to change its mode into target selecting mode.
Consequently, more targets can be enclosed. However, if rm is too
large, agents continuously switch their target so that the number
of agents who are engaged in enclosing mode could be too much
decreased. Therefore, in this section we conduct an experiment to
show the effect of rm on environment with 2 targets.

In this experiment, 150 agents are adopted and they try to
enclose 2 randomly set targets in 40×40 region. r̄ is set to be 4,
rm is changed from 0.01 to 2.0. 200 trials are executed for each rm
and its fundamental statistic is obtained from the trials. The result
is shown in Fig. 13. ‘‘◦’’ represents the number of agents per target.
‘‘+’’ indicates the number of agents who do not join any orbit to
enclose. ‘‘�’’ shows the difference of agents between the 2 targets.

When rm is small like 0.01 the number of robots with enclosing
mode per target is just smaller than 0.5 and the difference between
the number of agents around the 2 targets is almost 0. It suggests
each target is enclosed by nearly half of them equally. As rm
increases as 0.1 thenumber of agentswith enclosingmode could be
decreased because they leave its target early. Actually, the number
of agents with enclosing of rm = 0.1 is 33% (=50 agents). On
the other hand, the difference of enclosing agents between the 2
targets is still very small. This suggests the number of agents who
enclose the targets get smaller but the both targets are enclosed by
equally same number of agents.

This is an interesting behavior. For example, 50 agents (33%) in
average enclose a target when rm is 0.1. The length of the enclosure
orbit is about 25.1 = 2π r̄ . Simply speaking, up to about 250 agents
(=2π r̄/rm) can enclose a same target simultaneously. As the line
with ‘‘�’’ in Fig. 13 indicates, the algorithm can provide a balanced
assignment in spite of the values of rm. Therefore, in the condition
with 2 targets, if rm < 0.335 u 2π r̄/(n/2), the half of agents can
enclose each target. However, there are only 50 agents for each
target and 50 robots are in target selecting mode. The reason for
this gap is pointed by the nonlinearity of the number of robots in
target selecting mode which is depicted by ‘‘+’’ mark in this figure.
Though a further, theoretically rigorous study is required to discuss
the details, we suppose that plural agents in target selecting mode
try to join a same orbit to enclose simultaneously so thatmore than
excessive agents in enclosure mode switch into target selecting
mode.

Herewe summarize this section.Minimum inter-robot distance
rm changes the number of agents per target. The proposed algo-
rithm can achieve a balanced assignment for 2 targets for any rm.
The number of agents in target selecting mode is changed nonlin-
ear. It is important to control the number of agents in target select-
ing mode to enclosure by a large group of agents.

As we denoted before, minimum inter-robot distance rm is re-
stricted by the safety capability of robot. If rm can bemade smaller,
it is possible that a target is enclosed by many robots. However, if
rm has to be large enough for the safety reasons, the target enclo-
sure by a large number of robot is difficult.

5.4. The effect of noise when movement

Next, the enclosing performance under noise is evaluated. A
robotic system is exposed to a variety of noises. We discuss some
fundamental noises, namely, the noise frommovement and that is
generated in the observation of neighbors.

First, the effect of noise in movement is discussed. The actual
speed v′

i includes noise which is proportional to vi in Eq. (1) is as
follows.

v′

i = vi(1 + GaussianNoise(0, 1) · knr) (22)

where GaussianNoise(0, 1) is gaussian noise of which average is 0
and standard deviation is 1. knr is a constant parameter that decides
magnitude of noise.

50 agents try to enclose 2 targets with a variety of knr . An
experiment with each knr is repeated 200 times. We evaluate
average performance for each knr . The parameters are set to, r̄ = 4.
rm = 0.5. The number of agents per target is counted. Fig. 14 shows
the counting method. All experiments above the number of agents
inside the smaller donut like region (mergin = 0.1) are counted
for agents enclosing a target. In this section, we count them by the
larger one simultaneously of which width ismergin = 0.5.

Fig. 15 shows the result. The x axis shows knr and the y axis
represents the number of agents enclosing per target. As the
magnitude of noise knr increases, the number of agents in the
smaller region mergin = 0.1 falls quickly. On the other hand, the
number of agent in the wider region does not descend so much. It
suggests that the orbit to enclose is expanding.

By this experiment, agents cannot realize the theoretical orbit of
r̄ to enclose because their speed is different from the one calculated
from Eq. (1) because of the noise. However, they can still enclose a
target with slightly wider orbit than r̄ .
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Fig. 14. The evaluation of the number of agents enclosing a target.

Fig. 15. The effect of noise when movement (pet = 0.01, rm = 0.5).

Fig. 16. The effect of noise in the observation of neighbors (pet = 0.01, rm = 0.5).

5.5. The effect of noise in observation on neighbor agents

In this section, the effect of noise in observation of neighbor
agents is verified. In this algorithm agents have to know its nearest
Fig. 17. Multiple target enclosure (in this figure, the number of target nt = 20).

Fig. 18. Summary of the number of robots per target.

agent. We suppose a measurement of distance to a neighboring
agent includes a gaussian noise. The measurement result of
distance between agents Pi and Pj is as follows.

|Pi − Pj| + GaussianNoise(0, 1) · kns (23)

where kns means the magnitude of noise. Each agent selects its
nearest agent by using the result from this measurement.

