
Where innovation starts

EMC 2014
Software Design

Sjoerd van den Dries

May 8, 2014

Eindhoven University of Technology

Department of Mechanical Engineering

2/27

/w

ROS Communication Example

pico_laser_
publisher

2/27

/w

ROS Communication Example

pico_laser_
publisher

/pico/laser

2/27

/w

ROS Communication Example

pico_laser_
publisher

/pico/laser

Header header
 time stamp
 string frame_id
float[] ranges
float range_max
...

sensor_msgs/LaserScan

2/27

/w

ROS Communication Example

pico_laser_
publisher

/pico/laser

Header header
 time stamp
 string frame_id
float[] ranges
float range_max
...

sensor_msgs/LaserScan

wall_detector

2/27

/w

ROS Communication Example

pico_laser_
publisher

/pico/laser

Header header
 time stamp
 string frame_id
float[] ranges
float range_max
...

sensor_msgs/LaserScan

wall_detector

rviz

3/27

/w

ROS Message Types

Header header
 time stamp
 string frame_id
float[] ranges
float range_max
...

sensor_msgs/LaserScan

Is in fact:

struct LaserScan {
Header header;
float range_max;
std::vector<float> ranges;

}

struct Header {
std::string frame_id;
Time stamp;

}

struct Time {
int secs;
int nsecs;

}

3/27

/w

ROS Message Types

Header header
 time stamp
 string frame_id
float[] ranges
float range_max
...

sensor_msgs/LaserScan

Is in fact:

struct LaserScan {
Header header;
float range_max;
std::vector<float> ranges;

}

struct Header {
std::string frame_id;
Time stamp;

}

struct Time {
int secs;
int nsecs;

}

3/27

/w

ROS Message Types

Header header
 time stamp
 string frame_id
float[] ranges
float range_max
...

sensor_msgs/LaserScan

Is in fact:

struct LaserScan {
Header header;
float range_max;
std::vector<float> ranges;

}

struct Header {
std::string frame_id;
Time stamp;

}

struct Time {
int secs;
int nsecs;

}

3/27

/w

ROS Message Types

Header header
 time stamp
 string frame_id
float[] ranges
float range_max
...

sensor_msgs/LaserScan

Is in fact:

struct LaserScan {
Header header;
float range_max;
std::vector<float> ranges;

}

struct Header {
std::string frame_id;
Time stamp;

}

struct Time {
int secs;
int nsecs;

}

4/27

/w

ROS and C++

I To use ROS in your program:

#include <ros/ros.h>

I Register your program as a node to the ROS master:

ros::init(..., "your_node_name");

I Let ROS know you want to listen to a certain topic:

ros::NodeHandle n;
ros::Subscriber sub = n.subscribe("/pico/laser", 1,

callbackFunction);

4/27

/w

ROS and C++

I To use ROS in your program:

#include <ros/ros.h>

I Register your program as a node to the ROS master:

ros::init(..., "your_node_name");

I Let ROS know you want to listen to a certain topic:

ros::NodeHandle n;
ros::Subscriber sub = n.subscribe("/pico/laser", 1,

callbackFunction);

4/27

/w

ROS and C++

I To use ROS in your program:

#include <ros/ros.h>

I Register your program as a node to the ROS master:

ros::init(..., "your_node_name");

I Let ROS know you want to listen to a certain topic:

ros::NodeHandle n;
ros::Subscriber sub = n.subscribe("/pico/laser", 1,

callbackFunction);

4/27

/w

ROS and C++

I To use ROS in your program:

#include <ros/ros.h>

I Register your program as a node to the ROS master:

ros::init(..., "your_node_name");

I Let ROS know you want to listen to a certain topic:

ros::NodeHandle n;
ros::Subscriber sub = n.subscribe("/pico/laser", 1,

callbackFunction);

5/27

/w

ROS and C++

I Let ROS know you want to listen to a certain topic:

ros::NodeHandle n;
ros::Subscriber sub = n.subscribe("/pico/laser", 1,

callbackFunction);

I Start listening to the topics:

ros::spin();

I This function is called every time the node receives a message:

void callbackFunction(sensor_msgs::LaserScan scan) {
// do something
std::cout << scan.header.stamp << std::endl;

}

5/27

/w

ROS and C++

I Let ROS know you want to listen to a certain topic:

ros::NodeHandle n;
ros::Subscriber sub = n.subscribe("/pico/laser", 1,

callbackFunction);

I Start listening to the topics:

ros::spin();

I This function is called every time the node receives a message:

void callbackFunction(sensor_msgs::LaserScan scan) {
// do something
std::cout << scan.header.stamp << std::endl;

