Robotics and Autonomous Systems 62 (2014) 214-228

journal homepage: www.elsevier.com/locate/robot

Contents lists available at ScienceDirect

]

[l |

>

=

;

o

2

E
i8R
i i

Robotics and Autonomous Systems

14

A hierarchical approach for primitive-based motion planning and

control of autonomous vehicles
David J. Grymin, Charles B. Neas, Mazen Farhood *

—
@ CrossMark

Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA 24061, United States

HIGHLIGHTS

We examine graph-based search methods for motion planning using motion primitives.
We develop a locally greedy algorithm and compare it to a version of Weighted A*.
Greedy algorithm is advantageous when utilizing large motion primitive libraries.

We develop a hybrid control technique for tracking concatenated motion primitives.
The approach is applied to a hovercraft subject to disturbances and uncertainties.

ARTICLE INFO

Article history:

Received 4 August 2012
Received in revised form

29 June 2013

Accepted 3 October 2013
Available online 18 October 2013

Keywords:

Motion planning
Heuristic search

Hybrid control
Time-varying systems
Linear matrix inequalities

ABSTRACT

A hierarchical approach for motion planning and control of nonlinear systems operating in obstacle envi-
ronments is presented. To reduce the computation time during the motion planning process, dynamically
feasible trajectories are generated in real-time through concatenation of pre-specified motion primitives.
The motion planning task is posed as a search over a directed graph, and the applicability of informed
graph search techniques is investigated. Specifically, we develop a locally greedy algorithm with effective
backtracking ability and compare this algorithm to weighted A* search. The greedy algorithm shows an
advantage with respect to solution cost and computation time when larger motion primitive libraries that
do not operate on a regular state lattice are utilized. Linearization of the nonlinear system equations about
the motion primitive library results in a hybrid linear time-varying model, and an optimal control algo-
rithm using the ¢,-induced norm as the performance measure is provided to ensure that the system tracks
the desired trajectory. The ability of the resulting controller to closely track the trajectory obtained from
the motion planner, despite various disturbances and uncertainties, is demonstrated through simulation.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Motion planning for unmanned vehicles involves developing
feasible trajectories through an obstacle field from a given initial
state to a desired goal state; see, for instance, [1,2]. By using a dis-
cretized set of feasible motion primitives, the problem of finding a
trajectory from the start to the goal becomes a graph search, a topic
that has received a wealth of attention in the literature. This paper
takes the approach of utilizing a set of pre-specified motion primi-
tives, i.e. state and control histories defined over finite (or semi-
infinite) time intervals, to generate, in real-time, collision-free
trajectories from start to goal via graph search methods. As for
the execution of the motion plan, the series of motion primitives
generated by the planner will correspond to a sequence of pre-
designed subcontrollers to be applied consecutively.

* Corresponding author. Tel.: +1 540 231 2983; fax: +1 540 231 9632.
E-mail address: farhood@vt.edu (M. Farhood).

0921-8890/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.robot.2013.10.003

The notion of constructing a solution from available trajectories
is a common approach for vehicle motion planning. Prior meth-
ods have used online optimization to determine the trajectory [3],
concatenating trim and maneuver trajectories to form a dynami-
cally feasible path from the start state to the goal. In certain sce-
narios, the solution of such an optimization problem may require
more computational effort than can be allotted to the planning
task. Deterministic and sampling-based searches over graphs are
two broad categories that have received considerable attention re-
lated to robot and vehicle trajectory planning in obstacle environ-
ments; a comprehensive review of motion planning with respect
to unmanned aerial vehicles is given in [4].

Deterministic graph search algorithms use knowledge obtained
during the search as well as prior knowledge of the environment
to work towards an optimal solution. A heuristic, or rule of thumb,
assists in determining the order of expansion during the search. For
vehicle motion planning problems, the cost-to-goal is a commonly
chosen heuristic. The A* algorithm, a complete and optimal algo-
rithm, uses the path cost to reach each node as well as the future
path cost estimate from the heuristic, and traverses the graph by

http://dx.doi.org/10.1016/j.robot.2013.10.003
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2013.10.003&domain=pdf
mailto:farhood@vt.edu
http://dx.doi.org/10.1016/j.robot.2013.10.003

D.J. Grymin et al. / Robotics and Autonomous Systems 62 (2014) 214-228 215

expanding nodes with the lowest total path cost. For vehicle mo-
tion planning, the length of the path to reach a node can be used
for path cost. In some applications, finding the optimal path may
become burdensome, and a suboptimal solution is accepted to re-
duce the computational load. Weighted A* (WA*) relaxes optimal-
ity by weighting the heuristic in relation to the cost-to-go, effec-
tively increasing the greediness of the algorithm, and is able to re-
turn solutions much faster with a bound on the suboptimal path
cost [5,1]. Recent work related to A* based search methods has fo-
cused on iteratively improving suboptimal trajectories towards the
minimum-cost path; see, for instance, the anytime search heuris-
tic developed in [6,7]. Anytime search attempts to quickly return
a feasible yet suboptimal path, and then improve upon this path
successively in the time allotted for planning. In [7], for example,
successive WA* searches are run with decreasing weight to achieve
the best possible path in the given time for computation.

In sampling-based planners, such as the probabilistic roadmap
(PRM) and rapidly-exploring random trees (RRTs), completeness
is probabilistic; a solution will be returned, should one exist, with
a probability converging to one as the number of samples tends
towards infinity [8,9]. In practice, the RRT algorithm in particular
is capable of returning a path to the goal fairly quickly, even in
high-dimensional search spaces and subject to differential vehicle
constraints. RRTs quickly examine unexplored regions of the state
space, and are able to find paths through complicated obstacle
fields with relative ease. The trade-off, however, is in the solution
quality, as the path is often erratic due to the random sampling
which drives the expansion. Additionally, Karaman and Frazzoli
showed that the probability of the RRT algorithm converging to
the optimal solution was zero. Their development of the RRT*
algorithm, however, provides conditions for asymptotic optimality
in addition to probabilistic completeness [10]. This algorithm
has since been extended to an anytime framework, in which an
initial solution is obtained quickly and then improved upon in the
remaining time allotted [11].

The representation of the input and search spaces is also a
factor in selecting the method to use. In [12], a discretized set of
control inputs was used to compute a path for nonholonomic ve-
hicles, with numerical integration performed during the planning
process. Graph search was then utilized over a partitioning of the
configuration space to determine a sequence of control inputs that
brought the vehicle from its initial position to a goal region. A sim-
ilar approach was taken by [13], with integration of control ac-
tions performed offline and stored for use with an online planner;
solutions were obtained by performing a search over a tree. Pre-
computed vehicle motions can also be developed that result in a
grid-based representation of the configuration space, referred to as
a state lattice. In this framework, the state lattice is represented as
a directed graph, with vertices corresponding to specific reachable
states of the vehicle and edges indicating the dynamically feasible
motions which connect the states exactly. Such a representation is
resolution complete, i.e. it is complete with respect to the resolu-
tion at which the lattice is generated [14,15].

It is important to note that when using pre-computed control
input and state histories, the ability of the vehicle to track the re-
sulting motion plan is subject to model accuracy. Unmodeled dy-
namics, parametric uncertainty, and exogenous disturbances may
result in deviations from the original motion plan during execu-
tion. In the work of Burridge et al., a sequence of pre-computed
feedback controllers is used to bring the system to a desired goal
state in the presence of disturbances and obstacles in the robot
workspace [16]. This framework has also been used for motion
planning using controllers valid over regions of the free space; the
vehicle is guided to the goal region by the sequence of controllers,
with no path explicitly determined [17,18].

The approach in this paper utilizes a distinct set of motion prim-
itives and entails performing a graph search to find an appropriate

dynamically feasible trajectory through an obstacle environment.
The set of motion primitives, hereafter referred to as a library, is de-
veloped offline. State and control histories for each motion prim-
itive can be obtained through a variety of methods, for instance,
by solving an optimization problem involving the nonlinear sys-
tem equations or by recording human operator control inputs. The
task of the motion planner is to then concatenate available mo-
tion primitives to find a trajectory from the initial state to the goal.
This approach eliminates the need to solve for dynamically feasi-
ble state and control histories online. As far as the motion plan-
ner is concerned, any dynamically feasible motion primitive can
be incorporated into the library. But, since these primitives can
be generated experimentally, it is important that the primitive be
within the state-space envelope where the derived mathematical
model constitutes a reasonably accurate description of the vehi-
cle dynamics. This requirement is imposed because the proposed
control approach is model-based, as discussed later. We examine
in this paper graph-based search techniques for motion planning,
where the graph does not represent a state lattice but rather ex-
hibits a tree structure, and the edges of the graph correspond to
pre-specified motion primitives. Specifically, we develop a locally
greedy algorithm with effective backtracking ability and compare
it to a version of weighted A* based on a tree search. Both algo-
rithms are applied in simulation to a hovercraft system and evalu-
ated in environments composed of known, randomly constructed
static obstacle fields. The greedy algorithm shows an advantage
with respect to solution cost and computation time when relatively
large motion primitive libraries with multiple velocities are uti-
lized.

In addition, the paper provides a hybrid control approach, with
the ¢,-induced norm as the performance measure, to ensure that
the system tracks the desired trajectory generated by the motion
planning algorithm despite various disturbances and uncertainties.
The hybrid systems of interest in this paper are composed of
linear time-varying (LTV) subsystems obtained from linearizing
the nonlinear system equations describing the vehicle dynamics
about the library of pre-specified primitives. The switching
between these subsystems and ultimately their corresponding
subcontrollers is dictated by the motion planning algorithm. The
synthesis solution is provided in terms of a semidefinite program,
and is based on the results of [19,20]. Related to this work is the
paper [21] which provides a hybrid dynamics framework for the
design of guaranteed safe switching regions using reachable sets.
The paper [22] also gives a control algorithm for maneuver-based
motion planning, which is robust to a certain class of perturbations.

The paper is organized as follows. Section 2 presents the de-
terministic search methods used in this paper. Section 3 provides
a control result for hybrid LTV systems. Section 4 gives a detailed
implementation of the motion planning and control methods on
a hovercraft system. This paper serves as an extension of the re-
sults presented in the conference paper [23], and provides addi-
tional details regarding the implementation of the methodology.
The intent of this paper, borrowing terminology from [4], is to pro-
vide a framework for sound motion planning, where the devised
plan guarantees a collision-free trajectory despite possible distur-
bances, measurement errors, and other uncertainties.