As the last experiment, a single trial in which 50 agents try to
enclose 2 targets is repeated 200 times for each kns. The number of
agents enclosing a target is counted.

Fig. 16 shows the result. The x-axis represents themagnitude of
noise kns and the y-axis indicates the number of agents enclosing
a target. As the magnitude of noise increases, the number of
agents enclosing a target in the both regions is decreasing but the
degradation is very smaller compared with the last experiment.
The noise is not small and thus an agent sometimes fails to select
the nearest. Therefore, we suppose that duration of selecting a
correct nearest robot is much longer than that of choosing wrong
agents.

By this experiment, we demonstrated that the noise in themea-
surement of distance has only a small effect on the performance of
the enclosure.
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Fig. 19. The target locations and the number of robotswhich they are enclosed (the
number of target nt = 5).

5.6. More than 2 targets

In this section, conditions with more than 2 targets are exam-
ined. The conditions to achieve a balanced enclosure for 2 targets
are revealed by a series of computer simulations. Here a large num-
ber of agents try to enclose more than 2 targets. Each agent selects
a new target randomly from the remaining targets.

Fig. 17 illustrates the experiment setting. A bunch of targets
is deployed at random in 80 ×80 field. The number of targets is
nt = {5, 7, 9, 11, 13, 15, 20}. The number of agents is 200. r̄ = 4,
rm = 0.5, pet = 0.01. They approach this field from the upper
right corner indicated by the arrowmark. We count the number of
agents enclosing each target.

Fig. 18 shows the result. Each point on the graph is an average of
400 trials. ‘‘+’’ mark represents the average of the number of agents
enclosing per target, ‘‘◦’’ mark shows its standard deviation. ‘‘�’’
indicates the number of agents in target selecting mode.

When the number of the target is small as nt = 5, each target is
enclosed by average of about 17 agents and its deviation is 3 agents.
Also, over 20 agents do not engage in enclosure. As the number
of target nt increases until nt = 9, the average of the number of
agents enclosing is also increasing and its deviation is also getting
small. After that, the average and standard deviation are becoming
worse as the number of targets increases further.

This trend that appeared with the increase of the number of
target nt is explained as follows. Figs. 19–21 show the number of
agents enclosing of all targets in 200 trials for each the number
of target nt = {5, 9, 15}. The diameter of each circle shows the
number of agents enclosing its target.

Fig. 19 shows the result of the number of target nt = 5. In spite
of any nt , initially, all of agents try to enclose a few targets around
the upper right corner. Therefore, a large portion of agents have
to change their target. Consequently, agents are spread all over the
field. 200 agents are enough for only 5 targets so that a lot of agents
continuously go round the targets. As a result, as Fig. 19 shows, the
number of robots enclosing target is equalized.

As nt is increasing from 5 to 9, the average of the number
of agents enclosing a target was also increased as Fig. 18 shows.
Fig. 20 shows the distribution of agents in nt = 9. The diameter
of circles in this figure are almost equal and larger than that of
Fig. 20. The target locations and the number of robotswhich they are enclosed (the
number of target nt = 9).

Fig. 21. The target locations and the number of robotswhich they are enclosed (the
number of target nt = 15).

nt = 5 represented by Fig. 19. It suggests that agents in nt = 5
give a target up prematurely by detection of congestion and there
are too many agents in target selecting mode. As nt increases, the
total number of agents in enclosing mode increases. This increase
phenomena is explained by the result of experiment Section 5.3
of minimum inter-robot distance rm. The increase of the number
of target nt makes the number of agents in target selecting mode
small so that it promotes the increase of the number of agents in
enclosure.

If the number of targets is increased to more than 11, there
are few robots in target selecting mode because almost of all
agents enclose targets around the upper right corner. Therefore,
the equalization by the agents weakens. As a result, as shown in
Fig. 21, the variation of the number of agents in enclosure between
targets around the corner and others is increased.
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By this experiment, we can say that the proposed algorithm can
enclose multiple targets by balanced assignment of agents if there
is enough number of agents and some portion of agents in target
selecting mode.

6. Conclusion

In this paper, an algorithm for robots to enclose multiple tar-
gets has been discussed. Robots do not know the exact number
of targets beforehand. Traditional target enclosure models have to
keep some predefined structures at every moment so that it is dif-
ficult to adopt the difference of the number of targets. Therefore,
first, a new condition of Takayama’s target enclosure algorithm is
discussed. In this condition, each robot encloses target with refer-
ence to its nearest neighbor and they do not have such predefined
constraints. This new condition is confirmed by switched system
theory and the series of computer simulation. There are fewmeth-
ods to analyze robotic network without assumption of connectiv-
ity. Our method presented here is not a generalized one for any
size of group but we show the possibility of switched system as a
new robotic network analysis method. Finally, the new target en-
closure algorithm is proposed which includes target selection be-
havior based on swarm robots fashion. The behavior of the robots is
totally confirmed by the computer simulation. We can say that the
proposed algorithm can enclose multiple targets by balanced as-
signment of agents if there is enough number of agents and some
portion of agents in target selecting mode.
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