}

5/27

/w

ROS and C++

I Let ROS know you want to listen to a certain topic:

ros::NodeHandle n;
ros::Subscriber sub = n.subscribe("/pico/laser", 1,

callbackFunction);

I Start listening to the topics:

ros::spin();

I This function is called every time the node receives a message:

void callbackFunction(sensor_msgs::LaserScan scan) {
// do something
std::cout << scan.header.stamp << std::endl;

}

6/27

/w

PICO Safe Drive

// Include ROS framework (Publishers, Subcribers, init, etc)
#include <ros/ros.h>

// Include the LaserScan message type
#include <sensor_msgs/LaserScan.h>

// Include the Twist message type (used for sending velocity
commands to the base)

#include <geometry_msgs/Twist.h>

// Global variables
bool drive = true;
ros::Publisher cmd_pub;

6/27

/w

PICO Safe Drive

// Include ROS framework (Publishers, Subcribers, init, etc)
#include <ros/ros.h>

// Include the LaserScan message type
#include <sensor_msgs/LaserScan.h>

// Include the Twist message type (used for sending velocity
commands to the base)

#include <geometry_msgs/Twist.h>

// Global variables
bool drive = true;
ros::Publisher cmd_pub;

7/27

/w

PICO Safe Drive

int main(int argc, char** argv) {
// Register your ROS node
ros::init(argc, argv, "pico_safe_drive");

// Create node handle
ros::NodeHandle n;

// Subscribe to topic ’/pico/laser’ topic
ros::Subscriber sub = n.subscribe("/pico/laser",1,laserCallback);

// Create ’cmd_vel’ publisher
cmd_pub = n.advertise<geometry_msgs::Twist>("/pico/cmd_vel", 10);

// Program loop
while (ros::ok()) {

ros::spinOnce(); // Check incoming messages
sendVelocity(); // Publish velocity
ros::Duration(0.1).sleep(); // Sleep 0.1 seconds

}

return 0;

8/27

/w

PICO Safe Drive

void laserCallback(sensor_msgs::LaserScan scan) {

// Default: drive
drive = true;

// Check all laser points
for(unsigned int i = 0; i < scan.ranges.size(); i++) {

// Check laser point distance
if (scan.ranges[i] > 0.1 && scan.ranges[i] < 0.3) {

// Oh no, something is near! Better stop driving...
drive = false;

}
}

}

9/27

/w

PICO Safe Drive

void sendVelocity() {
// Create a ROS Twist message
geometry_msgs::Twist cmd_msg;

// Set forward velocity
if (drive) {

cmd_msg.linear.x = 0.2;
} else {

cmd_msg.linear.x = 0;
}

// Set all the other components to 0
cmd_msg.linear.y = 0;
cmd_msg.linear.z = 0;

cmd_msg.angular.x = 0;
cmd_msg.angular.y = 0;
cmd_msg.angular.z = 0;

// Send the command!
cmd_pub.publish(cmd_msg);

}

10/27

/w

Safe_drive Example

/pico/laser /pico/cmd_vel

10/27

/w

Safe_drive Example

pico_safe_drive/pico/laser /pico/cmd_vel

11/27

/w

System Input / Output

/pico/laser /pico/cmd_vel

11/27

/w

System Input / Output

/pico/laser /pico/cmd_vel

/pico/odom

/pico/camera/image

11/27

/w

System Input / Output

/pico/laser /pico/cmd_vel

/pico/odom

/pico/camera/image

12/27

/w

Black Box

/pico/laser /pico/cmd_vel

/pico/odom

/pico/camera/image

awesome_node

13/27

/w

Black Box

I Simple way of trying to fulfill the assignment:
• ‘Hack into’ the current code
• Add features whenever you think of them

I May get you somewhere, but:
• Hard to maintain

• Found a bug: can be anywhere!
• Hard to extend:

• Adding new features may break old ones
• Teamwork becomes hard:

• No clear division of work
• Practical example: all editing the same file

13/27

/w

Black Box

I Simple way of trying to fulfill the assignment:
• ‘Hack into’ the current code

• Add features whenever you think of them

I May get you somewhere, but:
• Hard to maintain

• Found a bug: can be anywhere!
• Hard to extend:

• Adding new features may break old ones
• Teamwork becomes hard:

• No clear division of work
• Practical example: all editing the same file

13/27

/w

Black Box

I Simple way of trying to fulfill the assignment:
• ‘Hack into’ the current code
• Add features whenever you think of them

I May get you somewhere, but:
• Hard to maintain

• Found a bug: can be anywhere!
• Hard to extend:

• Adding new features may break old ones
• Teamwork becomes hard:

• No clear division of work
• Practical example: all editing the same file

13/27

/w

Black Box

I Simple way of trying to fulfill the assignment:
• ‘Hack into’ the current code
• Add features whenever you think of them

I May get you somewhere, but:

• Hard to maintain
• Found a bug: can be anywhere!