The notation is mostly standard. We denote the set of real n x m
matrices by R"*™, The adjoint of an operator X is written X*, and
we use X < 0 to mean it is negative definite. The normed space of
square summable vector-valued sequences is denoted by ¢,. It con-
sists of elements x = (Xg, X1, X2, ...), with each x, € R™ for some
ny, having a finite 2-norm ||x||¢, defined by X[}, = Y2, |x|?

< 00, where [x,|? = X}xy.

216 DJ. Grymin et al. / Robotics and Autonomous Systems 62 (2014) 214-228

2. Motion planning with a primitive library

The search algorithms in this work make use of a library of pre-
specified motion primitives. In [3], motion primitives are defined
as state and control trajectories that encompass two classes: trim
trajectories and maneuvers. The trim trajectories are composed
solely of steady-state motions, whereas (transition) maneuvers
are trajectories that begin and end at steady-state conditions.
In general, a motion primitive can be any dynamically feasible
trajectory, namely a state history and a corresponding control
input that satisfy the nonlinear system equations over a finite or
a semi-infinite time interval. For graph search purposes, the trim
trajectories in our paper, i.e. state and control histories defined
over semi-infinite time intervals, will be applied over a pre-
specified number of time steps when building the search graph.
With this stated, henceforth a distinction will not be made between
trim and transition trajectories, and both will be referred to as
motion primitives. There are two assumptions necessary for the
approach presented. First, we assume that the motion primitives
possess translational and rotational symmetry. This allows the
motion planning algorithms to concatenate state and control
histories during the search process. The second assumption is that
the operational environment is bounded, i.e. the configuration
space of the vehicle is reasonably constrained in size.

It is permissible to connect a primitive to another only when
the final state of the first primitive coincides with (or at least is
“very close” to) the initial state of the second one after performing
the appropriate translation in position. For certain applications,
it may also be necessary to ensure that the motion primitive
control input histories are “compatible” across primitives, e.g. any
rate limit placed on the input is respected in transitions between
connectable primitives. The set of states reachable from the start
node by some sequence of library primitives can be represented
by a directed graph, where the vertices of the graph correspond to
the reachable states and the edges indicate the motion primitives
which connect the states. The expansion of nodes using this graph
ultimately leads to a dynamically feasible solution path. In certain
cases, where the primitives are carefully chosen, the graph may
represent a regular state lattice, as given in [15], and consequently,
the A* algorithm and its variants can be applied using a lattice-
based search. However, for certain systems such as a six degree-of-
freedom aircraft, we may want to incorporate a number of desired
motion primitives into the library, which may render the task of
developing a regular state lattice difficult. Specifically, requiring
regularity in translational coordinates of lattice primitives will
impose additional constraints on the boundary conditions when
determining dynamically feasible state and control histories. Thus,
it is worthwhile to study graph-based search techniques, where
the graph does not represent a state lattice but rather exhibits
a tree structure. For this reason, a version of WA* based on tree
search is provided, in addition to an alternative algorithm where
the expansion is driven by greedy behavior.

2.1. Weighted A* search

In A¥, each node in the graph has three values associated with
it: the cost-to-go, g(n), the estimated cost-to-goal, h(n), and the
estimated total path cost, f(n) = g(n) + h(n). Note that to retain
the guarantee of returning a minimum cost path, the heuristic
used in A* searches must be both admissible and consistent.
Admissibility requires that the heuristic never overestimates the
actual cost-to-goal. A heuristic is consistent if for any nodes n
and n’, h(n) < h(n') + c(n,n’), where c(n, n’) is the edge cost
between n and n’. The search is initiated from the start node and
any valid (collision-free) successors are added to the queue of open
nodes, ¢, and the start node is added to the closed set, C. This

addition of nodes is referred to as expansion. The search progresses
by choosing the node in @ with the lowest total path cost, f(n),
expanding this node and placing it in G, and adding any valid
successors to . This process continues iteratively until a node that
reaches the goal state, or criteria, is found. A* returns the minimum
cost path, should one exist, while expanding the fewest number of
nodes necessary to do so [24,1]. A relaxation of A*, developed to
reduce the computational effort in the search process, is weighted
A*. The optimality requirement of A* is relaxed by computing the
estimated total path cost as f(n) = g(n) + (1 4+ €)h(n), where
€ > 0 is the weighting factor. The result of this weighting is
goal-driven expansion, settling for suboptimal paths that expand
towards the goal state faster [25]. The worst-case path returned
by the algorithm is (1 + €)f*(ngoa), where f*(ng.q) is the cost of
the minimum-cost path. Further information on WA* searches is
contained in [26].

We now describe the WA* implementation used in this work.
Given alibrary of N primitives, we define thesetP = {1, 2, ..., N},
where each element in P refers to a specific primitive in the library.
Let the transition between states be denoted as x(n") = F(x(n), p),
where x(n) € X and p € P, with X C R™ denoting the set of
states reachable from the start node by some sequence of library
primitives. Let X, denote the obstacle space, Xf = X \ Xo the
obstacle-free space, and X; C X the goal region which is basically
a user-defined neighborhood about the goal state. The motion
planning problem is then to find a sequence of primitives p; € P,
wherei = 1,2, ..., D for some positive integer D, that gives an
obstacle-free path x from initial state x(1) = Xjitigg to x(D + 1) €
Xc, where x(i + 1) = F(x(i), p;). The integer D will then denote
the depth of the solution path in the tree. Expansion is governed
during WA* search by the value of the total path cost at each node,
f(n). The child node of n, denoted as n’, will have a path length
g(n") = g(n) 4+ c(n, n"), where c(n, n’) is the cost associated with
the primitive to reach n’ from n, determined during generation of
the primitive library. During motion planning, the algorithm will
build and maintain a tree & = (V, E), where V represents the
vertices of the tree in Xr and E the directed edges between vertices;
each directed edge corresponds to the motion primitive necessary
to transition between the associated vertices.

There are several basic functions used during the operation
of the algorithm, which we now describe briefly. The function
GetSuccesors(n, p) applies the motion primitive p € P.(n)
to n to generate a candidate node n’, where P.(n) is the set of
primitives that are compatible with the state x(n). The function
CollisionFree(n, p) performs collision detection along primi-
tive p starting from x(n) and terminating at x(n’). If a collision is
detected, then n’ is discarded. Otherwise, the function returns n’
as a valid candidate expansion node and also returns its heuris-
tic cost h(n’). The implementation of collision detection used in
this work considers only convex obstacle shapes, in particular rect-
angles defined by a base, height, and orientation angle. Obsta-
cles are permitted to overlap, allowing for nonconvex regions of
Xo. The collision detection as implemented is O(N.pxnops) in time
complexity, where N; is the number of compatible motion primi-
tives, py the number of positions along each motion primitive that
are checked for collision, and n,,s the number of rectangular ob-
stacles. The function InTree(n’, 7) searches over the nodes in
the tree to find those nodes, denoted n; and referred to as du-
plicates, which lie within an ellipsoid, &;, centered about x(n’).
A similar approach was proposed by Barraquand and Latombe,
however a pre-determined cell representation of the configura-
tion space was utilized instead [12]. The choice of ellipsoid size
is analogous to the choice of cell size when partitioning the con-
figuration space; smaller &; size values correspond to a finer res-
olution of the configuration space, and may therefore incur an
increase in solution time due to a larger search tree size. The

D.J. Grymin et al. / Robotics and Autonomous Systems 62 (2014) 214-228 217

Algorithm 1 Weighted A*

1. T <« AddNode(—, Nstart » T, _)

2: O < Ngare, N <— Ngare

3: while x(n) ¢ X;or O # () do

4 forp € P.(n) do

5: n’ < getSuccessors(n, p)

6: if depth(n’) < Dy, then

7: if CollisionFree(n, p) then
8 ng < InTree(n’, T, &)
9: if ny # ¢ then

10: if g(ng) < g(n’) then

11: n’ not added to T

12: else

13: T < AddNode(n, n’, 7, p)
14: C < Descendants(ng)
15: O <«~n

16: else

17: T <« AddNode(n,n’, 7, p)

18: O«

19: C <«n

20: n < min(f(0))

21: return 7

InTree function is O(nyN:ny) in time complexity, where ns
is the number of nodes in the search tree, N, the number of
compatible motion primitives, and n,. the number of dimensions
considered for a node to be a duplicate. Descendants(ng) tra-
verses through the tree to find any nodes that were expanded
from ny and place them in the closed set if necessary. When a
valid candidate is chosen for addition to the tree, the function
AddNode(n, n’, 7, p) inserts node n’ to the tree, creates an edge
from n to n’ storing the associated primitive p, and assigns a cost
associated with this node. In WA* searches, f(n') = g(n’) + (1 +
e)h(n’), where g(n) = g(n) + c(n,n’) and h(n’) is the heuris-
tic cost at the new node. The WA* algorithm is resolution com-
plete with respect to the finite set of motion primitives utilized,
as discussed in [15], contingent on the size of the ellipsoid cho-
sen for duplicate node detection as well as the maximum allowed
search depth; this will be clearly illustrated towards the end of the
section.

The WA* search, given in Algorithm 1, operates as follows. The
search tree 7 isinitialized and ngy,, the initial node, is added to the
tree and also placed in @ (Lines 1-2). While the state of the current
node selected is not within the goal region, X;, and the open list @
is not empty, the algorithm will iterate over the while loop. The
current node is set as n. Then, for any primitive p € P.(n), the
successor n’ from n is obtained by applying the motion primitive
p (Line 5). If the depth of the successor nodes is greater than the
maximum allowed search depth, the successors will not be added
to the tree (Line 6). The algorithm then checks to see if a collision
occurs along the primitive p starting from state x(n) (Line 7). If no
collision occurs, the algorithm will proceed to check if there are
nodes in the search tree that lie within some ellipsoid centered
about the candidate successor (Line 8). If this is the case and so
there are already “duplicate” nodes ny in the search tree (Line 9),
the cost-to-go of the candidate and duplicates are compared. If
g(n") > g(ny),n’ will not be added to the search tree (Lines 10-11).
Conversely, if g(n') < g(ny), any descendants of ng in the open
set will be moved to the closed set € and no longer considered for
expansion; in addition, n’ will be added to the tree and placed in the
open set O (Lines 13-15). If no nodes are returned during the check
for duplicates, the candidate node is added to the tree and placed
in the open set (Lines 17-18). The current node is then placed in
the closed list, G, as all successors have been expanded (Line 19).
The algorithm proceeds by choosing the node in the open set with

the lowest total path cost, f(n), as the next node for expansion
(Line 20). The algorithm terminates when it has expanded a node
within the goal region (returns the tree) or there are no more nodes
remaining in the open set (returns failure).

