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Control System Development Today



Problems

• The control engineer does not know what happens in the
implementation

• The software engineer does not understand the timing
requirements of the controller

• Control theory and real-time scheduling theory have
evolved as separate subjects during the past 30 years



A Classical Control System
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Process: Continuous dynamics

Controller: Continuous dynamics



A Computer-Controlled System

A/D Controller D/A Process

Computer

Task i+1

Task i−1

Controller:

• Discrete dynamics (control-theoretical view)

• Piece of code executing in an operating system, together
with other tasks (computer science view)



Embedded Control Systems

Many controllers are embedded in mass-market products.

Characteristics:

• Cheap, slow CPUs

• Limited memory

• Limited network bandwidth

Problems:

• CPU and network are shared resources which must be
scheduled

• Delay and jitter in the computer system degrade the
control performance



2. Contributions of the Thesis

More detailed controller scheduling analysis:

• Subtask scheduling of Calculate and Update

• Delay reduction gives better control performance

Introduction of feedback in the computing system:

• Cope with varying workload using feedback

• Control the CPU utilization using period rescaling

• Simulation case studies



Contributions, Cont’d

A novel computational model:

• The Control Server creates the abstraction of a real-time
control component with predictable performance

• Control components may be composed into more complex
components

• Implemented in the STORK public domain RTOS

New analysis tools:

• Understanding of what happens when a controller is
implemented and scheduled as a real-time task

• Jitterbug – performance analysis with varying delays

• TrueTime – co-simulation of real-time control systems



3. Subtask Scheduling

Typical implementation of a control task:

LOOP

Read input;

Calculate output;

Write output;

Update state;

Wait until next period;

END

Basic idea: Schedule Calculate and Update as separate tasks
to reduce the input-output latency.



Analysis
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• The deadline for Update equals the period

• The deadline for Calculate should be minimized

• Analysis under FP and EDF scheduling given



Simple Implementation

The analysis results in different priorities for Calculate and
Update:

SetPriority(P_CO);

LOOP

Read input;

Calculate output;

Write output;

SetPriority(P_US); // lower the priority

Update state;

SetPriority(P_CO); // raise the priority

Wait until next period;

END



4. Feedback Scheduling

Idea: Perform the scheduling design on-line to cope with
varying or unknown workloads

Control examples:

• Hybrid controllers

• Model-predictive controllers

Two problems:

• Control the CPU utilization

• Distribute the resources to optimize QoS



A Feedback Scheduling ArchitecturePSfrag replacements
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Control system analogy:

• Setpoint: desired CPU utilization

• Measurement signal: execution time of control tasks

• Control signal: sampling period of control tasks

• Feedforward from controller mode changes



5. The Control Server

Combination of two ideas:

• Reserve a given fraction of the CPU to each control task

• Let the kernel handle all I/O (; no jitter)

CPU reservation can be performed by Constant Bandwidth
Servers (CBSs) [Abeni and Buttazzo, 1998]:
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Features

The Control Server provides

• isolation between unrelated tasks

• minimal jitter

• short and predictable input-output latency

• a simple interface between control design and real-time
design – the task utilization factor U

• a possibility to combine several tasks (components) into
a new task (component) with predictable control and real-
time behavior



The Model

A Control Server task is described by

• a CPU utilization factor, U

• a period, T

• a number of code segments, Si

PSfrag replacements

S1 S2

0 T
t

I O

• Static scheduling of inputs and outputs

• Dynamic scheduling of computations in-between



Real-Time Control Components
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6. Analysis Using Jitterbug

• MATLAB-based tool

• Analysis of mixed continuous/discrete-time linear systems
with jitter

• Timing model with random delays describes the execution
of the discrete systems

– models scheduling/network delays, lost samples, etc.

• The systems are driven by white noise

• A quadratic cost function is computed, e.g.,

J = lim
T→∞

1
T

∫ T

0
xT(t)Qx(t) dt



Example of a Jitterbug Model

Distributed control system:

Signal model: Execution model:
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Example of a Cost Function

Cost as a function of delay and jitter:
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7. Simulation Using TrueTime

• MATLAB/Simulink-based tool

• Offers a Kernel and a Network block

– Simulink S-functions written in C++



The Kernel Block

• Simulates a full, event-based real-time kernel

• Executes user-defined tasks and interrupt handlers

• Arbitrary user-defined scheduling policy

• Supports external interrupts

• Supports common real-time primitives (sleepUntil,
wait/notify, setPriority, etc.)

• More features: context switches, overrun handlers



Task Execution Model

1 2 3

Simulated execution time

Execution of user code

• Execution modeled by a sequence of segments

• The execution time of each segment is returned by the
code function (may be data-dependent, random, etc.)



Controller Implementation

Choices:

• C++ function (fast)

• Matlab function (medium)

• Simulink block diagram (slow)



Screenshot



8. Summary

Scheduling techniques tailored to control tasks:

• Subtask scheduling – reduce latency

• Feedback scheduling – handle CPU load variations

• The Control Server – real-time control components

Tools for analysis of control performance:

• Analysis using Jitterbug – linear systems

• Simulation using TrueTime – general systems



Download

Jitterbug:

http://www.control.lth.se/ ˜lincoln

TrueTime:

http://www.control.lth.se/ ˜dan


