Embedded Motion Control

Best Practices in System Design for Robot Control

-
Component System System of systems
(Barrier, lights) (Traffic lights) (cars coordinate themselves)

Nico Huebel & Herman Bruyninckx

Mechanical Engineering
KU Leuven, Belgium

Objectives of this lecture

To understand the software design for System of systems: information
architecture and software architecture.

Discussion about “control”:

e state of cars & traffic?

e motion control in single car?

e motion coordination between cars?
e what traffic control is needed?

e what other “control” is needed?

Remember: program = functions + data structures + control flow

Embedded Motion Control, TU/e T U / @
Best Practices in System Design for Robot Control

Objectives of this lecture (2)

Important new focus that should be clear from first two slides:

e “control” of Systems of systems requires dialogues between the sub-systems, and not just data and event communication.
e such dialogues can only be held if all participating systems share a common language about how “their domain works”.
e such a language represents, formally, the Primitives, Relationships, Constraints, and Tolerances of the domain. For example, in traffic:

m Primitives: cars, lanes, stop line, roundabout, pre-sorting lanes, direction indicator, etc.

m Relationships between Primitives: driving in a lane, changing lanes, priority in lanes, priority between cars of different types (e.g., emergency
vehicles), driving in queue, traffic jam, use of direction indicator in lane change, protocol aboutn how to enter a roundabout, etc.

m Constraints on the properties of Primitives and/or Relationships: minimal distance between cars, speed limits on roads of various types, etc.

m Tolerances on Constraints: safe driving vs max-throughput driving, fine tolerance on speed limit violations, etc.

Embedded Motion Control, TU/e T U / @
Best Practices in System Design for Robot Control

Three modes of programming

¢ Programming in the Small — “Component”
= one single programmer has full control of data, functions, and control flow.
= whole programme in one programming language.

¢ Programming in the Large — “System”
= multiple programmers/programmes/languages, but developed in team.

= programmers take care of application resources
OS (asynchronously!) controls sharing of the “CPU”, “BUS”, “RAM?” resources.

¢ Programming in the Extra-Large — “System of systems”
= multiple companies develop multiple Systems, independently.
m each System cannot control its “peers”, to provide data and to execute functions, asynchronously over the Internet.

m each System has (a lot of) code to be robust against the others not doing what is expected.

Embedded Motion Control, TU/e T U / @
Best Practices in System Design for Robot Control

Why is step from “Component” to “System” difficult?

1. Asynchronicity:
state can be changed by other Components in the System, beyond the control of one Component's “control flow”.

Example: position + velocity state of moving car is estimated with data from several sensors interfaced
through (local) network, and provided by devices with their own computer units.

= making decisions based on possibly inconsistent state becomes undeterministic.
= software architecture needed for determinism.

2. Semantics:
interpretation of data structures can differ between programmers of different Components.

Example: position + velocity state of moving car represented by three floats for position, and three floats for
velocity, but Component A is using meters and radians, while Component B uses yards and degrees.

= decisions could be made on wrong interpretation of state.
= information architecture needed for unambiquity of interpretation.

Embedded Motion Control, TU/e
Best Practices in System Design for Robot Control

TU/e

Information architecture for unambiguous Semantics

Examples of Knowledge:
e traffic rules
e traffic queues and jams
- 1 ing f i fall
S @ @ @ e load es.caputlg rom robot gripper falls down
| @ @ e recognize airplane stall
= clcis
Z &
i Gersortiactvato
Examples of Information: Examples of Data:
e traffic rules to be taken into account now. e position logs of cars.
e cars in queues & cars in jams. e force & position logs of gripper.
e impedance properties of object in gripper. e measurement data from stall-related sensors.

e state of stall-related parameters.

Formal models (“Domain-Specific Languages”, DSLs) must be introduced to connect data to information and to knowledge.

(The triangle in the figure above is called the Knowledge pyramid.)

m Embedded Motion Control, TU/e T U / =

Best Practices in System Design for Robot Control

Information architecture for Traffic System of systems

How to represent the various state variables:

e of Components.

e of System.

e of System of systems.

e of the interactions between all of the above.

How to represent the various actions:

e what does one car have to know about the state of the others before it can take (safe and predictable)
decisions about entering a traffic point?

e what does it have to know about the state of the traffic point?
(which is where the cooperative interaction between cars takes place!)

e what does it have to do with all the state values?

e when does it have to do that?