Remark 1. It is important to elaborate on Line 14 in Algorithm 1.
The basic idea is that we want to get rid of duplicate nodes up to
a certain tolerance; otherwise, the search may become exhaustive
and in some cases even formidable. If we choose the tolerance to
be very small, then the current node can probably inherit the de-
scendants of the duplicate with higher cost-to-go without causing
significant gaps or discontinuities in the returned trajectory. How-
ever, this may lead to scenarios where we have many nodes in the
open queue that are “close” to each other with respect to their lo-
cation within the configuration space, which would increase the
computational cost of the algorithm. On the other hand, choosing
the tolerance to be relatively large may result in trajectories with
gaps, which could prove challenging to track in some agile vehi-
cle applications. In our case, we judiciously choose the tolerance to
reduce the number of nodes close to each other in the open set; in
addition, to avoid gaps in the returned trajectory, we move all de-
scendants of a duplicate node with a higher cost-to-go, along with
the duplicate node itself, to the closed set. This issue does not arise
when the graph represents a state lattice, in which case the dupli-
cate nodes will match exactly, and so we simply update the parent
node and the path cost of the descendants.

2.2. Greedy and impatient algorithm

A disadvantage of using WA* on a search tree employing the
aforementioned approach occurs when updating the tree to re-
flect a lower cost path to within an ellipsoid of a particular node
in the state space. As any descendants from the higher cost node
are moved from the open list to the closed list (Algorithm 1, Line
14), computational effort expanding nodes along the higher cost
path has essentially been wasted. For this reason, we examine the
application of a greedy algorithm that uses a local priority queue
and quickly abandons paths deemed unfit. The intent of the algo-
rithm is to add fewer nodes into the search space, thus decreasing
the number of nodes that must be examined for potential dupli-
cates. We will henceforth refer to this algorithm as the greedy and
impatient (GI) algorithm.

Expansion is governed by the incremental cost-to-go, c(n, n’),
and the heuristic of potential successors, h(n’). The only nodes
considered for addition to the tree are the potential successors to
the current node, i.e. with a library of N total primitives, the algo-
rithm will have at most N candidates when deciding which node
to add to the tree. It should be noted that at each iteration, the
GI algorithm adds a single node to the search tree; this is a sub-
tle, yet significant, difference from WA* where all valid successors
are added to the tree. The inclusion of the incremental cost-to-go
allows certain primitives to be penalized, if desired, by adjusting
the relative cost between primitives. For a truly greedy algorithm,
however, this cost would be neglected. Greedy algorithms will
commit to what appear to be promising paths early on in the
search, a behavior that can be problematic in complex obstacle en-
vironments; the “impatience” of the algorithm is therefore added
to overcome this possible downfall. Specifically, if the estimated
heuristic cost of the best successor node, 1/, is greater than that
of the current node, n, i.e. h(n') > h(n), the algorithm will be-
come impatient and backtrack to a “watch node”. Backtracking
to a watch node also occurs when a node has no valid succes-
sors, i.e. all primitives applied at this node lead to a collision with
an obstacle. The concept of using watch nodes is adopted from
[27,23], however the conditions for setting a watch node and the

218 DJ. Grymin et al. / Robotics and Autonomous Systems 62 (2014) 214-228

Algorithm 2 Greedy & Impatient Algorithm

1: T < AddNode(—, Ngqrr, T, —)
2: O <= Ngape, N <= Neare

3: while x(n) ¢ Xcor @ # () do

4 forp € P.(n) do

5: n, < GetSuccessors(n, p)
6: if depth(n,) < D then

7: if CollisionFree(n, n,) then
8 qn) < np

9 if q(n) # ¢ then

10: n’ = argmin{h(n;) + c(n, n.) | ne € q(n)}
11: T < AddNode(n,n’, 7, p)
12: O «~n

13: watch(n’) < watch(n)

14: if h(n") > h(n) then

15: n < watch(n)

16: Continue while loop

17: else

18: Ah(n') = h(n') — h(n)

19: Ah(n) = h(n) — h(Nparent)
20: if Ah(n") < Ah(n) then
21: watch(n’) < n

22: n<n

23: else

24: C<«<n

25: if n = nyy then

26: n < min(f (0))

27: else

28: n < watch(n)

29: return 7

overall algorithm structure differ in our case. The watch nodes pin-
point where along the current search path specific greedy behavior
has occurred. Namely, a node n is a watch node if h(n") — h(n) <
h(n) — h(nparen:), where n" and npgren; are the successor and pre-
decessor (parent) of n, respectively. In a physical sense, a watch
node corresponds to a location in the configuration space along
the current path where the algorithm selects a node for expansion
that decreases the heuristic by an amount more than the decrease
in heuristic resulting from the preceding motion primitive. Since
there may exist other successors from the watch node that also
lead to a decrease in the heuristic function, the algorithm indicates
that the watch node should be re-examined if backtracking occurs
later in the search along the current path.

The notation and the functions used in the algorithm operation
are the same as those used for WA*, with a few notable exceptions.
If a candidate node, ', is found to be a duplicate of a node, say
ng, already within the search tree, then n’ will be discarded if
g(n’) > g(ng). The reason is that ny corresponds to a location in
the configuration space already in the search tree. Permitting n’ to
be added to the tree may result in repeatedly visiting an area of the
configuration space, and consequently unbounded growth of the
search tree. Specifically, when nodes are checked for collision in
the Gl algorithm, the InTree check s also performed. If a potential
successor is found to be a duplicate of a node already existing in the
search tree and has a higher cost-to-go than the node already in the
tree, then this potential successor will be treated the same as if the
associated primitive led to a collision with an obstacle.

The GI algorithm is given in Algorithm 2. The algorithm begins
by creating the search tree, 7, adding the start node, ngyq:, to
the tree and placing it in the open set, and setting the start node
as the current node (Lines 1-2). As in the WA* implementation,
while the current node is not within the goal region and there
are nodes remaining in the open set, the algorithm iterates over
a loop (Line 3). For any primitive p € P.(n), the successor n, is

obtained and its depth in the tree is checked to ensure that it does
not exceed Dy,qx (Lines 4-6). The successor 1, along with the path
from n to n,, is then checked for collision with obstacles. If the path
is collision free, n, is added to the local priority queue, denoted
q(n) (Lines 7-8). If q(n) is nonempty, i.e. node n has collision-
free successors, the algorithm chooses the successor, denoted 1/,
with the minimum sum of heuristic and incremental cost (Lines
9-10). The successor n’ is then added to the tree and placed in
the open list (Lines 11-12). The watch node of n is also set to be
the watch node of n’. The algorithm then compares the heuristic
of n’ to that of n. If h(n) > h(n), the algorithm backtracks to
the watch node associated with n (Lines 14-16). Otherwise, the
change in heuristic value between the current node, n, and the
added successor n’ and between the parent of the current node,
Nparent, and n are computed (Lines 18-19). If h(n") — h(n) < h(n) —
h(npgrent), the watch node of n’ becomes n (Lines 20-21). n’ then
becomes the current node, and the iteration continues (Line 22).
If a node has no successors in g(n) due to collisions with obstacles
(or running into duplicates), or all compatible primitives have been
expanded unsuccessfully, the algorithm moves n to the closed set
C (Line 24). If n is the start node, the node in the open set with the
lowest total path cost is chosen for expansion (Line 26); otherwise,
the algorithm backtracks to the watch node of n (Line 28). The
algorithm terminates when no nodes remain in the open set, or
anode is expanded in the goal region, X, in which case the search
tree, 7, is returned.

Before proceeding, it is necessary to provide some commentary
regarding the GI algorithm. As stated in the algorithm, a node
is only removed from the open set after all primitives from the
node have been expanded; it is permissible to therefore revisit
any node a finite number of times, equal to the number of
compatible motion primitives at the node. To avoid redundant
computations, each node has a list associated with it that indicates
which primitives have been expanded previously in the search
process. The heuristic cost of successors, which will also indicate
collision with an obstacle, is stored for each open node as well.
Thus when revisiting a node during the search, the algorithm only
needs to check whether the remaining available successors are
potential duplicate nodes. Though in its worst-case behavior the
algorithm resorts to a brute force search over all possible primitives
at each reachable node, backtracking to the start node can occur
quickly during the search process. This happens, for example, when
the vehicle is initially oriented away from the goal state and all
primitives lead to an increase in heuristic value. In this scenario,
each primitive will initially trigger the backtracking condition and
the algorithm will then expand the higher heuristic cost nodes
until a path with a decreasing heuristic is possible. The algorithm
therefore allows for the heuristic to increase along the resulting
path, but only in the event that the algorithm finds it necessary to
do so. It should be noted that although the GI algorithm resorts to a
WA* approach when returning to the start node via backtracking,
there is no theoretically established upper bound on the path cost
in this case.

Theorem 1. If X; is reachable from x(1) using a finite sequence of
motion primitives, then both algorithms will find a path from the start
node provided that & is set small enough, and D, large enough.

Proof. The proof follows from that for Claim 1 in Barraquand
and Latombe [12]. Let 7, € Xr be the infinite tree obtained by
recursively applying all motion primitives from the start node that
generate collision free successors. Thus T, denotes all reachable
state space configurations in the obstacle-free space. Since the goal
region, X, is reachable from the initial state, we denote x(D+ 1) €
Xc as the reachable state within the goal region at depth D in 7.
Let 7p,,,, then be a finite subtree of 7, with depth Dp,qx > D. This
implies that 7p,,,, contains a collision-free path from the start node

D.J. Grymin et al. / Robotics and Autonomous Systems 62 (2014) 214-228 219

to the goal region. By choosing &; small enough, it can be ensured
that for any node, n, along the path from x(1) to x(D + 1), all other
nodes with state space locations within &; of x(1) have a cost-to-go
which is greater than the cost-to-go of node n. Thus no nodes along
the solution path will be removed from 7p,,,.. The algorithms will
then be guaranteed to find a path connecting the start node to a
node within the goal region, X;. Further, since the search tree is
finite, the search will terminate in finite time. M

Asin[12], the above proofiis not constructive, and thus there are
several implications of Theorem 1. When using a motion primitive
library constructed over a state lattice, the size of &; can be set
arbitrarily small, since all primitives will reach the state space
location of other nodes in the tree exactly. Further, if the search
space is confined to a finite region of the configuration space, the
maximum depth, Dy, can be set arbitrarily high. By admitting
only nodes with a lower cost-to-go at a location in the state space,
the algorithms prevent the tree from infinite growth (repeatedly
visiting areas of the state space).

