EINDHOVEN
UNIVERSITY OF
TECHNOLOGY

W
el N | REARANRE TR

. ?wA::. ‘Iﬂ!ﬂ
& ,‘s ‘4.,’-. “JAJ_ Al
;;ﬁf—@ = «;@ st

GIT

emc 2019

GIT version control

sy ber

Using git is easier if you understand the underlying representation

3gd7 la2n i
Ox —O 0y
e Gitis agraph of commits
—_—
* A commit represents the state of your repository " T
e Each commit points to its parent(s) ..
.. and contains the changes (lines) w.r.t. that parent Cool Feabute
7nid sxx2 |

* Abranch has a symbolic pointer to a commit
* Checking out a branch checks out the commit pointed to

* Making a commit within a branch updates the pointer

2 Title of the presentation — by tab Insert -> Header text and Footer text

When you merge two branches, you either: o lg6c e stex

Fast forward Oe— { B /
Make a merge commit 6hn3 Sbnm / dghz
(e k& —f\g~—— S

. R .
A merge commit has two parents igr e G 30wk

Sometimes conflicts must be solved first

For the remote repository, the idea is the same

master on remote is simply a different branch from yours

git pull = git fetch (add branch origin/master to local repository)
git merge origin/master

Title of the presentation — by tab Insert -> Header text and Footer text TU/e

git pull origin master

paeiles
!

B6hn3 Sbnm

Qc{)

git fetch origin master

12vv Ig6c
OO

6hn3 5bnm / N
OVigy 1N mefler
OO0 9/
~ — maSler

“

git merge origin/master - Fastforward

6hn3 5bnm 12w Igbc

Oer—-oﬁe—— -&" - OR X

rag f LER -

4 Title of the presentation — by tab Insert -> Header text and Footer text

git pull origin master

e dler

F

6hn3 Sbnm 4ghz

O—O—C

git fetch origin master

12vv lg6c
Oe—r
6hn3 5bnm / aghz B
Dr‘j.n/mc\lkt(
Q—C—Q

— MaJbey

git merge origin master -> solve conflicts

12w Igéc Mr.ill',ﬁl‘

Oé_v_ ﬂ'/w\f ‘F
6hn3 Sbnm / 4ghz k/
Oe—(F—0—L

Tigr e ©ofaf G
v

TU/e

\

When merging

Take a look at how the graph looks (git log -all -oneline -graph -decorate)

Inspect differences after fetch (git diff origin master)

git merge (and git push afterwards)

5 Title of the presentation — by tab Insert -> Header text and Footer text TU/e

Merge conflicts

* Git leaves you with a working directory of uncommitted changes (see git status)

e Conflicts are marked with conflicts markers:

<<<<<<< HEAD
//This line was added in the branch I’'m currently in
float test = 1.0;

//This line was added in the branch I'm merging
float test = 5.0;
>>>>>>> cblabcbbd98cfc84317f8aa95a7662815417802d

. Solve the conflicts, delete markers and commit the files

6 Title of the presentation — by tab Insert -> Header text and Footer text TU/e

Gitlab workflow

Collaboration requires a workflow strategy
e Keep things simple and tidy: “Don’t push directly to master, only merge into master”
e Use a feature/, fix/ or refactor/ branch for all your coding

* Make a merge request on Gitlab when it works and assign someone

* When approved, merge it into master

7 Title of the presentation — by tab Insert -> Header text and Footer text TU/e

Branches and merge requests

People can push commits to your branch before merging into master
Sometimes changes can be fast-forwarded, sometimes they can’t.

You can always rebase your branch, but never rebase shared branches !

12wv *© lgée

Fe&{‘_ure,

L — -
e,
6hn3 Sbnm aghz
rv\c..jke,'l‘ "

8 Title of the presentation — by tab Insert -> Header text and Footer text

TU/e

Gitlab and Scrum

Gitlab has issues and an issue board

Labels / milestones

Important commits 2 git tag (e.g. escape_room_release)

(Advanced features like continuous integration and automated testing)

9 Title of the presentation — by tab Insert -> Header text and Footer text TU/e

Some tips

git log --oneline --graph --decorate --all

Use git show to see the changes made in a commit

Use git grep to search in your repository

Use git blame to see who committed each line in a file

HEAD points to the currently checked out commit, HEAD” to parent commit

git diff [] [HEAD HEAD""] [master origin/master] to see differences

10 Title of the presentation — by tab Insert -> Header text and Footer text

TU/e

git reset (--hard) - reset branch pointer to old commit (--hard changes the files in working dir)

git revert - make a new commit that undoes changes

11 Title of the presentation — by tab Insert -> Header text and Footer text TU/e

How to handle changes on the robot ideally?

Quickly edit files on robot using vim / nano in terminal

e You want to push / pull but git won’t let you?

Commit changes to a branch (git checkout -b fix/testl)

Push branch to gitlab and cleanup / merge after testing on your laptop

12 Title of the presentation — by tab Insert -> Header text and Footer text TU/e

When things get confusing during testing (git wont let you pull/push, not easy to fix now)

Fix the state of your code on a laptop

e Check that it compiles with cmake .. && make on your laptop

e Push to gitlab master (or branch..) from your laptop

* (Optionally) push the changes on your robot to a branch to keep them somewhere

* Reset the master on your robot to a point before things got messy (git reset --hard HEADAMAA, L)
* (You loose uncommitted changes!)

* Onyourrobot: git pull origin master

13 Title of the presentation — by tab Insert -> Header text and Footer text TU/e

	GIT
	GIT version control
	Slide Number 3
	Slide Number 4
	When merging
	Merge conflicts
	Gitlab workflow
	Branches and merge requests
	Gitlab and Scrum
	Some tips
	Slide Number 11
	Slide Number 12
	Slide Number 13