Embedded Motion Control, TU/e T U / @
Best Practices in System Design for Robot Control

Information architecture for Traffic System of systems (2)

Pragmatic way to create DSLs

Take a couple of people and “play” the game of being cars in traffic yourselves:

¢ identify what you say to each other to make traffic work, and work safely;

¢ identify what models about traffic that you have in your mind, and that you expect to be present in the other people's head too.

You probably will find out that the non-nominal cases require a lot more attention and “language development efforts” than normal traffic.

Embedded Motion Control, TU/e T U / @
Best Practices in System Design for Robot Control

Information architecture for unambiguous Semantics

The following slides introduce two models of how to compose a (mechatronics, or other Cyber-Physical) System of systems from Components and
Sub-Systems.

The first model, the “Composition Pattern”, identifies which roles and responsibilities (the “5Cs”) appear in all systems, and how they are playing
together.

The second model, the “Four Levels”, helps you to identify which resources and capabilities appear in your systems, and how they can be put together via
the Composition Pattern.

Modelling the domain-specific behaviour in your application systematically, via hybrid constrained optimization problem formulations, supports the
integration between different Levels, as well as within one single Level: the components that must work together provide each other the objective functions,
constraints, and tolerances that they would like the other components to take into account.

Hence, solving hybrid constrained optimization problems is a major Computational activity in the system, together with the monitoring of the controllers
that execute the outcomes of the optimization, and the Coordination and Configuration that can be triggered by events generated in the monitoring.

Embedded Motion Control, TU/e T U / @
Best Practices in System Design for Robot Control

Information architecture for unambiguous Semantics (2)

Coordinating the activities of all interacting components requires a common language to hold dialogues about setting up a cooperation, about monitoring
the progress of that cooperation, and the quality of its execution.

The requests that components communicate to each other should always be considered as just that: requests. And not as commands that are expected to be

executed in a guaranteed way.

An important part of the design of such a language is to formalize the set of events via which components inform each other about the progress of their

agree-upon cooperation.

Embedded Motion Control, TU/e T U / @
Best Practices in System Design for Robot Control

Composition Pattern for “5C” functionalities

functional
Computation

Computations — continuous state:

functional
Computation

[functional Computation |

Composer

e dynamics of machines

Configurator

connection \

LY ~ e change in properties of objects/environment

Comp

A A

>

>

functional <

connection

e Logger, Monitor, Scheduler: recurring types of Computations

utation <

YYY

A

YYY

- Configuration — changing Computations state: values of parameters in

monitor

Coordinator —

YVYY
monftor I Computations
|
oorainator —— ° ° . o« . . .
\ events [Logger)| Coordination — discrete state: decision to change which Computations
| | and Configurations are activated.
Configurator Communication — connecting states
Logger Composition:

e design of all of the above components, as one System

e same design pattern reused fractally

Embedded Motion Control, TU/e
Best Practices in System Design for Robot Control

TU/e

Composition Pattern for “5C” functionalities (2)

The fractal property of the Composition Pattern means that:

e it repeats itself “inwards”: a higher level of detail model for any primitive in an existing model will be a “full” Composition Pattern in itself.
For example, a motion control system can consider the torques to be sent to actuators as its most primitive data blocks, but in reality they are always
just inputs to control loops (e.g., current control) around the actuators.

e it repeats itself “outwards”: the design of the integration of an existing system into a larger system of systems will also be done best via the
Composition Pattern.

For example, a robotic workcell can be “just” one of the many devices that have to cooperate in a production line, and that line can be “just” one of
the many that have to cooperate in a manufacturing plant.

In all these cases, the levels are coupled by the exchange of (actual/desired) “quality of service” data, functional data, events, and objective functions or
constraints, following the methodology of composition advocated in the Patterns.

Embedded Motion Control, TU/e T U / @
Best Practices in System Design for Robot Control

Composition Pattern for “5C” functionalities (3)

In both mentioned “design compositions”, there are always(?) several opportunities for optimization in the information model because:

e the Coordinators of composed sub-Systems might be fused into the Coordinator of the composing System.
e the same holds for the Configurators, and for the “support” components (Monitors, Schedulers, Loggers).

e similarly with Communication, but this will often require extra decision making about filtering messages, depending on the current status of the
System, the Quality of Service that its Capabilities can offer to its peers, or that of the resources that it relies on itself.

Such “optimizations” quickly become highly domain-dependent.