For motion primitive libraries that are not generated over a
state lattice, the choice of &; and D,,,, may have more severe
consequences. Specifically, if the algorithm terminates and returns
a failure to find a path to the goal, either the size of &; was too
large, Dy,qx Was too small, or there is not a solution to the problem.
Consider, for example, a set of obstacles through which there is
a unique path from the start to goal, defined by the sequence of
primitives {p1,...,Pn-1,...,Pp}, Where x(1) is the start node,
x(n) some point in the state space along the path,and x(D+1) € X¢.
Let {p1, ..., pm—1} be the sequence of motion primitives for some
other subpath to node m, where x(n) lies within an ellipsoid &;
centered about x(m). Further, let g(m) < g(n), i.e. the cost-to-go to
reach x(m) is less than the cost-to-go for x(n). In this scenario the
node n and its descendants (the path to the goal region) would be
discarded, and the node m retained instead. Since the path passing
through n is the only path from the start node to the goal region,
there is no path from m to the goal. Thus the planners would return
that there is no solution when clearly this is not the case. Some
smaller choice of &;, however, would retain node n in the search
tree.

Remark 2. Unlike best-first searches such as A* and its variants,
greedy search does not provide an upper bound on the total
path cost in general [24,5,28,29]. Greedy search does, however,
have several advantages over best-first searches in some problem
domains. Due to the fact that all successors of a node are
placed in the search tree, best-first search techniques may require
substantial amounts of memory. The set of open nodes must be
searched and sorted to determine the next node for expansion. On
the other hand, in locally greedy search, there is only one active
node and a potentially shorter list to sort when choosing the next
node in the iteration. Thus, the computation required to choose the
next node for expansion at each iteration scales linearly with the
number of successors available (which is at most the size of the
primitive library in our case).

3. Hybrid LTV control

As aforementioned, the desired state and corresponding con-
trol trajectories will be generated in real-time using a library of
pre-specified motion primitives. This section gives a systematic op-
timal algorithm, using the ¢,-induced norm as the performance
measure, for the control of nonlinear systems about such trajec-
tories.

Consider the problem of designing a feedback controller to
some vehicle. The closed-loop system is shown in Fig. 1, where
w and z denote the exogenous disturbances and errors to be
controlled, respectively, and y denotes the measurements and u the

Z w
G
y u
= K

Fig. 1. Closed-loop system, where G is the plant and K the feedback controller,
with w, z, y, and u denoting the exogenous disturbances, errors to be controlled,
measurements, and applied control, respectively.

control input. This closed-loop system can be viewed as a map from
w to z, denoted by w > z. As z represents the errors caused by
the disturbances, we would like to design a controller that would
minimize the effect of the disturbances w on z. In other words, we
would like a controller that would make the map w + z “small”
according to some measure. One popular performance measure is
the ¢,-induced norm, defined by

IZll¢,

sup .
lwlley 20 wlley

lw— zlley—e, =

The basic control philosophy in this case is to treat the worst
case scenario disturbances. This is a very sound approach when
we do not know what we are up against: plan for the worst and
optimize [30]. This so-called Hy, approach addresses the questions
of modeling and disturbance uncertainties, and it is in fact the
most pursued approach for robust control ever since the formal
framework was first formulated in [31].

Given a nonlinear vehicular system and an associated library
of primitives, linearizing the nonlinear system equations about
some pre-specified primitive, labeled i, from this library and then
discretizing using zero-order hold sampling result in general in an
LTV discrete-time system, say G®, defined by the following state-
space equation:

1 1 1
Xie+1 A’({) Bglz Bg’i Xk
e ot ol |[n] w0
) . u
R N L
for w € {,, where x; is the value of the state vector at discrete
time k. The vectors xy, zy, wy, Yk, and uy, are real and may have time-
varying dimensions which we denote by ny, Nz, Ny, Nyk, and Ny,
respectively. Given our problem setup, G may be a finite-horizon,
a periodic, or an eventually periodic system depending on the
primitive in question. An eventually periodic system arises when
linearizing the nonlinear system equations about an eventually
periodic trajectory. Such a trajectory can be arbitrary for an initial
amount of time, but then settles into a periodic orbit; a special case
of this is when a system transitions between two operating points.
Finite horizon and periodic systems are subclasses of eventually
periodic systems, and so, we will assume without loss of generality
that G? is an eventually periodic system, specifically an (h;, g;)-
eventually periodic system as defined next.

Definition 1. An LTV system G@ is (h;, g;)-eventually periodic for
some integers h; > 0, q; > 1 if each of its state-space matrix
sequences is (h;, g;)-eventually periodic; for instance, the sequence
A would be of the form

() (@) (@ (@)
A LAY LAY A

U] (@
hi+qz‘—1’A i’

s Apipgi—10 -+ -

h; terms g; terms g; terms
Periodic systems correspond to the case where the finite hori-
zon length h; is zero, whereas finite horizon systems are (h;, 1)-

eventually periodic with the periodic portions of the state space

220 DJ. Grymin et al. / Robotics and Autonomous Systems 62 (2014) 214-228

sequences set to zeros. Linearizing the nonlinear system equations
about all the pre-specified primitives in the library results in a hy-
brid system G composed of eventually periodic subsystems G® for
i=1,2,...,N,where N is the number of library primitives. Note
that we refer to G® as an eventually periodic model in general,
even though, depending on the corresponding primitive, it may ac-
tually be a linear time-invariant (i.e., periodic with period length
equal to one), a periodic, or a finite horizon model. This is accept-
able because, as mentioned before, all these models are special
cases of the eventually periodic model, and the following synthesis
result can be appropriately adjusted to reflect the different types of
models comprising the hybrid system.

Suppose that plant G is controlled by a feedback hybrid con-
troller K = {KM, ..., K™}, where K@ is (h;, q;)-eventually peri-
odic and defined by the state-space equation:

Xepr | _ AI(J) BI(:) X 5
w | T oo pollw] T 0,
k k
with &, € RP¥. Note that subcontroller K corresponds to subsys-
tem G®, and hence is associated with primitive i. It is always pos-
sible to apply the standard ¢,-induced norm control approach [19,
20] to design a subcontroller K® for subsystem G). However,
such an approach will not guarantee stability, let alone perfor-
mance, across switching boundaries. To elaborate, as the motion
plan is in the form of a reference concatenated primitive trajec-
tory, implementing this plan boils down to executing consecu-
tively a series of subcontrollers associated with the sequence of
primitives composing the reference trajectory. If we are to ap-
ply the standard ¢,-induced norm control approach to design the
subcontrollers separately, then there are no theoretically estab-
lished guarantees that the closed-loop system will exhibit a sta-
ble behavior as we switch between subcontrollers. The hybrid
control approach proposed herein also uses the £;-induced norm
as the performance measure, but it incorporates all possible con-
nections between compatible library primitives into the control
design. Specifically, in addition to the standard synthesis condi-
tions associated with each subsystem G®, we include coupling
conditions which reflect the possible connections between com-
patible primitives. As a result, this approach comes with stabil-
ity and performance guarantees across switching boundaries. But,
since including the coupling conditions necessitates incorporating
the standard synthesis conditions for all the subsystems simulta-
neously into the control synthesis program, the hybrid approach
can become computationally intensive in the case of large primi-
tive libraries.
The next definition expresses precisely our synthesis goal.

Definition 2. Afeedback controllerK = {K?”}Y isay-admissible
synthesis for hybrid plant G if the closed-loop system in Fig. 1 is
asymptotically stable and the performance inequality

llw — z|lg,—¢, < v isachieved.

The following definitions will be convenient:

F1(Re, Rt 1, ¥4 k) = Ji Rk — ViR 1 Vik + MMy — y° Vs Vo,
and

WSk Wy — U5 ScUy — Us U Ly
$2(5k75k+17 v, k) = [ket Tk E: Kk A2k _;21])

where Vi, Vok, Uk, and Uy are defined by the following equalities:
Im[V, Vi]" =Ker[Bs, Diy].

[Vl*k Vz*k] [Vl*k Vz*k]* =1

Im [U}, U;k]* =Ker[Cx Dau].

[U;kk U;k] [UTk U;k]* =1,

and J, = AV + CVak, M = B} Vi + Dy Vor, Wi = AUy +
B1kUak, Ly = C1xUik + D11k Uak. We also define the set B; to consist
of all the library primitives j that can succeed primitive i.

Theorem 2. Consider a hybrid system G = {GV}Y | where each

subsystem G® is (h;, g;)-eventually periodic. Then, there exists a y -
admissible hybrid synthesis K = (KO}, to G, where K is also
(h;, gi)-eventually periodic, if, fori = 1,2,...,N and k =01,
..., hi+q; — 1, there exist positive definite matrices R,((’) and S,ﬁ” such
that

0 (RO Ry k) <0, 5 (5050, 7. k) <0,

RY 1 }
ol=0, (1)
ke
with R,(fi)Jrqi = R,(fi), S,(I?Jrqi = S,g?, and, forallj € B;,
Ry =Ry, s =5 (2)

The notation Ta(b) is as defined previously with the superscript b indi-
cating that the state-space data used correspond to subsystem G®.

Note that if a library primitive exhibits a periodic behavior, it
may be desirable to connect to compatible successive primitives at
various instants in the period, as opposed to just the beginning of
the period as depicted in conditions (2). In such a case, we rewrite
(2)as

Rl(ll,-)+c = Rg)’ sffli)-l—c = Sg)’

where 0 < ¢ < g; specifies these instants.