• Hard to extend:
• Adding new features may break old ones

• Teamwork becomes hard:
• No clear division of work
• Practical example: all editing the same file

13/27

/w

Black Box

I Simple way of trying to fulfill the assignment:
• ‘Hack into’ the current code
• Add features whenever you think of them

I May get you somewhere, but:
• Hard to maintain

• Found a bug: can be anywhere!

• Hard to extend:
• Adding new features may break old ones

• Teamwork becomes hard:
• No clear division of work
• Practical example: all editing the same file

13/27

/w

Black Box

I Simple way of trying to fulfill the assignment:
• ‘Hack into’ the current code
• Add features whenever you think of them

I May get you somewhere, but:
• Hard to maintain

• Found a bug: can be anywhere!
• Hard to extend:

• Adding new features may break old ones

• Teamwork becomes hard:
• No clear division of work
• Practical example: all editing the same file

13/27

/w

Black Box

I Simple way of trying to fulfill the assignment:
• ‘Hack into’ the current code
• Add features whenever you think of them

I May get you somewhere, but:
• Hard to maintain

• Found a bug: can be anywhere!
• Hard to extend:

• Adding new features may break old ones
• Teamwork becomes hard:

• No clear division of work
• Practical example: all editing the same file

14/27

/w

Modular Approach

I Another way: modular approach

I Modules are pieces of software that:
• Have a clearly defined function
• Have a clearly defined input and output

• Interface

I The idea: break down system into modules:
• Modules talk to each other through interfaces
• Encapsulation of functionality and data

• Easier to predict behavior
• Easier to find errors
• Easier to add new functionality

14/27

/w

Modular Approach

I Another way: modular approach

I Modules are pieces of software that:

• Have a clearly defined function
• Have a clearly defined input and output

• Interface

I The idea: break down system into modules:
• Modules talk to each other through interfaces
• Encapsulation of functionality and data

• Easier to predict behavior
• Easier to find errors
• Easier to add new functionality

14/27

/w

Modular Approach

I Another way: modular approach

I Modules are pieces of software that:
• Have a clearly defined function

• Have a clearly defined input and output
• Interface

I The idea: break down system into modules:
• Modules talk to each other through interfaces
• Encapsulation of functionality and data

• Easier to predict behavior
• Easier to find errors
• Easier to add new functionality

14/27

/w

Modular Approach

I Another way: modular approach

I Modules are pieces of software that:
• Have a clearly defined function
• Have a clearly defined input and output

• Interface

I The idea: break down system into modules:
• Modules talk to each other through interfaces
• Encapsulation of functionality and data

• Easier to predict behavior
• Easier to find errors
• Easier to add new functionality

14/27

/w

Modular Approach

I Another way: modular approach

I Modules are pieces of software that:
• Have a clearly defined function
• Have a clearly defined input and output

• Interface

I The idea: break down system into modules:

• Modules talk to each other through interfaces
• Encapsulation of functionality and data

• Easier to predict behavior
• Easier to find errors
• Easier to add new functionality

14/27

/w

Modular Approach

I Another way: modular approach

I Modules are pieces of software that:
• Have a clearly defined function
• Have a clearly defined input and output

• Interface

I The idea: break down system into modules:
• Modules talk to each other through interfaces

• Encapsulation of functionality and data
• Easier to predict behavior
• Easier to find errors
• Easier to add new functionality

14/27

/w

Modular Approach

I Another way: modular approach

I Modules are pieces of software that:
• Have a clearly defined function
• Have a clearly defined input and output

• Interface

I The idea: break down system into modules:
• Modules talk to each other through interfaces
• Encapsulation of functionality and data

• Easier to predict behavior
• Easier to find errors
• Easier to add new functionality

14/27

/w

Modular Approach

I Another way: modular approach

I Modules are pieces of software that:
• Have a clearly defined function
• Have a clearly defined input and output

• Interface

I The idea: break down system into modules:
• Modules talk to each other through interfaces
• Encapsulation of functionality and data

• Easier to predict behavior
• Easier to find errors
• Easier to add new functionality

15/27

/w

Identify Goal

/pico/laser /pico/cmd_vel

/pico/odom

/pico/camera/image

I Let PICO navigate through a maze and find and go to the exit.
• try to be as fast as possible
• but avoid hitting obstacles at all cost!
• ...