“Domain-dependent” implies “knowledge contexts”, and the following slide shows how to integrate such contexts into the Composition Pattern.

Embedded Motion Control, TU/e T U / @
Best Practices in System Design for Robot Control

Composition Pattern with knowledge contexts

Knowledge:
Context_A: device capabilities e values of parameters in the Information models in
— . various Components depend on the same particular
Context B: quality inspection
capabilities and constraints context.
(motion control subsystem) [quality classification subsystem)
. Composer . e contexts can overlap.
Configurator Configurator
| Y AN | Y NN

connection \ : connection connection \ - connection ExampleS:

< functional < > functional < >

< Computation | |« > < Computation | |« >

B B e motion control of driving must be adapted to normal
lv Yy YV Yy Y Yy VI traffic, queues, jams, one-lane to four-lane driving,...
monitor monitor
. Scheduler |] * tunings of Engine Control Unit anfi Electronic
Coordinator |———— Coordinator |— events Stability Control are adapted to driver style: eco,
comfort, sportive,...
Composer — monitor L
Practice: the contextual knowledge about parameter values

Configurator

typically ends up in “magic numbers” in the various

Context_C: system capabilities Logger Configurators within the scope of the context.
and constraints

Embedded Motion Control, TU/e T U / @
Best Practices in System Design for Robot Control

Four-Levels Pattern of “5C” Information architecture

Levels:

e Tasks

e Capabilities

e Functionalities

e Devices/Resources

Information dependencies (“context™):

e Scheduling, Coordination and Configuration typically only come into play in
Capabilities, because that is where it begins to make sense to execute different
functions in particular order and with particular settings.

e similarly, Tasks depend on similar particular settings in the Capabilities they use.
e the start of a Task can depend on the outcome of other Tasks.

e Capabilities have software architectures that depend on the hardware architecture of
Devices.
None of the other levels requires software architectures.

Physical World

L3 73sks /
’ ' Software
v 7‘ \\
O O &,
ﬁ? 12 Capabmtes
! ! ! Software,
ICYCR.)

L7 Functions

2y
5 . : I: Software Logging

89 Monitoring

, Coordination

Py
O ““EJT
@D

@: ; @ Scheduling
o LO: Devices @
‘ Communication
- /LA
Fi Computation
E Hardware Configuration

Embedded Motion Control, TU/e

Best Practices in System Design for Robot Control

TU/e

From Information architecture to Software architecture

The models of the system designs introduced up to now are just that: models.
What is missing is “something” to turn the information architecture into something that can be executed.
That “something” is called a software architecture, which uses the primitives offered by programming languages and operating systems.

It integrates the information architecture with the hardware available for (i) communication (referred to in a generic way as “BUS”), (ii) computation
(referred to in a generic way as “CPU”), and (iii) memory (referred to in a generic way as “RAM”).

It makes a lot of sense to look at this integration as just another example of the composition of “Capabilities” with “Resources”, hence, the same model
terminology and patterns can (should!) be reused.

Software architectures are not a focus of this course; information architectures are, and especially how to make them with the patterns introduced before.

Embedded Motion Control, TU/e T U / @
Best Practices in System Design for Robot Control

Software architecture: sharing “state”

Building blocks:

e programming in the Small: threads, that is, serial control flows whose functions are executed on the same CPU, and have access to data structures in
the same RAM.

e programming in the Large: processes, that is, sets of threads that are shielded from each other's RAM, and hence need at least one BUS to cooperate;
it is possible that different processes are executed by the same CPU.

e programming in the Extra Large: services, that is, sets of processes that interact with each other while being somewhere at an unspecified location on
the Net, hence not sharing any RAM or CPU.

Only in a thread, synchronous programming is possible, which means that:
there is one single control flow, and each function runs to completion.
Hence, the order of access to data is clear from the programme code.

Systems always require asynchronous programming:

e multiple control flows (“threads” — “services”); — the order of access to data is not clear from the programme code.

e execution of functions can be pre-empted,
e on single machine, or distributed over a network.

Embedded Motion Control, TU/e T U / @
Best Practices in System Design for Robot Control

Inter-Process Communication: how & why?

How?

e message passing interface:

send(message, channel) ;

read (message, channel);

e streams interface: like message passing, but caller is ready for the case there is no data yet, no data anymore, or multiple answers at the same time.

e data streams between identified data processors;
e coordination events between all processes;
e while making sure that:

= no data is lost (unless application wants it!);

= no data is corrupted;

m access to data is efficient.
— all of these reasons have a performance that (should) depend on the application!