Proof. Say the sequence of library primitives to be traversed is
my, My, ..., ms, where the time-intervals in which the system
executes these primitives are [0, k1], [k1 + 1, ka1, ..., [ks_1, o[,
respectively. Note that the length of these intervals may be longer
than the sum of the finite horizon length and period of the
associated primitives since the system may traverse the periodic

parts more than once. Define the matrix sequences R, = RE'"") and
Se=S"fori=1,...,5,k =ki_1+1,...,k, withko = —1,
ks = 00, and t defined as follows:

f=k—k_1—1 for f < hu, + G,

t= A A
hm, + ((F — hm) mod qp,) fort > hyn, + G-

These matrix sequences solve the synthesis conditions for the
eventually periodic system G, whose A-matrix, for example, is

defined as A, = A;m") for i, k, t as aforementioned. Invoking
[20, Corollary 13] completes the proof. W

The matrices R,(:) and S,((’) are obtained by solving a semidefinite
feasibility problem (1)-(2). Customized primal-dual interior point
methods are typically used to solve such semidefinite programs
and are known to outperform the barrier method [32]. The reader
is referred to [33] for a collection of performance tests on various
semidefinite program solvers such as SeDuMi [34] and SDPT3 [35].
The solutions R’ and S” can then be used to construct the

subcontroller K offline, as shown in [19]. Note that the procedure
given in [19] for constructing admissible LTV controllers is a
generalization of the method developed in [36] for the LTI case.
The work in [19] considers admissible syntheses that stabilize the
closed-loop system and guarantee that |w — z|l¢,—¢, < 1.The
assumption that y = 1is made for simplicity and without any loss
of generality since this y can always be absorbed into G®. To apply
the procedure of [19], note that a y-admissible synthesis for G% is
a 1-admissible synthesis for G, where G® has the same system

realization as G except that C) = %Cl(',f by, = %D(ﬁk, and

N _ 10
Dix = ;D

D.J. Grymin et al. / Robotics and Autonomous Systems 62 (2014) 214-228 221

Remark 3. The synthesis solution in Theorem 2 is provided in
terms of a semidefinite program with coupled temporal con-
straints associated with the pre-specified primitives as well as cou-
pling conditions across switching boundaries prescribed by a set
of rules (these rules specify the acceptable ways to connect the
primitives). For the synthesis conditions to have a solution, it is
necessary that any linear time-invariant, periodic, or eventually
periodic constituent models of the hybrid system be stabilizable
and detectable. Such requirements are not necessary for finite-
horizon models (linearized about transition maneuvers) in gen-
eral unless the transition maneuver can be connected to itself. As
for implementation, the motion planning algorithm issues a pol-
icy which is in the form of a sequence of primitives composing
a reference trajectory that leads to some desired goal state. The
controller executes this policy; namely, the series of primitives
corresponds to a sequence of subcontrollers to be applied consecu-
tively. In other words, the motion planning algorithm determines
the scheduling scheme of the subcontrollers constituting the hy-
brid control system.

As implied from the proof of Theorem 2, if we consider a
concatenated primitive trajectory, linearize the nonlinear system
equations about this trajectory, and then formulate the standard
£, induced norm synthesis problem for the resulting LTV model,
the hybrid synthesis solutions can be used to construct feasible so-
lutions to this LTV synthesis program. In other words, the sequence
of subcontrollers of the hybrid control system corresponding to the
sequence of primitives composing the reference trajectory consti-
tutes a stabilizing (with y-level performance) controller to the con-
catenated primitive trajectory.

4. Four-thruster hovercraft example

4.1. Motion planning

Three motion primitive libraries are developed to demonstrate
the hierarchical process presented. These libraries are then used
to comparatively evaluate the WA* and GI algorithms in finding
suitable trajectories through environments with randomly placed
obstacles. The four-thruster hovercraft model is shown in Fig. 2,
and the equations of motion of the hovercraft are given below:

mX + bex = (U — u3) cos 6 + (uy — uy) sin 6, 3)
my + by = (uy — u3) sind + (ugy — uy) coso, (4)
J6 + b0 = L(u; — us + us — us). (5)

The translational and rotational data for this system are as fol-
lows: mass m = 1.731kg, half-radius L = 0.15 m, translational
friction b, = 3.7 x 1073 N's/m, rotational friction b, = 3.65 X
1074 N's m/rad, and moment of inertia] = 2.363 x 1072 kg m°.
Each thruster can exert a force of magnitude at most 3 N.

The libraries of motion primitives are composed of both steady-
state and transition trajectories, similar to [3], with trim trajecto-
ries applied over a finite time horizon when building the search
graph. For the hovercraft, the steady-state motion is forward in the
body frame, where forward is defined along the & = 0 direction.
The first library contains two sets of five primitives, each corre-
sponding to final heading angle changes of [90, 45, 0, —45, —90]
degrees. That is, for each change of the final heading angle, there
are two primitives of different lengths. The initial and final veloc-
ities of the transition primitives are all equal to 1 m/s in the di-
rection of the vehicle heading, and the steady-state primitives also
have a constant velocity of 1 m/s. Given such a velocity setup, we
say the library operates at a velocity of 1 m/s. The library primitives
are judiciously chosen to form a state lattice with sampling of 0.5 m
in x and y displacement. The second library has 5 primitives and
is similar to the first in primitive types and velocity, however the

)

T

Fig. 2. Four-thruster hovercraft.

primitives do not form a state lattice. The final library considered
contains primitives with the same final heading angles as the first
library and can operate at velocities of 0.5 m/s, 1 m/s, and 2 m/s.
This library also contains acceleration and deceleration primitives
at constant heading angle that switch between the aforementioned
velocities. There are 19 total primitives in this library, and clearly
not all of them are compatible with each other.

Determining dynamically feasible state and control input
histories for each primitive can be accomplished through solution
of an optimal control problem [37]. Pseudospectral optimal control
software tools such as DIDO [38] and GPOPS [39] specifically
address the solution of such problems and have been applied to
a variety of systems including autonomous ground, aerial, and
surface vehicles as well as spacecraft; a review of applications of
pseudospectral optimal control can be found in [40]. For the four-
thruster hovercraft, the task of obtaining the state and control
histories for each primitive is formulated as a convex optimization
program, and then solved using the modeling system CVX [41],
along with the solver SDPT3 [35]. Specifically, the constraints
of this program consist of the equations of motion which are
discretized using zero-order hold sampling with sampling time
T = 0.05 s, initial and final conditions on the state,a bound of 2.5 N
on the magnitudes of the control inputs, a rate limit of 20 N/s on the
control input histories, and affine equations relating positions to
velocities based on Simpson’s 1/3 rule. Note that as the equations
of motion are nonlinear in the angular displacement 6, we first
estimate an admissible f-trajectory, and then, using this trajectory
the equations of motion become affine in the program variables.
The objective function is a weighted sum of a quadratic smoothing
function of the state and control histories and a quadratic penalty
function on the control inputs.

Fig. 3 shows a graph representing the state lattice associated
with the first library. As mentioned before, the first library consists
of two sets of primitives. The first set, shown in black in Fig. 3,
can be applied to nodes with a heading angle equal to a multiple
of 90°. The second set can be applied to nodes with a heading
angle equal to an odd multiple of 45° and is shown in red in Fig. 3.
Fig. 4 shows the motion primitives operating at 0.5 m/s, 1 m/s,
and 2 m/s. Note that the 1 m/s primitives compose the second
library. In the first library, the motion primitives with a constant
heading angle are applied for 12 or 14 time steps depending on the
heading of the vehicle, where a time step is equal to 0.05 s; all other
motion primitives in this library are applied for 18 time steps. All
primitives in the second and third libraries are applied for 12 time
steps, except for the 90 degree turns at 2 m/s, which are applied for
18 time steps. The reference control inputs for a 90 degree turn at
1 m/s are shown in Fig. 5.

Initially, the vehicle is at the origin (0, 0) with a heading angle
of 45° and a velocity of 1 m/s when using the first or second
libraries and 0.5 m/s when using the third library. The goal region is
defined by a Euclidean ball of radius 0.3 m, centered about the point
(x,¥) = (12, 12). The performance of the Gl algorithm is compared

222 DJ. Grymin et al. / Robotics and Autonomous Systems 62 (2014) 214-228

1.5

0 0.5 1 1.5
X (m)

Fig. 3. State Lattice Motion Primitives. (For interpretation of the references to
colour in the text, the reader is referred to the web version of this article.)

1

2.0 m/s Primitives b
—— 1.0 m/s Primitives
—— 0.5 m/s Primitives
0.5
(of
E o oO-
>
Q
-0.5
-1
-0.5 0 0.5 1 1.5

x (m)

Fig. 4. Motion Primitives at 0.5, 1, 2 m/s. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

2 zﬂJ
3 3
~ 0 ~ 0
o) o)
-2 -2
0 0.5 0 0.5
Time (s) Time (s)
2 2
z z
w 0 - 0
=) o)
-2 -2 fL
0 0.5 0 0.5
Time (s) Time (s)

Fig. 5. 90° turn control input histories.

with that of WA*. The implementation of the GI algorithm will
not make use of the cost-to-go, c(n, n’), and will be governed
solely by the heuristic, h(n). In the WA* case, three values for
the weighting of the heuristic are used, namely ¢ = 0.5, 1.5, 4.
The heuristic used for both algorithms is the Euclidean distance
from the position of the current node in the state space to that of
the goal node. More complex heuristics, which take into account
obstacle edges that intersect the ray projecting from the current
node to the goal node, can be used. Based on the few attempts we
carried out, however, these heuristics tend to result in an increased

computation time over the Euclidean distance heuristic in our
example, with a negligible improvement in the path cost. Note
that the lengths of the primitives composing the third library are
carefully chosen so that the vehicle can maneuver through dense
obstacle areas using the lower velocity primitives and speed up in
sparse regions where the higher velocity primitives do not lead to
collisions.

All computations are carried out in MATLAB on a Dell Desktop
with a 3.07 GHz quad-core Intel Xeon CPU and 6 GB of RAM running
Windows 7. The performance measures used are the returned
path cost and the wall clock time. It is probably better to use
the number of floating point operations (FLOPS) executed as a
performance measure rather than the wall clock time, where the
FLOP counts can be obtained using, for instance, the Lightspeed
MATLAB Toolbox [42]. However, we have noticed that the FLOP
results are conformable with the wall clock time ones, and so we
opt to use the latter for simplicity. A total of 2000 tests are run in
environments with random obstacle placement and orientation.
In 1000 of the tests, each of the obstacles has a 1 mx 1 m square
shape, while in the remaining tests obstacles are restricted to be
rectangular in shape with the length of the edges varying from
2 m to 4 m. Although all obstacles are thus assumed to be convex,
obstacles are permitted to both overlap and have arbitrary angular
orientations, allowing for complex (nonconvex) configurations;
collision detection is performed for each convex obstacle. For each
test case, the percentage of the obstacle field coverage is the ratio
of the total area of all obstacles, accounting for overlap, to the area
allotted for obstacle placement. The paths are further restricted to
maintain a distance of at least 0.6 m from the obstacles in order
to allow for some leeway when executing the motion plan in the
presence of disturbances. A potential successor is considered to
be a duplicate of another node in the tree if the latter node has
the same heading angle and resides in a Euclidean ball of radius
0.13 m, centered about the potential successor; when using the
third library, the velocity of the nodes must also be the same.

