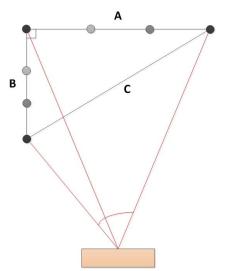
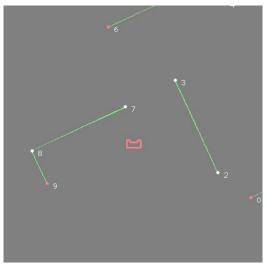
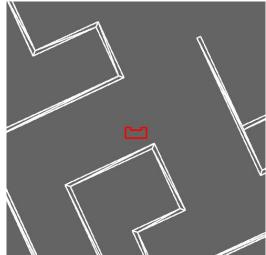
Final design presentation

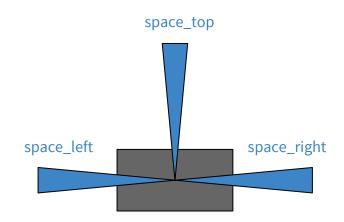

Embedded Motion Control group 4


Contents

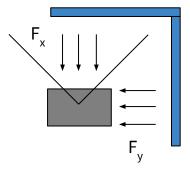

- World model
- Maze solving algorithm
- Repulsion & wall following
- Software design
- Conclusion
- Progress

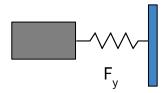
World model

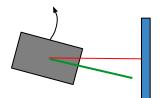
- After corridor competition, parameters tuned
- Eventually not used in strategy
- Nodes used for door recognition
- Node datatype:
 - o ID
 - Type
 - Location
 - Connections
 - LRFindex

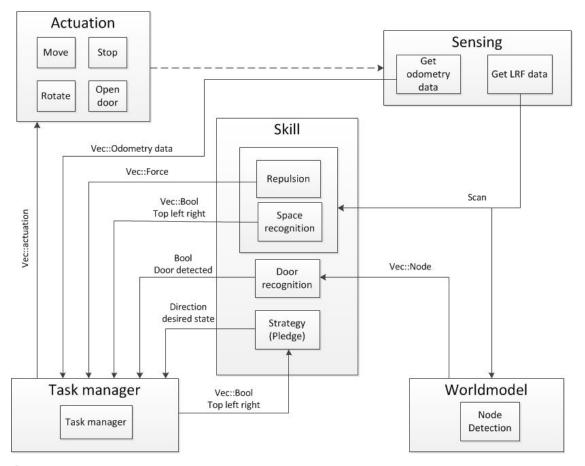


Maze solving algorithm: Pledge


Implemented using just 7 cases:


- If driving in preferred direction (counter = 0)
 - If space_top: go straight in preferred direction
 - If !space_top & space_left: rotate 90° left
 - If !space_top & !space_left & !space_right: rotate 180° left
- Else
 - If space_right: rotate 90° right
 - If !space_right & space_top: go straight
 - If !space_right & !space_top & space_left: rotate 90° left
 - If !space_right & !space_top & !space_left: rotate 180° left




Repulsion & wall following

- Repulsion and attraction forces
 - Attraction point in front of PICO
 - Repulsion force determined by environment
 - Keeps distance from obstacles
- Virtual spring to the wall
 - Too far away from the wall? Get closer
- Keep closest point to the right from PICO at 90 degrees

Software architecture

Conclusion

- Pledge implemented and working
- Door recognition working
- Integration today first version

Planning

- Recognize doors in dead ends
- Work on documentation
- Test some more scenarios with doors
- Finetuning
- Make 2 versions
 - Safe version
 - Fullspeed version

Thank you.