15/27

/w

Identify Goal

/pico/laser /pico/cmd_vel

/pico/odom

/pico/camera/image

I Let PICO navigate through a maze and find and go to the exit.

• try to be as fast as possible
• but avoid hitting obstacles at all cost!
• ...

15/27

/w

Identify Goal

/pico/laser /pico/cmd_vel

/pico/odom

/pico/camera/image

I Let PICO navigate through a maze and find and go to the exit.
• try to be as fast as possible
• but avoid hitting obstacles at all cost!
• ...

16/27

/w

Break it down

I Let PICO navigate through a maze and find and go to the exit.

• try to be as fast as possible
• but avoid hitting obstacles at all cost!

I Identify requirements and capabilities:
• Obstacle avoidance
• Speed control
• Recognize intersections
• Drive straight through corridors
• ...

16/27

/w

Break it down

I Let PICO navigate through a maze and find and go to the exit.
• try to be as fast as possible
• but avoid hitting obstacles at all cost!

I Identify requirements and capabilities:
• Obstacle avoidance
• Speed control
• Recognize intersections
• Drive straight through corridors
• ...

16/27

/w

Break it down

I Let PICO navigate through a maze and find and go to the exit.
• try to be as fast as possible
• but avoid hitting obstacles at all cost!

I Identify requirements and capabilities:

• Obstacle avoidance
• Speed control
• Recognize intersections
• Drive straight through corridors
• ...

16/27

/w

Break it down

I Let PICO navigate through a maze and find and go to the exit.
• try to be as fast as possible
• but avoid hitting obstacles at all cost!

I Identify requirements and capabilities:
• Obstacle avoidance
• Speed control
• Recognize intersections
• Drive straight through corridors
• ...

17/27

/w

Identify Modules

I Requirements and capabilities:
• Obstacle avoidance
• Speed control
• Recognize intersections
• Drive straight through corridors
• ...

I Identify Modules:
• Wall Detector
• Corner Detector
• Corridor Navigation
• ...

17/27

/w

Identify Modules

I Requirements and capabilities:

• Obstacle avoidance
• Speed control
• Recognize intersections
• Drive straight through corridors
• ...

I Identify Modules:
• Wall Detector
• Corner Detector
• Corridor Navigation
• ...

17/27

/w

Identify Modules

I Requirements and capabilities:
• Obstacle avoidance
• Speed control
• Recognize intersections
• Drive straight through corridors
• ...

I Identify Modules:
• Wall Detector
• Corner Detector
• Corridor Navigation
• ...

17/27

/w

Identify Modules

I Requirements and capabilities:
• Obstacle avoidance
• Speed control
• Recognize intersections
• Drive straight through corridors
• ...

I Identify Modules:

• Wall Detector
• Corner Detector
• Corridor Navigation
• ...

17/27

/w

Identify Modules

I Requirements and capabilities:
• Obstacle avoidance
• Speed control
• Recognize intersections
• Drive straight through corridors
• ...

I Identify Modules:
• Wall Detector
• Corner Detector
• Corridor Navigation
• ...

18/27

/w

Identify Interfaces

I For each module, define its interface

• Wall Detector:

• input: laser data
• output: lines (x, y, x2, y2)

• Corner Detector

• input: laser data
• output: corner points (x, y)

• Corridor Navigation

• input: wall lines
• output: wanted velocity

I Make it as clear and complete as possible:
• Helps you identify missing modules
• Teamwork becomes a lot easier

18/27

/w

Identify Interfaces

I For each module, define its interface
• Wall Detector:

• input: laser data
• output: lines (x, y, x2, y2)

• Corner Detector

• input: laser data
• output: corner points (x, y)

• Corridor Navigation

• input: wall lines
• output: wanted velocity

I Make it as clear and complete as possible:
• Helps you identify missing modules
• Teamwork becomes a lot easier

18/27

/w

Identify Interfaces

I For each module, define its interface
• Wall Detector:

• input: laser data
• output: lines (x, y, x2, y2)

• Corner Detector

• input: laser data
• output: corner points (x, y)

• Corridor Navigation

• input: wall lines
• output: wanted velocity

I Make it as clear and complete as possible:
• Helps you identify missing modules
• Teamwork becomes a lot easier

18/27

/w

Identify Interfaces

I For each module, define its interface
• Wall Detector:

• input: laser data
• output: lines (x, y, x2, y2)

• Corner Detector
• input: laser data
• output: corner points (x, y)

• Corridor Navigation

• input: wall lines
• output: wanted velocity

I Make it as clear and complete as possible:
• Helps you identify missing modules
• Teamwork becomes a lot easier