The mean path costs versus percentage of obstacle field cover-
age for each motion primitive library are given in Fig. 6, with er-
ror bars indicating the 95% confidence interval for the mean value.
The path costs for the GI algorithm using the state lattice (first li-
brary) motion primitives are higher than those for WA* across the
entire range of obstacle coverage. For the library with 1 m/s prim-
itives (second library), the path costs for the GI algorithm are ap-
proximately equal to those for WA* with ¢ = 1.5, verified using
Student’s t-test [43]. The second library also results in paths that
are of lower cost than those generated using the first library. This
is not an unexpected result, as the lattice library is created to op-
erate over a uniform sampling of the translational coordinates in
the configuration space, which places restrictions on the length of
the motion primitives. Creating state lattice motion primitives over
a finer discretization of the translational coordinates may lead to
shorter path lengths. For the library with motion primitives at mul-
tiple velocities (third library), the path costs are lower than those
obtained using the second library for WA* with € = 0.5. The third
library returns path costs that are higher than those obtained using
the second library for all other choices of € and for the GI algorithm
as well. In this case, the Gl algorithm returns path costs that are ap-
proximately equal to those for WA* with € = 4, and higher than
those for WA* with ¢ = 1.5, again verified via t-test. The mean
number of nodes placed in the search tree by each algorithm for
the three motion primitive libraries is given in Fig. 7. For the first
two libraries, as expected the Gl algorithm adds fewer nodes, since
in this case a single node is added to the search tree per iteration.
For the third motion primitive library, the WA* algorithm expands
more nodes during the search process than the number expanded
using the first two libraries, however the opposite is true of the GI
algorithm. This is indicative of the Gl algorithm utilizing the higher

D.J. Grymin et al. / Robotics and Autonomous Systems 62 (2014) 214-228 223

First Library

Second Library

Third Library

26 26 26
A WA*e=0.5
¢ WA*e = 1.5
24 24 24 v WA*e=4
) ;s LK B IO 0 e Gl i L]
@ ® 4 @ @ ®
Q v Q o
G 22(4 b vy S 22 g% O 22 jie!
[? i A C i g A c % é ?
© ¥ @ g g MK o %
Q 'y [0} a) A
s s kst s i g s = a
207, 2 2 2 20 P 20 4
i a4 a A4
i R
18 18 18
0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6
Percent Cover Percent Cover Percent Cover
Fig. 6. Mean path costs for all motion primitive libraries.
5 First Library 5 Second Library 5 Third Library
10 10 10
A WA*e=0.5
WA*e =15 l
4 * 4 4
— 10%] v WA*e=4 — 10 — 10 i
O e Gl)) 1 l I I\ 1 11 i l
© [} ©
8 . 8 . kS !
Zz 10 Al =z 10 s a4 =z 10
s aaaasaanrst < aaaassrt < ;;llliii v
e §IyvSsyyvyy @ s FIVEIVIYIY] O
S v vy ce 0o sl = e 0 0e 00 ®e =
10 p 000 (] L) 10 e o ® 10 6o ® . ®
® P [] ® @
[)
10’ 10’ 10’
0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6

Percent Cover

Percent Cover

Percent Cover

Fig. 7. Mean number of nodes expanded for all motion primitive libraries.

velocity motion primitives and finding a solution at a shallower
depth in the tree, resulting in slightly higher path costs.

Fig. 8 shows the mean solution time versus percent obstacle
coverage for each algorithm and motion primitive library, with er-
ror bars indicating the 95% confidence interval. The first library
shows a slight advantage over the second library with respect to
computation time. This is expected, as the motion planner using
primitives constructed over a state lattice is able to update the par-
ent of a node if a lower cost path is found to that particular node.
In the case of the second library, however, duplicate nodes with
lower cost result in any descendants of the higher cost path being
placed into the closed list. The GI algorithm is comparable with re-
spect to computation time to WA* with ¢ = 1.5 when using the
first library; in the case of the second library, the GI algorithm re-
quires slightly less computation time than WA* with € = 4. The
equivalence of computation times is again verified via t-test. For
WA, the third library results in increased computation time com-
pared to the first two libraries for all the € values that we consider;
in addition, the upper confidence limits on the mean computation
times are significantly larger, which indicates that there are a num-
ber of cases with high solution times. The Gl algorithm, on the other
hand, has lower mean solution times than those obtained using the
first and second libraries. Note that the number of nodes expanded
in the search tree directly affects the computation time because of
the computational demand of the InTree function. As displayed
by Fig. 7, the GI algorithm places a far lower number of nodes in
the search tree than WA* when utilizing the third motion primi-
tive library. This leads to the WA* algorithm checking a longer list
of potential duplicate nodes, resulting in increased computation
time. Maximum solution times versus percent obstacle coverage
are given in Fig. 9. From these plots, it is clear that, for the first
two motion primitive libraries, the maximum computation times

for the GI algorithm are comparable to those for WA* with € = 4.
For the third library, the maximum solution times for the GI al-
gorithm are lower than those for WA* with any of the values of ¢
considered. When using the first library, the WA* algorithm with
€ = [0.5, 1.5, 4] returns solutions quicker than the GI algorithm
in [4.4%, 53%, 75%] of the test cases, respectively. With the second
library, WA* returns solutions in less time in [4.7%, 14.6%, 26.3%]
of the test cases for ¢ = [0.5, 1.5, 4], respectively. Finally, WA*
with € = [0.5, 1.5, 4] returns solutions faster than the GI algo-
rithm when using the third library in [1.2%, 2.2%, 2.65%] of the test
cases, respectively.

Figs 10-11 give paths generated by the algorithms using the
three libraries for a specific obstacle environment. The (x,y)
position of nodes placed in the search tree are shown in black,
and the resulting solution paths are given in green. The lattice-
based library planners return solutions in about 0.08 s (WA*, € =
0.5) and 0.04 s (GI). Computation times for the second library are
around 0.4 s (WA* ¢ = 0.5) and 0.3 s (GI), and the third library
results are computed in approximately 1.6 s (WA*, ¢ = 0.5) and
0.05 s (GI). The times needed to traverse the paths in Fig. 10 are
20 s, 23.4 s, and 21 s, respectively. In Fig. 11, the times required
to traverse the paths are 20.1 s, 22.8 s, and 13.2 s, respectively.
Observe that, using the third library, the GI algorithm generates
a far faster trajectory than WA* (13.2 s vs 21 s). Notice also that
the WA* algorithm can end up placing a large number of nodes
in the tree when a state lattice is not utilized, as reflected by the
density of nodes along the obstacles in Fig. 10 for the second and
third libraries. In this particular obstacle environment, the WA*
algorithm with the lowest € value returns a solution faster than
when using higher weighting factors in the cases of the first and
third libraries, and the GI algorithm in these cases is far faster than
WA* for all three weighting values. When using the second library,

224

Mean Time (s)
S

12
10

Y (m)

o N MO

12
10

Y (m)

o N MO

DJ. Grymin et al. / Robotics and Autonomous Systems 62 (2014) 214-228

First Library Second Library Third Library
2 2 2
10 10
A WA*e=05
WA*e=1.5
"oy WA*e=4 10" 10"
. Gl O @ (Ll i
2 AN
0 £ 0 A £ 0
S E 0 sarartthE O ERER RS
44444444 S a4t c ili
a4k [0} [0}
T8 s ¥ e
-1 8008 ;50 = -1 ijti = -1 e 0 ® _° e
L} v 10 10 ° o
' (O $¥vyvyvy v 3§ P é
2 107 107
0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6
Percent Cover Percent Cover Percent Cover
Fig. 8. Mean solution times for all motion primitive libraries.
First Library Second Library Third Library
2 2 2
10 10
L a satan ada
! 10" . a R 10’ v v . M
A T SR S 4aat Lha i vvyew® * M
A a A K22 L S 2 e o° o,
’ P o 10° PR S L4 o 10°L® °
T®oe dieg o Y ’ vi E LI : ! E o*
v = = *
» 9 » A WA*e=05
10 10 WA*e =15
v WA*e=4
-2 -2 -2 * Gl
10 10
0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6
Percent Cover Percent Cover Percent Cover
Fig. 9. Maximum solution times for all motion primitive libraries.
First Library Second Library Third Library
—— 14 —— 14 ——
T 12 12 %
4 10 O]
0O OOk | oy a0s0 0k | |
O (mPrrs = Oq{ZD S
e eall! 1 > 6 R (D > 1
Qo | B]
T ANEY | 5
O I S |
/ o S
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
X (m) X (m) X (m)
Fig. 10. WA* paths with € = 0.5 for all motion primitive libraries.
First Library Second Library Third Library
14 14
© 12 12]
0 /. 10] 10 O]
a0 0O | 2 a0 00) | o a0 0O
O mp, = O O £ O]
N/ D 1 > 6 RS | > 6 - D]
57 o | 45 4 5L o
oo <> 1 2 - 2 A <> 1
0¥ 0
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
X (m) X (m) X (m)

Fig. 11. GI paths for all motion primitive libraries.

D.J. Grymin et al. / Robotics and Autonomous Systems 62 (2014) 214-228 225

14

12 1

10 ,/JE 1

y (m)
&)
0
0
<L

v 0 —WA*e=05 |]
(\//\ O —WA*e=15
2r\ WA*e=4 |]
—Gl
0
0 2 4 6 8 10 12 14
x (m)
(a) Second Library Paths.
14

12t H
10t O

|)
////

4r T—WA*S:O.S
L] | —ware=15

y (m)

E 0

2r WA*e =4
—Gl
0
0 2 4 6 8 10 12 14
x (m)
(c) Third Library Paths.

14
—WA*e=0.5
12 —WA*e=15
WA*e =4
=8 _ 7y

. & g

O
o (OO

%%DD O

E | O

R

-

47 ’ — WA*e=05 |1
L] —ware=15
2y WA*e =4
—al
0
0 2 4 6 8 10 12 14
X (m)

(d) Third Library Paths.

