Final Design & Considerations

Embedded Motion Control 2012

Group 7: Siddhi Imming Bart Moris Roger Pouls Patrick Vaes

TU/e

Technische Universiteit **Eindhoven** University of Technology

Eindhoven, June 29, 2012

Where innovation starts

Overview of the program structure for Tremaux's algorithm with arrow detection

Line detection

- Line detection based on laser data and Hough Transform
- Discretized parameter space with appropriate resolution

Angle	Point 1	Point 2	Point 3
0 °	5	3	1
45°	7	7	7
90°	5	7	10

Technische Universiteit Eindhoven University of Technology

Line detection

- Line detection based on laser data and Hough Transform
- Discretized parameter space with appropriate resolution
- Filter to find lines as local maxima in parameter space
- Appoint points to corresponding line

SLAM / Mapping

- Create map based on SLAM Gmapping
- Mapping based on re-observing landmarks and estimated positions based on laser and odometry data, weighted with Kalmann filter
- Proven that it works, and reuse of what is invented is the idea of ROS

Dump Map

- Overlay of original map
- Containing blocks with an integer indicating number of visits
- Based on synchronized original map and pose

SLAM / Mapping

Dump Map

- Overlay of original map
- Containing blocks with an integer indicating number of visits
- Based on synchronized original map and pose
 Technische Universiteit

/ Department of Mechanical Engineering

ity of Technology

Blowup 2x

Convert HSV

> TU/e Technische Universiteit Eindhoven University of Technology

/ Department of Mechanical Engineering

29-6-2012 PAGE 8

Blowup 2x

TU

Technische Universiteit Eindhoven University of Technology

/ Department of Mechanical Engineering

29-6-2012 PAGE 9

²⁹⁻⁶⁻²⁰¹² PAGE 12

Navigation node

- Check first distance to parallel lines
- Check for line at 90 degrees to parallel lines and if we are close enough, half forward speed, determine exit 3 times, put dump, else drive parallel between lines
- Exit detection and handling
 - Detection of type via distance between points on line and position of the line relative to Jazz
 - If necessary, check for arrow
 - Request number of visits at each exit
 - Take decision, according to algorithm

Navigation node

Parallel driving

 Corridor divided in several zones, with different correction speeds to enlarge safety

Robustness measures

- Several drive strategies implemented:
 - Left hand rule, right hand rule, Tremaux's rule with random and fixed order of preference, influenced by detected arrow
- Forward speed is maximal at the center of the corridor and is lower near a wall
- Angular corrections in a corridor are with a low angular speed to prevent 'overshoot'
- Initialization after startup and when no lines are detect for some time
- Entrance is blocked, using the dump map