18/27

/w

Identify Interfaces

I For each module, define its interface
• Wall Detector:

• input: laser data
• output: lines (x, y, x2, y2)

• Corner Detector
• input: laser data
• output: corner points (x, y)

• Corridor Navigation
• input: wall lines
• output: wanted velocity

I Make it as clear and complete as possible:
• Helps you identify missing modules
• Teamwork becomes a lot easier

18/27

/w

Identify Interfaces

I For each module, define its interface
• Wall Detector:

• input: laser data
• output: lines (x, y, x2, y2)

• Corner Detector
• input: laser data
• output: corner points (x, y)

• Corridor Navigation
• input: wall lines
• output: wanted velocity

I Make it as clear and complete as possible:

• Helps you identify missing modules
• Teamwork becomes a lot easier

18/27

/w

Identify Interfaces

I For each module, define its interface
• Wall Detector:

• input: laser data
• output: lines (x, y, x2, y2)

• Corner Detector
• input: laser data
• output: corner points (x, y)

• Corridor Navigation
• input: wall lines
• output: wanted velocity

I Make it as clear and complete as possible:
• Helps you identify missing modules

• Teamwork becomes a lot easier

18/27

/w

Identify Interfaces

I For each module, define its interface
• Wall Detector:

• input: laser data
• output: lines (x, y, x2, y2)

• Corner Detector
• input: laser data
• output: corner points (x, y)

• Corridor Navigation
• input: wall lines
• output: wanted velocity

I Make it as clear and complete as possible:
• Helps you identify missing modules
• Teamwork becomes a lot easier

19/27

/w

Draw the Picture

19/27

/w

Draw the Picture

/pico/laser /pico/cmd_vel

/pico/odom

/pico/camera/image

19/27

/w

Draw the Picture

/pico/laser /pico/cmd_vel

/pico/odom

/pico/camera/image

localisation

wall_
detector

arrow_detector

navigation

...

obstacle_
avoidance

20/27

/w

Combining Modules

20/27

/w

Combining Modules

20/27

/w

Combining Modules

Sense Plan Act

20/27

/w

Combining Modules

Sense Plan Act
Detect
Exit

Calculate
Turn

Turn

20/27

/w

Combining Modules

20/27

/w

Combining Modules

Behavioral Layer 1

Behavioral Layer 2

Behavioral Layer ...

20/27

/w

Combining Modules

Behavioral Layer 1

Behavioral Layer 2

Behavioral Layer ...

20/27

/w

Combining Modules

Collision Avoidance

Wall Follower

...

Twist

Twist

Twist

Twist

20/27

/w

Combining Modules

Collision Avoidance

Wall Follower

...

Twist

Twist

Twist

Twist
?

21/27

/w

Modular Implementation

This is all nice and all, but pretty abstract.
How to actually implement this modular design?

22/27

/w

Modular Implementation

I Use functions
• Modularity within a process

• Can split up over different files

I Use ROS nodes
• Each node is a process

I Use ROS packages
• Way of grouping nodes together
• Can define dependencies

I Use C++ Classes:
• ’Data types’ that have encapsulated data and functionality
• Object-oriented programming (OOP)
• Don’t have to use it, but know that it is a very powerful paradigm
• Examples: std::vector, ros::Subscriber, ros::NodeHandle

22/27

/w

Modular Implementation

I Use functions
• Modularity within a process
• Can split up over different files

I Use ROS nodes
• Each node is a process

I Use ROS packages
• Way of grouping nodes together
• Can define dependencies

I Use C++ Classes:
• ’Data types’ that have encapsulated data and functionality
• Object-oriented programming (OOP)
• Don’t have to use it, but know that it is a very powerful paradigm
• Examples: std::vector, ros::Subscriber, ros::NodeHandle

22/27

/w

Modular Implementation

I Use functions
• Modularity within a process
• Can split up over different files

I Use ROS nodes
• Each node is a process

I Use ROS packages
• Way of grouping nodes together
• Can define dependencies

I Use C++ Classes:
• ’Data types’ that have encapsulated data and functionality
• Object-oriented programming (OOP)
• Don’t have to use it, but know that it is a very powerful paradigm
• Examples: std::vector, ros::Subscriber, ros::NodeHandle

22/27

/w

Modular Implementation

I Use functions
• Modularity within a process
• Can split up over different files

I Use ROS nodes
• Each node is a process

I Use ROS packages
• Way of grouping nodes together

• Can define dependencies

I Use C++ Classes:
• ’Data types’ that have encapsulated data and functionality
• Object-oriented programming (OOP)
• Don’t have to use it, but know that it is a very powerful paradigm
• Examples: std::vector, ros::Subscriber, ros::NodeHandle