Fig. 12. Solution Path Comparisons—Second and Third Libraries. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

however, the WA* algorithm with € = 4 is the fastest and returns
a solution in about 0.14 s. Direct comparisons of paths found using
the second library are given in Fig. 12(a)-(b), and examples of paths
returned using the third library are given in Fig. 12(c)-(d). These
figures demonstrate that paths returned by the GI algorithm are
comparable to those returned using WA*.

4.2. Hybrid control

The equations of motion given in Eqgs. (3)-(4) are derived in the
inertial reference frame and the dynamics subsequently vary with
respect to rotations about the z-axis. Using a body-axis reference
frame eliminates the dependence on 6, and the resulting trans-
formed equations of motion are given in Egs. (6)-(8). The motion
primitives utilized in the previous section are also transformed into
the body-axis reference frame using Eqs. (9)-(10).

mX, + bexp = méj/b +u; —us
mij, + by = —mOXky + ug — Uy

(6)
(7)
JO + b6 = L(uy — up + us — ug) (8)
X 9)
10)

=]

Xy = Xxcosf + ysind
Yp = —xsinf + ycosH. (
Defining the state column vector v = (Xp, ¥, 6, Xp, Vb,) and

the input column vector u = (u4, us, us, uy), the equations of mo-
tion (6)—(8) can be equivalently written as v = f(v, u), where

f(,) is defined in the obvious way. Assuming that the input and
state approximately follow the (reference) input and state trajecto-
ries associated with the finite-horizon library primitive i of length
h;, then the errors between the actual and reference variables,
namely 9© = v — v and 1® = u — u”, will be small enough
to satisfy the following state-space equation:
0" =A%) 5 + B (6) 1,

. 9 . 9
where Ag') (t) = % ‘(vﬁi),uﬁi)) and Bgc) (t) = 871; (vr(i)yugi)).
We will assume that the hovercraft is subject to exogenous dis-
turbances in the form of torques as well as forces in the x and y
directions; also, these disturbances, like the input, are applied in
discrete-time with a sampling frequency of 20 Hz. In addition to
these disturbances which constitute the first three components of
the vector-valued signal w(t), we also consider errors (noise) in
the measurements of x, y, and 6, which correspond to the last three
components of the signal w(t). Then, the state-space description of
the continuous-time LTV model is
5(6) = AD () 530 (6) + Bic w(t) + BY(0) 1 (),

where, for simplicity, we take
By — |:0?;><3 83x3] '
3 3x3
The corresponding discrete-time model obtained by zero-order
hold sampling is given by: ‘71(31 = A,({") 1'),(:) ~+ Bk wi +B§’Z ﬁ,(f), where

226 D.J. Grymin et al. / Robotics and Autonomous Systems 62 (2014) 214-228

b 4

q 4

12

10

4Rz« 7/ N
/ ’ Dist.
j’ “ 2| —— D,Meas.
D,M,-20% ||
— D,M,+20%

3 |
15 16 17 18 19 20 15 16 17 18 19 20
Time (s) Time (s)

19 20 35 16 17 18 19 20

Time (s)

-3
15 16 17 18
Time (s)

x Error (m)

y Error (m)

6 Error (deg)

Fig. 13. Simulation Results: (a) feedback simulation paths, (b) simulation paths—zoomed, (c) feedback control inputs, (d) errors in the states. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

T = 0.05 s is the sampling time, 7. = 5 (kT) for integers k > 0,
A,E') = @O ((k+ 1T, kT), @D (-, -) being the state transition ma-

trix, Bg’,z = k(;“rm oD ((k+ DT, 1) Bg’z(r)dr, and By is defined

similarly to Bg’,z. We assume that the states x;, ¥, and 6 are measur-
able, and as for the exogenous errors to be controlled, we choose in
this example to only penalize X\, 3\, 8%, and ﬁ;') forj=1,...,4
Then we get the following standard discrete-time finite-horizon
model:

= (i) () () =
Ukt Ac Bue By | | Uk
zx | =|C Dit Dpp| | W[,
Dk G Dy Dy |@
fork = 0,1,...,h;, where w € £, p and z are the measure-

ments and exogenous errors respectively, and, as discussed in the
preceding, D;; and D,, are zeros, C; = diag(ls, 04x3), D12 =
[0sx3 0.1L]",G =[I5 0sx3],and

Dy = [0sx3 diag(0.05, 0.05, 0.0436)].

Note that, when linearizing the system equations about the
steady-state trajectory, we obtain an LTI (i.e., (0, 1)-eventually pe-
riodic) model. Next, given this hybrid model, we seek a hybrid LTV
synthesis that would guarantee the stability of the closed-loop sys-
tem and furthermore ensure that ||w + zll¢,—.¢, < ¥, where y
is the minimum possible bound, up to a certain tolerance, that is
achievable by such a synthesis. Thus, we have to solve the semidef-
inite programming problem: minimize y? subject to the synthesis
conditions (1)-(2) (for a finite horizon model G®, take h; equal to
the finite horizon length and q; = 1 with the periodic portions of

the state space sequences set to zeros; for an LTI model GY, take
hj = 0and g; = 1). We use Yalmip [44] along with SDPT3 [35] for
this matter, and find that the minimum achievable y ~ 0.61. The
elapsed (i.e., wall clock) time for solving the optimization problem
is about 14 s (CPU time = 11 s). For the simulation, we relax y to
1.3 in order to obtain satisfactory controller performance. Note that
this excessive relaxation is done to accommodate the significant
modeling uncertainties considered such as varying the mass and
inertia by +-20% in simulation; however, it is possible to improve
the performance while still maintaining satisfactory robustness by
judiciously choosing the penalty functions on the control and state
errors. The solutions of the synthesis program can then be used to
construct a controller, as discussed at the end of Section 3; note
that the MATLAB command basiclmi is useful for this purpose.

As for the simulation, we subject the hovercraft to iid dis-
turbances, which are generated by the MATLAB function rand;
these disturbances correspond to forces in the x and y directions,
namely F and Fy, as well as torques 7%, applied on the hover-
craft in discrete-time with a sampling frequency of 20 Hz, such that
|Fxkls [Fykl < 1Nand |7x] < 0.15 Nm for all integers k > 0.
We impose the 3 N bound on the control inputs as well as a rate
limit of 20 N/s. We also change the mass and moment of iner-
tia of the hovercraft by a factor of 0.8 (20% decrease) or 1.2 (20%
increase). Additionally, zero mean Gaussian noise with standard
deviation of 0.05 m is applied to the x and y measurements, and,
similarly, zero mean Gaussian noise with 2.5° standard deviation is
applied to the measurements of 6. Despite these disturbances and
uncertainties, the controller is still able to force the hovercraft to

D.J. Grymin et al. / Robotics and Autonomous Systems 62 (2014) 214-228 227

closely track trajectories generated from the library primitives, as
shown in Fig. 13(a)-(d) for a typical run. In these figures, the differ-
ent cases of considered disturbances and uncertainties are labeled
as follows: force/torque disturbances only (Dist); force/torque
disturbances and measurement noise (D,Meas.); force/torque
disturbances, measurement noise and —20% mass and inertia (D,
M, —20%); and force/torque disturbances, measurement noise, and
+20% mass and inertia (D, M, +20%). The reference and simula-
tions paths through the obstacle field are given in Fig. 13(a). The
points on the paths correspond to the locations of the center of
gravity of the hovercraft. Since the radius of the hovercraftis 0.3 m
which is also the difference between the edges of the concentric
rectangles, the paths must not enter the rectangles with dashed
edges around the obstacles. During motion planning, the width of
the area between the bounding box (dashed rectangle) and the cor-
responding obstacle is set to 0.6 m to allow for some deviation
from the reference trajectory, if necessary, due to disturbances and
other uncertainties. The control input and state errors are given in
Fig. 13(c)-(d). Despite the measurement noise, disturbances, and
uncertainty with respect to mass and inertia, the controller is able
to keep the vehicle within 0.3 m of the reference path in both x and
y directions, thus avoiding collisions with obstacles in all simula-
tion scenarios.

5. Conclusions

By using a library of pre-specified motion primitives, the task
of finding a dynamically feasible trajectory through an obstacle
field is reduced to a search over a graph, in which the nodes cor-
respond to the vehicle states and the edges represent the motion
primitives. Developing the motion primitives according to a state
lattice sampling benefits the search process with respect to compu-
tation time. For motion primitives that do not form a state lattice,
a tree representation is instead used in order to maintain continu-
ity of states between successive primitives. Consequently, this ad-
versely affects the solution time for the search algorithms since a
duplicate node with a higher cost-to-go, which in general will not
match exactly the current node, is placed along with its descen-
dants in the closed set to avoid a trajectory with gaps or disconti-
nuities, thus wasting the previous computations. As an alternative,
alocally greedy algorithm is presented. This algorithm exhibits im-
proved performance with respect to run time over weighted A*,
particularly when considering motion primitive libraries with mul-
tiple velocities. The improved performance in solution time can be
attributed to the size of the search trees created by each algorithm.
Specifically, the check to see whether a location within the config-
uration space has already been visited is far more computationally
demanding for larger search trees, and the weighted A* algorithm
constructs much larger search trees than the locally greedy algo-
rithm. Ultimately, the success of both of these approaches is de-
pendent on the heuristic used. Obstacle fields can be created where
the Euclidean distance, for instance, is a poor estimate of the true
cost-to-goal, resulting in computation times that are unacceptable.
In these scenarios, a sampling-based planner may be preferable.

A control approach is also presented, which uses the £,-induced
norm as the performance measure, providing a set of discrete-
time controllers that accompany the motion primitive library. The
solution returned by the motion planner consists not only of a
sequence of motion primitives leading from the initial state to
the goal, but also a set of controllers with stability and perfor-
mance guarantees. An example of the hierarchical process applied
to a hovercraft details the development of motion primitives, the
design of subcontrollers using convex optimization, the motion
planning task, and the execution of the motion plan in simula-
tion subject to exogenous disturbances, measurement noise, and
various uncertainties. The resulting hierarchical motion planning

and feedback control strategy is able to guide the hovercraft
through an obstacle field while avoiding collisions. The benefit of
this hierarchical approach is that the feedback control strategy
is developed offline in conjunction with the motion primitive li-
brary, and thus does not require any additional computation when
determining a dynamically feasible trajectory in real-time. Future
work includes the investigation of other motion planning algo-
rithms, such as sampling-based methods, in order to determine
their applicability to the problem posed herein.

