LUCAS

Integrated Control and Real-Time Scheduling

Anton Cervin

Department of Automatic Control
Lund Institute of Technology

Supervisor: Karl-Erik Arzén
Research project sponsored by ARTES/SSF

© N o Ok wWDhPE

Background

Overview of contributions
Subtask scheduling
Feedback scheduling

The Control Server
Analysis using Jitterbug
Simulation using TrueTime
Summary

@ Control System Development Today
LUCAS

Control Department Software Department
Requirements ‘ Functional Test \

Control Unit/Structural Test

Algorithm Design Design

— plant/algorithm
models /

Software Design

e The control engineer does not know what happens in the
Implementation

e The software engineer does not understand the timing
requirements of the controller

e Control theory and real-time scheduling theory have
evolved as separate subjects during the past 30 years

\ A Classical Control System

LUCAS
Reference
> Control Output
-
Controller Process o
Feedback

Process: Continuous dynamics

Controller: Continuous dynamics

@ A Computer-Controlled System

LUCAS
Computer

—= A/D | Controller —={ D/A —®| Process o

Controller:

e Discrete dynamics (control-theoretical view)

* Piece of code executing in an operating system, together
with other tasks (computer science view)

@ Embedded Control Systems
LUCAS

Many controllers are embedded in mass-market products.
Characteristics:
 Cheap, slow CPUs

* Limited memory
e Limited network bandwidth

Problems:

e CPU and network are shared resources which must be
scheduled

* Delay and jitter in the computer system degrade the
control performance

2. Contributions of the Thesis

LUCAS

More detailed controller scheduling analysis:

e Subtask scheduling of Calculate and Update
e Delay reduction gives better control performance

Introduction of feedback in the computing system:

e Cope with varying workload using feedback
e Control the CPU utilization using period rescaling
e Simulation case studies

A novel computational model:

 The Control Server creates the abstraction of a real-time
control component with predictable performance

e Control components may be composed into more complex
components

e Implemented in the STORK public domain RTOS

New analysis tools:

« Understanding of what happens when a controller is
Implemented and scheduled as a real-time task

 Jitterbug — performance analysis with varying delays
e TrueTime — co-simulation of real-time control systems

Typical implementation of a control task:

LOOP
Read input;
Calculate output;
Write output;
Update state;

Wait until next period;
END

Basic idea: Schedule Calculate and Update as separate tasks
to reduce the input-output latency.

LUCAS
Update T | -7
(i Dys=T
Calculate | | | - ¢
0 Dco T

 The deadline for Update equals the period
 The deadline for Calculate should be minimized
* Analysis under FP and EDF scheduling given

@ Simple Implementation
LUCAS

The analysis results in different priorities for Calculate and
Update:

SetPriority(P_C0);
LOOP
Read input;
Calculate output;
Write output;
SetPriority(P_US); // lower the priority
Update state;
SetPriority(P_C0); // raise the priority
Wait until next period;
END

(@) 4. Feedback Scheduling

LUCAS

ldea: Perform the scheduling design on-line to cope with
varying or unknown workloads

Control examples:

e Hybrid controllers
* Model-predictive controllers

Two problems:

e Control the CPU utilization
 Distribute the resources to optimize QoS

@ A Feedback Scheduling Architecture

LUCAS

-

— | Feedback hi Control jobs C;

mode changes

—| Scheduler Tasks Dispatcher

Control system analogy:

o Setpoint: desired CPU utilization
 Measurement signal. execution time of control tasks

« Control signal: sampling period of control tasks
* Feedforward from controller mode changes

@ 5. The Control Server

LUCAS
Combination of two ideas:

 Reserve a given fraction of the CPU to each control task
e Let the kernel handle all /O (= no jitter)

CPU reservation can be performed by Constant Bandwidth
Servers (CBSs) [Abeni and Buttazzo, 1998]:.

CPU

U;=02) Uy=0.3

L
Us=0.5

The Control Server provides

* |solation between unrelated tasks
 minimal jitter
« short and predictable input-output latency

e a simple interface between control design and real-time
design — the task utilization factor U

e a possibility to combine several tasks (components) into
a new task (component) with predictable control and real-
time behavior

A Control Server task is described by

e a CPU utilization factor, U

a period, T

a number of code segments, S

| O
°

St S?

0 T

Static scheduling of inputs and outputs

Dynamic scheduling of computations in-between

@ Real-Time Control Components

LUCAS

br X
Dy @ b
PID
U
DD LS & AE
G £, O dhiiml—r () wb
2 PID1 Py

CascPID

@ 6. Analysis Using Jitterbug
LUCAS

e MATLAB-based tool

Analysis of mixed continuous/discrete-time linear systems
with jitter

Timing model with random delays describes the execution
of the discrete systems

— models scheduling/network delays, lost samples, etc.

The systems are driven by white noise

A quadratic cost function iIs computed, e.g.,

T
J = lim — / <7 (£)Qx(t) dt
0

T — o0 T

@ Example of a Jitterbug Model

LUCAS

Distributed control system:

Signal model: Execution model:
T1 Hi(2)

To\ 2 HQ(Z)

e Hs(2)

T1, T random delays with given probability density functions

—»Hs(2) [G(s) (—={H1i(2)

HZ(Z) g

@ Example of a Cost Function

LUCAS

Cost as a function of delay and jitter:

0,6_ ”‘
o

0.015 e 015
) ' R 0.01
0.01 0.005 0.005
0

Input—ouput jitter Jio

Average input-output latency L.

@ /. Simulation Using TrueTime
LUCAS

=md
schedule

TrueTirme Metveork

TrueTirne Fermel

TrueTirme Block Library 1.1
Copyright <) 2003 Dan Henriksson and Anton Cervin
Departreent of Automatic Contral, Lund University, Sweden
Flease direct questions and bug reports 1o treetimedcantral ith.ze

e MATLAB/SImulink-based tool
e Offers a Kernel and a Network block
— Simulink S-functions written in C++

e Simulates a full, event-based real-time kernel

e Executes user-defined tasks and interrupt handlers
« Arbitrary user-defined scheduling policy

e Supports external interrupts

e Supports common real-time primitives (sleepUntil,
wait/notify, setPriority, etc.)

e More features: context switches, overrun handlers

@ Task Execution Model

LUCAS

Execution of user code

N

LN @ §®

|
Simulated execution time

« Execution modeled by a sequence of segments

 The execution time of each segment is returned by the
code function (may be data-dependent, random, etc.)

Controller Implementation

LUCAS
Choices:
o C++ function (fast)
e Matlab function (medium)
o Simulink block diagram (slow)

Screenshot

LUCAS

(O—]
Clock Display : I -

i
[¥ e i1
[>—wise on o == N . mﬂr

s Fieference snd anild
Modge 2 o Renve Mode 3 R

{Actuator) { Sersor) —
{Controller)

U
| sl W snd 1 [—'-
E—* snd2 powE
Ricu Znd sricd] snd s L
s st

Metwork

MNocle 1
{ Interference) r—

| ny
an Lol REE I BE

RN (Lo

-0.5

o x

i1 I 0

0.0g 0.04 0.06 0.08 Time offset: 0

Scheduling techniques tailored to control tasks:

« Subtask scheduling — reduce latency
 Feedback scheduling — handle CPU load variations
e The Control Server — real-time control components

Tools for analysis of control performance:

« Analysis using Jitterbug — linear systems
o Simulation using TrueTime — general systems

e

Download

LUCAS

Jitterbug:

http://www.control.lth.se/ “lincoln

TrueTime:

http://www.control.lth.se/ “dan