22/27

/w

Modular Implementation

I Use functions
• Modularity within a process
• Can split up over different files

I Use ROS nodes
• Each node is a process

I Use ROS packages
• Way of grouping nodes together
• Can define dependencies

I Use C++ Classes:
• ’Data types’ that have encapsulated data and functionality
• Object-oriented programming (OOP)
• Don’t have to use it, but know that it is a very powerful paradigm
• Examples: std::vector, ros::Subscriber, ros::NodeHandle

22/27

/w

Modular Implementation

I Use functions
• Modularity within a process
• Can split up over different files

I Use ROS nodes
• Each node is a process

I Use ROS packages
• Way of grouping nodes together
• Can define dependencies

I Use C++ Classes:

• ’Data types’ that have encapsulated data and functionality
• Object-oriented programming (OOP)
• Don’t have to use it, but know that it is a very powerful paradigm
• Examples: std::vector, ros::Subscriber, ros::NodeHandle

22/27

/w

Modular Implementation

I Use functions
• Modularity within a process
• Can split up over different files

I Use ROS nodes
• Each node is a process

I Use ROS packages
• Way of grouping nodes together
• Can define dependencies

I Use C++ Classes:
• ’Data types’ that have encapsulated data and functionality

• Object-oriented programming (OOP)
• Don’t have to use it, but know that it is a very powerful paradigm
• Examples: std::vector, ros::Subscriber, ros::NodeHandle

22/27

/w

Modular Implementation

I Use functions
• Modularity within a process
• Can split up over different files

I Use ROS nodes
• Each node is a process

I Use ROS packages
• Way of grouping nodes together
• Can define dependencies

I Use C++ Classes:
• ’Data types’ that have encapsulated data and functionality
• Object-oriented programming (OOP)

• Don’t have to use it, but know that it is a very powerful paradigm
• Examples: std::vector, ros::Subscriber, ros::NodeHandle

22/27

/w

Modular Implementation

I Use functions
• Modularity within a process
• Can split up over different files

I Use ROS nodes
• Each node is a process

I Use ROS packages
• Way of grouping nodes together
• Can define dependencies

I Use C++ Classes:
• ’Data types’ that have encapsulated data and functionality
• Object-oriented programming (OOP)
• Don’t have to use it, but know that it is a very powerful paradigm

• Examples: std::vector, ros::Subscriber, ros::NodeHandle

22/27

/w

Modular Implementation

I Use functions
• Modularity within a process
• Can split up over different files

I Use ROS nodes
• Each node is a process

I Use ROS packages
• Way of grouping nodes together
• Can define dependencies

I Use C++ Classes:
• ’Data types’ that have encapsulated data and functionality
• Object-oriented programming (OOP)
• Don’t have to use it, but know that it is a very powerful paradigm
• Examples: std::vector, ros::Subscriber, ros::NodeHandle

23/27

/w

Modular Approach Using Functions

I Split up in functions

I Each function implements a re-usable, ’small’ but complete
calculation, action, ...

I The function arguments and return types are the interfaces
• Avoid global variables as much as possible!

while(ros::ok()) {
ros::spinOnce(); // get sensor data
... walls = detectWalls(laser_data, ...);
... corners = detectCorners(laser_data, ...);
... vel = navToGoal(walls, corners, ...);
... vel_safe = avoidCollision(vel, laser_data, ...);
publishVel(vel_safe);

}

I Whoah, it’s pretty clear what happens!
I Can even split up in separate files

23/27

/w

Modular Approach Using Functions

I Split up in functions
I Each function implements a re-usable, ’small’ but complete

calculation, action, ...

I The function arguments and return types are the interfaces
• Avoid global variables as much as possible!

while(ros::ok()) {
ros::spinOnce(); // get sensor data
... walls = detectWalls(laser_data, ...);
... corners = detectCorners(laser_data, ...);
... vel = navToGoal(walls, corners, ...);
... vel_safe = avoidCollision(vel, laser_data, ...);
publishVel(vel_safe);

}

I Whoah, it’s pretty clear what happens!
I Can even split up in separate files

23/27

/w

Modular Approach Using Functions

I Split up in functions
I Each function implements a re-usable, ’small’ but complete

calculation, action, ...
I The function arguments and return types are the interfaces

• Avoid global variables as much as possible!

while(ros::ok()) {
ros::spinOnce(); // get sensor data
... walls = detectWalls(laser_data, ...);
... corners = detectCorners(laser_data, ...);
... vel = navToGoal(walls, corners, ...);
... vel_safe = avoidCollision(vel, laser_data, ...);
publishVel(vel_safe);

