EMC 2017 Tooling and Infrastructure

Wouter Kuijpers

Eindhoven University of Technology Department of Mechanical Engineering

May 3, 2017

- ► Telepresence Robot from Aldebaran
 - ► Robot type: Jazz

- ► Telepresence Robot from Aldebaran
 - Robot type: Jazz
- Sensors:
 - ► Laser Range Finder (LRF)
 - Wheel encoders (odometry)
 - Asus Xtion Depth sensor
 - ▶ 170° wide-angle camera
 - Sonar

- ► Telepresence Robot from Aldebaran
 - Robot type: Jazz
- Sensors:
 - ► Laser Range Finder (LRF)
 - Wheel encoders (odometry)
 - Asus Xtion Depth sensor
 - ▶ 170° wide-angle camera
 - Sonar
- Actuators:
 - Holonomic base (omni-wheels)
 - ▶ Pan-tilt unit for head

- ► Telepresence Robot from Aldebaran
 - Robot type: Jazz
- Sensors:
 - ► Laser Range Finder (LRF)
 - ► Wheel encoders (odometry)
 - Asus Xtion Depth sensor
 - ▶ 170° wide-angle camera
 - Sonar
- Actuators:
 - Holonomic base (omni-wheels)
 - ▶ Pan-tilt unit for head
- Computer:
 - ► Intel I7
 - Running Ubuntu 14.04

The Assignment

- Let PICO navigate through a maze and find and go to the exit.
- You have to:
 - try to be as fast as possible
 - deal with dynamics in the environment (a moving door)
- You can use:
 - The Laser Range Finder to detect walls and doors
 - ▶ The encoder data from the wheels

The Assignment

- Let PICO navigate through a maze and find and go to the exit.
- You have to:
 - try to be as fast as possible
 - deal with dynamics in the environment (a moving door)
- ► You can use:
 - The Laser Range Finder to detect walls and doors
 - ► The encoder data from the wheels
- ► Final Presentations: June 7
- ► Competition Day: June 14

Intermediate Assignment

- Corridor Competition: Let PICO drive through a corridor and take the first exit.
- You have to:
 - try to be as fast as possible
- You can use:
 - ► The Laser Range Finder to detect walls
 - ▶ The encoder data from the wheels
- Competition day: May 24

Ubuntu

- Linux-based operating system
- ▶ Use version **14.04** (not 14.10, 15 or 16!)
- ▶ 32- and 64-bit (64-bit recommended)
- Easy dual boot installation with e.g.,
 Windows
- ► Download: www.ubuntu.com
 - ▶ Any problems? → Check the wiki.
 - No info? → Ask the ICT Servicedesk or contact us.

- ► Robot Operating System
- ▶ Open-source meta-operating system for robots

- ► Robot Operating System
- ▶ Open-source meta-operating system for robots
- ► Won't be using it!

- ► Robot Operating System
- ▶ Open-source meta-operating system for robots
- ► Won't be using it!
- ▶ Instead, we will provide our own 'software layer'
 - ▶ It is simpler to understand, and 'cleaner' to use

- Robot Operating System
- ▶ Open-source meta-operating system for robots
- ▶ Won't be using it!
- ▶ Instead, we will provide our own 'software layer'
 - ▶ It is simpler to understand, and 'cleaner' to use
- ► However, you are still allowed to use ROS!

$$C++$$

- ▶ We will use C++ as programming language
- ► C++ is object-oriented C
 - ▶ "C with Classes"
 - Encapsulate data and functionality within objects
- ▶ It is a powerful but complex programming language.
- ▶ However, we provide a software framework to get you started

Creating code: Qt Creator

- ► Integrated Development Environment
 - Advanced code editor
- Many advantages over 'simple editors':
 - Syntax highlighting
 - Code completion
 - Visual compiler feedback
 - Static code checking
 - Refactoring tools
 - ► Parenthesis matching
 - •

Git Version Control

- Version Control System:
 - 'Manages files and directories, and the changes made to them, over time'
- Used to store and maintain your code on the server
 - ► (Like Dropbox)

