MRC Hospital challenge - Group 6

Joep Selten, 0988169
Emre Deniz, 0967631
Aris van leperen, 0898423
Stan van Boheemen, 0958907
Bräm Schroeders, 1389378
Pim Scheers, 0906764

Information Architecture

Monitor and Strategy

- State machine to distribute tasks
- Guards are determined in monitor

Perception

Global localisation using Monte Carlo Particle filter

- Not limited to parametric distributions
- Outperforms histogramfilter and is more easy to implement
- Update with odometry data and adding more uncertainty to account for drift

Feature-based sensor model

- Convex and concave corners as features
© Observed convex corner
© Observed concave corner
(O) Mapped convex corner
(o) Mapped concave corner

PlotGlobalWorld()
emc-sim

PlotGlobalWorld()
emc-sim

PlotGlobalWorld()

Worldmodel

- Stores global and local world models

Control

Global path planning - A*

- Strategically placed waypoints.
- A* algorithm
- Breaking Links.
- Recalculation of path.

Local path planning - Potential field

- To avoid cutting corners or hitting objects with inaccurate localization.
- Local minima not expected due to waypoints.

Discussion

- Object detection
- Validated individual components
- Testing for robustness
- Combining components

Appendix slide 1 - Potential field

+ Cutting the corner, found in escaperoom challenge, will be avoided by potential field.
+ Without localization, the robot will not bump into walls or objects.
+ Combination with A* will provide very little local minima and these are thus not to be taken into account. http://cstwiki.wtb.tue nl/imanes/ER succ 4-2020-05-18.10.36.58.gif

Appendix slide 1 - Potential fi

Appendix slide 2 - Full Software Architecture

Appendix slide 3 - object detection