}

I Whoah, it’s pretty clear what happens!
I Can even split up in separate files

23/27

/w

Modular Approach Using Functions

I Split up in functions
I Each function implements a re-usable, ’small’ but complete

calculation, action, ...
I The function arguments and return types are the interfaces

• Avoid global variables as much as possible!

while(ros::ok()) {
ros::spinOnce(); // get sensor data
... walls = detectWalls(laser_data, ...);
... corners = detectCorners(laser_data, ...);
... vel = navToGoal(walls, corners, ...);
... vel_safe = avoidCollision(vel, laser_data, ...);
publishVel(vel_safe);

}

I Whoah, it’s pretty clear what happens!
I Can even split up in separate files

23/27

/w

Modular Approach Using Functions

I Split up in functions
I Each function implements a re-usable, ’small’ but complete

calculation, action, ...
I The function arguments and return types are the interfaces

• Avoid global variables as much as possible!

while(ros::ok()) {
ros::spinOnce(); // get sensor data
... walls = detectWalls(laser_data, ...);
... corners = detectCorners(laser_data, ...);
... vel = navToGoal(walls, corners, ...);
... vel_safe = avoidCollision(vel, laser_data, ...);
publishVel(vel_safe);

}

I Whoah, it’s pretty clear what happens!
I Can even split up in separate files

23/27

/w

Modular Approach Using Functions

I Split up in functions
I Each function implements a re-usable, ’small’ but complete

calculation, action, ...
I The function arguments and return types are the interfaces

• Avoid global variables as much as possible!

while(ros::ok()) {
ros::spinOnce(); // get sensor data
... walls = detectWalls(laser_data, ...);
... corners = detectCorners(laser_data, ...);
... vel = navToGoal(walls, corners, ...);
... vel_safe = avoidCollision(vel, laser_data, ...);
publishVel(vel_safe);

}

I Whoah, it’s pretty clear what happens!

I Can even split up in separate files

23/27

/w

Modular Approach Using Functions

I Split up in functions
I Each function implements a re-usable, ’small’ but complete

calculation, action, ...
I The function arguments and return types are the interfaces

• Avoid global variables as much as possible!

while(ros::ok()) {
ros::spinOnce(); // get sensor data
... walls = detectWalls(laser_data, ...);
... corners = detectCorners(laser_data, ...);
... vel = navToGoal(walls, corners, ...);
... vel_safe = avoidCollision(vel, laser_data, ...);
publishVel(vel_safe);

}

I Whoah, it’s pretty clear what happens!
I Can even split up in separate files

24/27

/w

Modular Approach Using Nodes

I One step further: split up in ROS nodes

I Each node has own main function and main loop
I Interface: ROS messages

I Advantages:
• Clear separation of data
• Nodes are processes: run parallel
• Can inspect communication at run time

• rostopic echo ...
• Visualization

I Disadvantage:
• Overhead of using Subscribers and Publishers

24/27

/w

Modular Approach Using Nodes

I One step further: split up in ROS nodes
I Each node has own main function and main loop

I Interface: ROS messages

I Advantages:
• Clear separation of data
• Nodes are processes: run parallel
• Can inspect communication at run time

• rostopic echo ...
• Visualization

I Disadvantage:
• Overhead of using Subscribers and Publishers

24/27

/w

Modular Approach Using Nodes

I One step further: split up in ROS nodes
I Each node has own main function and main loop
I Interface: ROS messages

I Advantages:
• Clear separation of data
• Nodes are processes: run parallel
• Can inspect communication at run time

• rostopic echo ...
• Visualization

I Disadvantage:
• Overhead of using Subscribers and Publishers

24/27

/w

Modular Approach Using Nodes

I One step further: split up in ROS nodes
I Each node has own main function and main loop
I Interface: ROS messages

I Advantages:
• Clear separation of data

• Nodes are processes: run parallel
• Can inspect communication at run time

• rostopic echo ...
• Visualization

I Disadvantage:
• Overhead of using Subscribers and Publishers

24/27

/w

Modular Approach Using Nodes

I One step further: split up in ROS nodes
I Each node has own main function and main loop
I Interface: ROS messages

I Advantages:
• Clear separation of data
• Nodes are processes: run parallel

• Can inspect communication at run time
• rostopic echo ...
• Visualization

I Disadvantage:
• Overhead of using Subscribers and Publishers

24/27

/w

Modular Approach Using Nodes

I One step further: split up in ROS nodes
I Each node has own main function and main loop
I Interface: ROS messages

I Advantages:
• Clear separation of data
• Nodes are processes: run parallel
• Can inspect communication at run time