References

[1] N. Nilsson, Problem-Solving Methods in Artificial Intelligence, McGraw-Hill,
New York, 1971.

[2] S.LaValle, Planning Algorithms, Cambridge University Press, 2006.

[3] E. Frazzoli, M. Dahlah, E. Feron, Maneuver-based motion planning for
nonlinear systems with symmetries, IEEE Transactions on Robotics 21 (6)
(2005) 1077-1091.

[4] C. Goerzen, Z. Kong, B. Mettler, A survey of motion planning algorithms
from the perspective of autonomous UAV guidance, Journal of Intelligent and
Robotic Systems 57 (1-4) (2009) 65-100.

[5] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving,
Addison-Wesley, Reading, MA, 1984.

[6] E.Hansen, R. Zhou, Anytime heuristic search, Journal of Artificial Intelligence
Research 28 (1) (2007) 267-297.

[7] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, S. Thrun, Anytime search in
dynamic graphs, Artificial Intelligence 172 (14) (2008) 1613-1643.

[8] L. Kavraki, P. Svestka,]J. Latombe, M. Overmars, Probabilistic roadmaps for
path-planning in high-dimensional configuration spaces, IEEE Transactions on
Robotics and Automation 12 (4) (1996) 556-580.

[9] S.LaValle,]. Kuffner, Randomized kinodynamic planning, International Journal
of Robotics Research 20 (5) (2004) 378-400.

[10] S. Karaman, E. Frazzoli, Incremental sampling-based algorithms for optimal
motion planning, in: Proceedings of Robotics: Science and Systems, 2010.

[11] S.Karaman, M. Walter, A. Perez, E. Frazzoli, S. Teller, Anytime Motion Planning
using the RRT*, in: Proceeding of the 2011 IEEE Conference on Robotics and
Automation, Shanghai, China, 2011, pp. 1478-1483.

[12] J. Barraquand, J. Latombe, Nonholonomic multibody mobile robots: control-
lability and motion planning in the presence of obstacles, Algorithmica 10
(1993) 121-155.

[13] J. Go, T. Vu,]. Kuffner, Autonomous behaviors for interactive vehicle
animations, Graphical Models 68 (2) (2006) 90-112.

[14] S. Pancanti, L. Pallottino, S. Salvadorini, A. Bichi, Motion planning through
symbols and lattices, in: Proceedings of the 2004 IEEE ICRA, New Orleans, LA,
2004, pp. 3914-3919.

[15] M. Pivtoraiko, R. Knepper, A. Kelly, Differentially constrained mobile robot
motion planning in state lattices, Journal of Field Robotics 26 (3) (2009)
308-333.

[16] R. Burridge, A. Rizzi, D. Koditschek, Sequential composition of dynamically
dextrous robot behaviors, International Journal of Robotics Research 18 (2009)
534-555.

[17] D. Conner, H. Choset, A. Rizzi, Flow-through policies for hybrid controller
synthesis applied to fully actuated systems, IEEE Transactions on Robotics 25
(1) (2009) 136-146.

[18] S. Lindemann, S. LaValle, Simple and efficient algorithms for computing
smooth, collision-free feedback laws over given cell decompositions, Interna-
tional Journal of Robotics Research 28 (2009) 600-621.

[19] G. Dullerud, S. Lall, A new approach to analysis and synthesis of time-varying
systems, IEEE Transactions on Automatic Control 44 (8) (1999) 1486-1497.

[20] M. Farhood, G. Dullerud, LMI tools for eventually periodic systems, Systems &
Control Letters 47 (5) (2002) 417-432.

[21]]. Gillula, H. Huang, M. Vitus, C. Tomlin, Design of guaranteed safe maneuvers
using reachable sets: Autonomous quadrotor aerobatics in theory and practice,
in: Proceedings of the 2010 IEEE International Conference on Robotics and
Automation, 2010, pp. 1649-1654.

[22] R. Sanfelice, E. Frazzoli, A Hybrid Control Framework for Robust Maneuver-
Based Motion Planning, in: Proceedings of the 2008 American Control
Conference, 2008, pp. 2254-2259.

[23] C. Neas, M. Farhood, A hybrid architecture for maneuver-based motion
planning and control of agile vehicles, In Proceedings of the 18th IFAC World
Congress, Milano, Itay, 2011, pp. 3521-3526.

[24] P.Hart, N. Nilsson, B. Raphael, A formal basis for the heuristic determination of
minimum cost paths, IEEE Transactions on Systems Science and Cybernetics 4
(2)(1968) 100-107.

[25] 1. Pohl, Heuristic search viewed as path finding in a graph, Artificial Intelligence
1(3-4)(1970) 193-204.

[26] R. Ebendt, R. Drechsler, Weighted A* search—unifying view and application,
Artificial Intelligence 173 (14) (2009) 1310-1342.

[27] C. Neas, A Greedy Search Algorithm for Maneuver-Based Motion Planning
of Agile Vehicles, Master’s thesis, Virginia Polytechnic Institute and State
University, Blacksburg, VA, USA, 2010.

[28] S.Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall,
New York, 2010.

http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref1
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref2
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref3
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref4
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref5
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref6
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref7
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref8
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref9
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref12
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref13
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref14
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref15
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref16
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref17
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref18
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref19
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref20
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref24
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref25
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref26
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref28

228 D.J. Grymin et al. / Robotics and Autonomous Systems 62 (2014) 214-228

[29] T.Cormen, C. Leiserson, C. Rivest, R.L. Stein, Introduction to Algorithms, Vol. 3,
MIT Press, Cambridge, MA, 2009.

[30] M. Green, D. Limebeer, Linear Robust Control, Prentice Hall, 1995.

[31] G.Zames, Feedback and optimal sensitivity: model reference transformations,
multiplicative seminorms, and approximate inverses, IEEE Transactions on
Automatic Control 26 (2) (1981) 301-320.

[32] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press,

2004.

[33] H. Mittelmann, Decision tree for optimization software, 2012,
http://plato.asu.edu/guide.html.

[34] J.F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over
symmetric cones, Optimization Methods and Software 11-12 (1999) 625-653,
version 1.05 available from http://fewcal.kub.nl/sturm.

[35] K. Toh, M. Todd, R. Tutuncu, SDTP3—A Matlab software package for
semidefinite programming, Optimization Methods & Software 11 (1999)
545-581.

[36] P. Gahinet, P. Apkarian, A linear matrix inequality approach to H,, control,
International Journal of Robust and Nonlinear Control 4 (1994) 421-448.

[37] A.Bryson, Y. Ho, Applied optimal control, Hemisphere (1975).

[38] I.Ross, F. Fahroo, Legendre Pseudospectral Approximations of Optimal Control
Problems, Vol. 295, Springer-Verlag, 2003.

[39] A.Rao,D.Benson, C. Darby, M. Patterson, C. Fancolin, G. Huntington, Algorithm
902: GPOPS, a MATLAB software for solving multiple-phase optimal control
problems using the gauss pseudospectral method, ACM Transactions on
Mathematical Software 37 (2) (2010) 1-39.

[40] Q. Gong, W. Kang, N. Bedrossian, F. Fahroo, P. Sekhavat, K. Bollino,
Pseudospectral optimal control for military and industrial applications, in:
Proceedings of the 46th IEEE Conference on Decision and Control, 2007,
pp. 4128-4142.

[41] M. Grant, S. Boyd, CVX: Matlab Software for Disciplined Convex Programming,
Version 1.21, 2010, http://cvxr.com/cvx.

[42] T. Minka, The Lightspeed Matlab Toolbox, Efficient Operations for Matlab
Programming, Version 2.2, 2007, available from
http://research.microsoft.com/en-us/um/people/minka/software/lightspeed/.

[43]]. Devore, Probability and Statistics for Engineering and the Sciences, sixth ed.,
Duxbury Press, 2003.

[44]]. Lofberg, YALMIP: a toolbox for modeling and optimization in MATLAB, in:
Proceedings of the CACSD Conference, Taipei, Taiwan, 2004, pp. 284-289,
available from http://control.ee.ethz.ch/~joloef/wiki/pmwiki.php.

David J. Grymin is a Ph.D. student affiliated with the Non-
linear Systems Laboratory in the Department of Aerospace
and Ocean Engineering at Virginia Polytechnic Institute
and State University (Virginia Tech). His current research
interests include aerodynamic system identification, con-
trol of unmanned aerial vehicles, and motion planning in
complex environments.

Charles B. Neas received his M.S. degree in Aerospace
Engineering, in 2010, from Virginia Tech, Blacksburg,
Virginia. He is currently working at Robins Air Force Base
as a C-130 structural engineer.

Mazen Farhood received his bachelor’s degree in Mechan-
ical Engineering from the American University of Beirut,
Lebanon, in 1999. He received the M.S. degree in 2001, and
the Ph.D. degree in 2005, both in Mechanical Engineer-
ing from the University of Illinois at Urbana-Champaign.
Since 2008, he has been an assistant professor in the De-
partment of Aerospace and Ocean Engineering at Virginia
Tech. From 2007 to 2008, he was a scientific researcher
in the Delft Center for Systems and Control, Delft Univer-
sity of Technology, The Netherlands. Prior to that, he was
a postdoctoral fellow in the School of Aerospace Engineer-
ing at Georgia Institute of Technology. His areas of current research interest include
distributed control, motion planning and tracking along trajectories, semidefinite
programming, model reduction, and control of agile aerial vehicles.

http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref29
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref30
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref31
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref32
http://plato.asu.edu/guide.html
http://fewcal.kub.nl/sturm
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref35
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref36
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref37
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref38
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref39
http://cvxr.com/cvx
http://research.microsoft.com/en-us/um/people/minka/software/lightspeed/
http://refhub.elsevier.com/S0921-8890(13)00197-8/sbref43
http://control.ee.ethz.ch/~joloef/wiki/pmwiki.php

	A hierarchical approach for primitive-based motion planning and control of autonomous vehicles
	Introduction
	Motion planning with a primitive library
	Weighted A* search
	Greedy and impatient algorithm

	Hybrid LTV control
	Four-thruster hovercraft example
	Motion planning
	Hybrid control

	Conclusions
	References

