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GIT version control

sy ber

Using git is easier if you understand the underlying representation
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* A commit represents the state of your repository " T
e Each commit points to its parent(s) ..
.. and contains the changes (lines) w.r.t. that parent Cool Feabute
7nid sxx2 |

* Abranch has a symbolic pointer to a commit
* Checking out a branch checks out the commit pointed to

* Making a commit within a branch updates the pointer
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When you merge two branches, you either: o lg6c e stex

Fast forward Oe— { B /
Make a merge commit 6hn3 Sbnm / dghz
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. R .
A merge commit has two parents igr e G 30wk

Sometimes conflicts must be solved first

For the remote repository, the idea is the same

master on remote is simply a different branch from yours

git pull = git fetch (add branch origin/master to local repository)
git merge origin/master
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git pull origin master
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git fetch origin master
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git merge origin/master - Fastforward
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git pull origin master
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git fetch origin master
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git merge origin master -> solve conflicts
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When merging

Take a look at how the graph looks (git log -all -oneline -graph -decorate)

Inspect differences after fetch (git diff origin master)

git merge (and git push afterwards)
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Merge conflicts

* Git leaves you with a working directory of uncommitted changes (see git status)

e Conflicts are marked with conflicts markers:

<<<<<<< HEAD
//This line was added in the branch I’'m currently in
float test = 1.0;

//This line was added in the branch I'm merging
float test = 5.0;
>>>>>>> cblabcbbd98cfc84317f8aa95a7662815417802d

. Solve the conflicts, delete markers and commit the files
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Gitlab workflow

Collaboration requires a workflow strategy
e Keep things simple and tidy: “Don’t push directly to master, only merge into master”
e Use a feature/, fix/ or refactor/ branch for all your coding

* Make a merge request on Gitlab when it works and assign someone

*  When approved, merge it into master
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Branches and merge requests

People can push commits to your branch before merging into master
Sometimes changes can be fast-forwarded, sometimes they can’t.

You can always rebase your branch, but never rebase shared branches !
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Gitlab and Scrum

Gitlab has issues and an issue board

Labels / milestones

Important commits 2 git tag (e.g. escape_room_release)

(Advanced features like continuous integration and automated testing)
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Some tips

git log --oneline --graph --decorate --all

Use git show to see the changes made in a commit

Use git grep to search in your repository

Use git blame to see who committed each line in a file

HEAD points to the currently checked out commit, HEAD” to parent commit

git diff [ ] [HEAD HEAD""] [master origin/master] to see differences

10 Title of the presentation — by tab Insert -> Header text and Footer text

TU/e



git reset (--hard) - reset branch pointer to old commit (--hard changes the files in working dir)

git revert - make a new commit that undoes changes
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How to handle changes on the robot ideally?

Quickly edit files on robot using vim / nano in terminal

e You want to push / pull but git won’t let you?

Commit changes to a branch (git checkout -b fix/testl)

Push branch to gitlab and cleanup / merge after testing on your laptop
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When things get confusing during testing (git wont let you pull/push, not easy to fix now)

Fix the state of your code on a laptop

e Check that it compiles with cmake .. && make on your laptop

e  Push to gitlab master (or branch..) from your laptop

*  (Optionally) push the changes on your robot to a branch to keep them somewhere

*  Reset the master on your robot to a point before things got messy (git reset --hard HEADAMAA, L)
*  (You loose uncommitted changes!)

* Onyourrobot: git pull origin master
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