• rostopic echo ...
• Visualization

I Disadvantage:
• Overhead of using Subscribers and Publishers

24/27

/w

Modular Approach Using Nodes

I One step further: split up in ROS nodes
I Each node has own main function and main loop
I Interface: ROS messages

I Advantages:
• Clear separation of data
• Nodes are processes: run parallel
• Can inspect communication at run time

• rostopic echo ...
• Visualization

I Disadvantage:
• Overhead of using Subscribers and Publishers

25/27

/w

Modular Approach Using Nodes

I One step further: split up in ROS nodes
I Each node has own main function and main loop
I Interface: ROS messages

Directory Structure

src/
wall_detector.cpp
corner_detector.cpp
...

CmakeLists.txt

rosbuild_add_executable(wall_detector src/wall_detector.cpp)
rosbuild_add_executable(corner_detector src/corner_detector.cpp)
...

25/27

/w

Modular Approach Using Nodes

I One step further: split up in ROS nodes
I Each node has own main function and main loop
I Interface: ROS messages

Directory Structure

src/
wall_detector.cpp
corner_detector.cpp
...

CmakeLists.txt

rosbuild_add_executable(wall_detector src/wall_detector.cpp)
rosbuild_add_executable(corner_detector src/corner_detector.cpp)
...

25/27

/w

Modular Approach Using Nodes

I One step further: split up in ROS nodes
I Each node has own main function and main loop
I Interface: ROS messages

Directory Structure

src/
wall_detector.cpp
corner_detector.cpp
...

CmakeLists.txt

rosbuild_add_executable(wall_detector src/wall_detector.cpp)
rosbuild_add_executable(corner_detector src/corner_detector.cpp)
...

26/27

/w

Recap

I Using ROS in C++

I PICO Safe Drive Example

I Modular Programming
• Determine goal
• Identify requirements
• Identify modules
• Determine interfaces

I Modular Implementation
• Using functions
• Using ROS Nodes

26/27

/w

Recap

I Using ROS in C++

I PICO Safe Drive Example

I Modular Programming
• Determine goal
• Identify requirements
• Identify modules
• Determine interfaces

I Modular Implementation
• Using functions
• Using ROS Nodes

26/27

/w

Recap

I Using ROS in C++

I PICO Safe Drive Example

I Modular Programming
• Determine goal
• Identify requirements
• Identify modules
• Determine interfaces

I Modular Implementation
• Using functions
• Using ROS Nodes

26/27

/w

Recap

I Using ROS in C++

I PICO Safe Drive Example

I Modular Programming

• Determine goal
• Identify requirements
• Identify modules
• Determine interfaces

I Modular Implementation
• Using functions
• Using ROS Nodes

26/27

/w

Recap

I Using ROS in C++

I PICO Safe Drive Example

I Modular Programming
• Determine goal
• Identify requirements
• Identify modules
• Determine interfaces

I Modular Implementation
• Using functions
• Using ROS Nodes

26/27

/w

Recap

I Using ROS in C++

I PICO Safe Drive Example

I Modular Programming
• Determine goal
• Identify requirements
• Identify modules
• Determine interfaces

I Modular Implementation

• Using functions
• Using ROS Nodes

26/27

/w

Recap

I Using ROS in C++

I PICO Safe Drive Example

I Modular Programming
• Determine goal
• Identify requirements
• Identify modules
• Determine interfaces

I Modular Implementation
• Using functions
• Using ROS Nodes

27/27

/w

Reminders

I Corridor Competition: Next week!
• Location: GEM-N, Soccer Field
• Time: 13.45

I Weekly tutor appointments

I Test schedule

I Wiki page:
• Document every decision
• Software design
• Planning
• In general: explain how you are going to tackle the problem!

27/27

/w

Reminders

I Corridor Competition: Next week!
• Location: GEM-N, Soccer Field
• Time: 13.45

I Weekly tutor appointments

I Test schedule

I Wiki page:
• Document every decision
• Software design
• Planning
• In general: explain how you are going to tackle the problem!

27/27

/w

Reminders

I Corridor Competition: Next week!
• Location: GEM-N, Soccer Field
• Time: 13.45

I Weekly tutor appointments

I Test schedule

I Wiki page:
• Document every decision
• Software design
• Planning
• In general: explain how you are going to tackle the problem!

27/27

/w

Reminders

I Corridor Competition: Next week!
• Location: GEM-N, Soccer Field
• Time: 13.45

I Weekly tutor appointments

I Test schedule

I Wiki page:
• Document every decision
• Software design
• Planning
• In general: explain how you are going to tackle the problem!