Git Version Control

- Version Control System:
 - 'Manages files and directories, and the changes made to them, over time'
- Used to store and maintain your code on the server
 - (Like Dropbox)
- Maintains version history
- Is distributed
 - You always have the full history on your pc
 - You can always go back to a version, show differences, even when off-line

Git Version Control

- Version Control System:
 - 'Manages files and directories, and the changes made to them, over time'
- Used to store and maintain your code on the server
 - ► (Like Dropbox)
- Maintains version history
- Is distributed
 - You always have the full history on your pc
 - You can always go back to a version, show differences, even when off-line
- More info on the Wiki

You will have to work with the real robot, but we only have one. Therefore:

- You will have to work with the real robot, but we only have one. Therefore:
- ► PICO Simulator:
 - Simulates:
 - Sensors (Laser, odometry)
 - Actuators (Base)
 - ► Environment (maze)

- You will have to work with the real robot, but we only have one. Therefore:
- ► PICO Simulator:
 - Simulates:
 - Sensors (Laser, odometry)
 - Actuators (Base)
 - Environment (maze)
- ► Can easily create test environments using height maps

- You will have to work with the real robot, but we only have one. Therefore:
- ► PICO Simulator:
 - Simulates:
 - Sensors (Laser, odometry)
 - Actuators (Base)
 - Environment (maze)
- Can easily create test environments using height maps
- Integrates well with our provided software
 - If your software runs in the simulator, it runs on the robot

- You will have to work with the real robot, but we only have one. Therefore:
- ► PICO Simulator:
 - Simulates:
 - Sensors (Laser, odometry)
 - Actuators (Base)
 - Environment (maze)
- Can easily create test environments using height maps
- Integrates well with our provided software
 - If your software runs in the simulator, it runs on the robot
 - ▶ This does not guarantee that it will also work...

You still need to test on the real system!

Example

- ► Full Example: from requirements, through Task-Skill-Motion to Software Executable.
- (far) from perfect!
- Focus on decoupling parts of functionality, explicitly in the code.
- ▶ Will be released this week! Check the tutorial page!

Wiki

- ► EMC Wiki:
 - http://cstwiki.wtb.tue.nl /index.php?title=Embedded_Motion_Control
 - ▶ Info on practical assignment, installation, getting started
 - Frequently Asked Questions
 - ► Log-in: student account

Wiki

- ► EMC Wiki:
 - http://cstwiki.wtb.tue.nl /index.php?title=Embedded_Motion_Control
 - ▶ Info on practical assignment, installation, getting started
 - Frequently Asked Questions
 - ► Log-in: student account
- Group pages on EMC Wiki:
 - Each group gets its own page
 - ► Update at least weekly

Wiki

- ► EMC Wiki:
 - http://cstwiki.wtb.tue.nl /index.php?title=Embedded_Motion_Control
 - Info on practical assignment, installation, getting started
 - Frequently Asked Questions
 - ► Log-in: student account
- Group pages on EMC Wiki:
 - ► Each group gets its own page
 - Update at least weekly
- Overall use:
 - Everyone can edit
 - ▶ If you see a mistake: correct it
 - ▶ If you had a problem and know how to fix it: add it

Recap

► Assignment: solve maze with PICO robot

Recap

Assignment: solve maze with PICO robot

► OS: Ubuntu 14.04

▶ Programming language: C++

Code editor: Qt Creator

Version control: git

► Simulation: PICO simulator

► Documentation: Wiki

Getting Started

- Check the wiki:
 - http://cstwiki.wtb.tue.nl /index.php?title=Embedded_Motion_Control
- Follow the tutorials on the wiki:
 - Ubuntu
 - ► C++
 - Qt Creator
 - Simulator
 - Software framework
 - ▶ git

Groups

- ightharpoonup pprox 60 students signed up Canvas!
- Aim: for at most 10 groups of 6 persons each

Group 1:	√	Group 6:	√
Group 2:	√	Group 7:	-6
Group 3:	-4	Group 8:	-6
Group 4:	√	Group 9:	-3
Group 5:	√	Group 10:	√

▶ thus \approx 19 students did not sign up for a group yet!

Tutor name will be sent to you It is *your* responsibility to get in touch with your tutor