
emc 2019

GIT

GIT version control

Using git is easier if you understand the underlying representation

• Git is a graph of commits

• A commit represents the state of your repository

• Each commit points to its parent(s) ..

.. and contains the changes (lines) w.r.t. that parent

• A branch has a symbolic pointer to a commit

• Checking out a branch checks out the commit pointed to

• Making a commit within a branch updates the pointer

Title of the presentation – by tab Insert -> Header text and Footer text2

• When you merge two branches, you either:
Fast forward
Make a merge commit

• A merge commit has two parents

• Sometimes conflicts must be solved first

• For the remote repository, the idea is the same

• master on remote is simply a different branch from yours

• git pull = git fetch (add branch origin/master to local repository)

git merge origin/master

Title of the presentation – by tab Insert -> Header text and Footer text3

Title of the presentation – by tab Insert -> Header text and Footer text4

git pull origin master

git merge origin/master Fast forward git merge origin master solve conflicts

git fetch origin master

git pull origin master

git fetch origin master

When merging

• Take a look at how the graph looks (git log –all –oneline –graph –decorate)

• Inspect differences after fetch (git diff origin master)

• git merge (and git push afterwards)

Title of the presentation – by tab Insert -> Header text and Footer text5

Merge conflicts

• Git leaves you with a working directory of uncommitted changes (see git status)

• Conflicts are marked with conflicts markers:

<<<<<<< HEAD
//This line was added in the branch I’m currently in
float test = 1.0;
=======
//This line was added in the branch I’m merging
float test = 5.0;
>>>>>>> cb1abc6bd98cfc84317f8aa95a7662815417802d

• Solve the conflicts, delete markers and commit the files

Title of the presentation – by tab Insert -> Header text and Footer text6

Gitlab workflow

• Collaboration requires a workflow strategy

• Keep things simple and tidy: “Don’t push directly to master, only merge into master”

• Use a feature/, fix/ or refactor/ branch for all your coding

• Make a merge request on Gitlab when it works and assign someone

• When approved, merge it into master

Title of the presentation – by tab Insert -> Header text and Footer text7

Branches and merge requests
People can push commits to your branch before merging into master

Sometimes changes can be fast-forwarded, sometimes they can’t.

You can always rebase your branch, but never rebase shared branches !

Title of the presentation – by tab Insert -> Header text and Footer text8

Gitlab and Scrum

• Gitlab has issues and an issue board

• Labels / milestones

• Important commits git tag (e.g. escape_room_release)

• (Advanced features like continuous integration and automated testing)

Title of the presentation – by tab Insert -> Header text and Footer text9

Some tips

git log –-oneline –-graph –-decorate --all

Use git show to see the changes made in a commit

Use git grep to search in your repository

Use git blame to see who committed each line in a file

HEAD points to the currently checked out commit, HEAD^ to parent commit

git diff [] [HEAD HEAD^^] [master origin/master] to see differences

Title of the presentation – by tab Insert -> Header text and Footer text10

git reset (--hard) – reset branch pointer to old commit (--hard changes the files in working dir)

git revert – make a new commit that undoes changes

Title of the presentation – by tab Insert -> Header text and Footer text11

Title of the presentation – by tab Insert -> Header text and Footer text12

How to handle changes on the robot ideally?

• Quickly edit files on robot using vim / nano in terminal

• You want to push / pull but git won’t let you?

• Commit changes to a branch (git checkout –b fix/test1)

• Push branch to gitlab and cleanup / merge after testing on your laptop

When things get confusing during testing (git wont let you pull/push, not easy to fix now)

• Fix the state of your code on a laptop

• Check that it compiles with cmake .. && make on your laptop

• Push to gitlab master (or branch..) from your laptop

• (Optionally) push the changes on your robot to a branch to keep them somewhere

• Reset the master on your robot to a point before things got messy (git reset --hard HEAD^^^^..)

• (You loose uncommitted changes!)

• On your robot: git pull origin master

Title of the presentation – by tab Insert -> Header text and Footer text13

	GIT
	GIT version control
	Slide Number 3
	Slide Number 4
	When merging
	Merge conflicts
	Gitlab workflow
	Branches and merge requests
	Gitlab and Scrum
	Some tips
	Slide Number 11
	Slide Number 12
	Slide Number 13

