
Integrated Control and Real-Time Scheduling

Anton Cervin

Department of Automatic Control
Lund Institute of Technology

Supervisor: Karl-Erik Årzén
Research project sponsored by ARTES/SSF

Outline

1. Background

2. Overview of contributions

3. Subtask scheduling

4. Feedback scheduling

5. The Control Server

6. Analysis using Jitterbug

7. Simulation using TrueTime

8. Summary

Control System Development Today

Problems

• The control engineer does not know what happens in the
implementation

• The software engineer does not understand the timing
requirements of the controller

• Control theory and real-time scheduling theory have
evolved as separate subjects during the past 30 years

A Classical Control System

Controller Process
Control

Reference
Output

Feedback

Process: Continuous dynamics

Controller: Continuous dynamics

A Computer-Controlled System

A/D Controller D/A Process

Computer

Task i+1

Task i−1

Controller:

• Discrete dynamics (control-theoretical view)

• Piece of code executing in an operating system, together
with other tasks (computer science view)

Embedded Control Systems

Many controllers are embedded in mass-market products.

Characteristics:

• Cheap, slow CPUs

• Limited memory

• Limited network bandwidth

Problems:

• CPU and network are shared resources which must be
scheduled

• Delay and jitter in the computer system degrade the
control performance

2. Contributions of the Thesis

More detailed controller scheduling analysis:

• Subtask scheduling of Calculate and Update

• Delay reduction gives better control performance

Introduction of feedback in the computing system:

• Cope with varying workload using feedback

• Control the CPU utilization using period rescaling

• Simulation case studies

Contributions, Cont’d

A novel computational model:

• The Control Server creates the abstraction of a real-time
control component with predictable performance

• Control components may be composed into more complex
components

• Implemented in the STORK public domain RTOS

New analysis tools:

• Understanding of what happens when a controller is
implemented and scheduled as a real-time task

• Jitterbug – performance analysis with varying delays

• TrueTime – co-simulation of real-time control systems

3. Subtask Scheduling

Typical implementation of a control task:

LOOP

Read input;

Calculate output;

Write output;

Update state;

Wait until next period;

END

Basic idea: Schedule Calculate and Update as separate tasks
to reduce the input-output latency.

Analysis

PSfrag replacements

0

0

T

DUS=T

DCO

Calculate

Update

t

t

• The deadline for Update equals the period

• The deadline for Calculate should be minimized

• Analysis under FP and EDF scheduling given

Simple Implementation

The analysis results in different priorities for Calculate and
Update:

SetPriority(P_CO);

LOOP

Read input;

Calculate output;

Write output;

SetPriority(P_US); // lower the priority

Update state;

SetPriority(P_CO); // raise the priority

Wait until next period;

END

4. Feedback Scheduling

Idea: Perform the scheduling design on-line to cope with
varying or unknown workloads

Control examples:

• Hybrid controllers

• Model-predictive controllers

Two problems:

• Control the CPU utilization

• Distribute the resources to optimize QoS

A Feedback Scheduling ArchitecturePSfrag replacements

Usp hi

mode changes

jobs ciFeedback
Scheduler

Control
Tasks

Dispatcher

Control system analogy:

• Setpoint: desired CPU utilization

• Measurement signal: execution time of control tasks

• Control signal: sampling period of control tasks

• Feedforward from controller mode changes

5. The Control Server

Combination of two ideas:

• Reserve a given fraction of the CPU to each control task

• Let the kernel handle all I/O (; no jitter)

CPU reservation can be performed by Constant Bandwidth
Servers (CBSs) [Abeni and Buttazzo, 1998]:

PSfrag replacements U1=0.2 U2=0.3

U3=0.5

CPU

Features

The Control Server provides

• isolation between unrelated tasks

• minimal jitter

• short and predictable input-output latency

• a simple interface between control design and real-time
design – the task utilization factor U

• a possibility to combine several tasks (components) into
a new task (component) with predictable control and real-
time behavior

The Model

A Control Server task is described by

• a CPU utilization factor, U

• a period, T

• a number of code segments, Si

PSfrag replacements

S1 S2

0 T
t

I O

• Static scheduling of inputs and outputs

• Dynamic scheduling of computations in-between

Real-Time Control Components
PSfrag replacements

r

y
u

U

PID

PSfrag replacements

r
r r

y
y

y1

y2

u
uu

U

U/3
2U/3

PID1
PID2

CascPID

m

6. Analysis Using Jitterbug

• MATLAB-based tool

• Analysis of mixed continuous/discrete-time linear systems
with jitter

• Timing model with random delays describes the execution
of the discrete systems

– models scheduling/network delays, lost samples, etc.

• The systems are driven by white noise

• A quadratic cost function is computed, e.g.,

J = lim
T→∞

1
T

∫ T

0
xT(t)Qx(t) dt

Example of a Jitterbug Model

Distributed control system:

Signal model: Execution model:

PSfrag replacements

H1(z)
H1(z)

H2(z)
H2(z)

H3(z)

H3(z)

G(s)
1

2

3

τ1

τ2

τ1, τ2 random delays with given probability density functions

Example of a Cost Function

Cost as a function of delay and jitter:

0
0.005

0.01
0.015

0
0.005

0.01
0.015

0.4

0.5

0.6

0.7

0.8

0.9

1

Average input−output latency L
ioInput−ouput jitter J

io

C
os

t
J

 _

7. Simulation Using TrueTime

• MATLAB/Simulink-based tool

• Offers a Kernel and a Network block

– Simulink S-functions written in C++

The Kernel Block

• Simulates a full, event-based real-time kernel

• Executes user-defined tasks and interrupt handlers

• Arbitrary user-defined scheduling policy

• Supports external interrupts

• Supports common real-time primitives (sleepUntil,
wait/notify, setPriority, etc.)

• More features: context switches, overrun handlers

Task Execution Model

1 2 3

Simulated execution time

Execution of user code

• Execution modeled by a sequence of segments

• The execution time of each segment is returned by the
code function (may be data-dependent, random, etc.)

Controller Implementation

Choices:

• C++ function (fast)

• Matlab function (medium)

• Simulink block diagram (slow)

Screenshot

8. Summary

Scheduling techniques tailored to control tasks:

• Subtask scheduling – reduce latency

• Feedback scheduling – handle CPU load variations

• The Control Server – real-time control components

Tools for analysis of control performance:

• Analysis using Jitterbug – linear systems

• Simulation using TrueTime – general systems

Download

Jitterbug:

http://www.control.lth.se/ ˜lincoln

TrueTime:

http://www.control.lth.se/ ˜dan