Embedded Motion Control, TU/e T U / @
Best Practices in System Design for Robot Control

Bad practices in multi-processing

Avoid mutexes or locks:

e these are OS-facing programming primitives, that can be misused in way too many ways...

e use a library that (i) provides abstraction of access to shared resources, and (ii) with configurable application-facing performance.

Avoid priorities to determine “which process goes first”
— use events-with-meaning!

Avoid to share state explicitly,
— use information events about other processes’ state changes instead!

Embedded Motion Control, TU/e T U / @
Best Practices in System Design for Robot Control

Best practices in multi-processing

One event queue in each process, hence:

e one Coordinator:
m takes decisions on what to do:
m based on interpretation of incoming events:
m decisions are provided in the form of outgoing events.
e one Scheduler: defines in what order to call functionalities.

e one Configurator: defines all “magic numbers”.

Multiple data queues:

e configured via events;
e available as fully accessible “streams”.

Multiple Computations:

e configured via events:

) €€

e “control”, “monitoring”, “world modelling”, “trajectory selection”,...;

¢ take data/event flows in, put data/event flows out.

Embedded Motion Control, TU/e T U / @
Best Practices in System Design for Robot Control

Best practices in multi-processing (2)

Each synchronous activity has one, and only one, “event loop”

when triggered // = scheduling by 0S
do { // = your own scheduling
communicate() // get "message" with events & data
// = link with all other
// asynchronous activities
coordinate() // handle the events
configure() // possibly requiring reconfiguration

schedule() // run your own Computation functions

coordinate() // functions could trigger new events
communicate() // or data that others might

// have to know about
log() // remember what happened

Embedded Motion Control, TU/e T U / @
Best Practices in System Design for Robot Control

Example of event loop: one-dimensional position controller

state of the system Xx(t), i.e. position of the mass m.

setpoint inputs X4, Xd, Xd, e.g. desired position, velocity Fy o
18

and acceleration of the mass.

measurement inputs X and X, e.g. actual position and
velocity of the mass.

feedback gains kp, Ky, i.e. proportional

position/velocity control gains computed, for example,
via pole placement (off line).

outputs of control is desired acceleration, reached after
summation “4”,

feedback output is transformed, via feedforward
multiplication by the estimated mass 1, into force F
to system actuators.

disturbance force Fgis: applies after control, at
summation “5”.

system: assumed to be a perfect double integrator with
real mass m.

G TS 7 N TR 0 S A N O

>~

i~
>~

c

=
Q.
v+
QO
1

Embedded Motion Control, TU/e

Best Practices in System Design for Robot Control

TU/e

Event loop for one-dimensional position controller (2)

The following function blocks, data blocks and control flow schedule realise the controller.

e data blocks: each arrow in the control diagram represents a dedicated data structure, whose meaning and structure is clear from the control diagram.
e function blocks: each rectangle in the control diagram represents a multiplication, and each circle represents a summation.

e the schedule that realises the controller's event loop (by triggering function blocks) is the following:

when triggered // = 0S executes controller every, say, 10 milliseconds
do {
communicate() // read desired position/velocity/acceleration
// from input data block(s)
// read actual position/velocity from sensors
schedule() // trigger function blocks, in the following order:
// sums 1 & 2, multiplications k, & ky,

// sums 3 & 4, multiplication m
communicate() // write computed control force to actuator data block

}

Embedded Motion Control, TU/e T U / @
Best Practices in System Design for Robot Control

Event loop for one-dimensional position controller (3)

It is possible that the computation of the control loop generates events itself. (Or rather, that are generated in monitor functions that the schedule()
function adds to some data blocks in the controller.) For example:

e when an error between desired and actual state parameters is too large.
e when the trend of the error is undesired, e.g., always positive.

e when the computed control force F is too large for the actuators.

It is possible that the computation of the control loop must react to events that come from the outside (and that are different from the timer events that most
control loops rely on). For example:

¢ anew trajectory is started, so that the control must be reset.

e the current trajectory is interrupted, so that the controller must bring the system to a safe stop as quickly as possible.

Hence, the control loop event queue must be extended with coordinate () functions to react to (and/or generate) events, and configure () functions
to realise the reconfigurations triggered by the coordination execution.

The “safe stop” functionality would require the addition of extra functions blocks. (This is preferably realised outside of the position control anyway.)

Embedded Motion Control, TU/e T U / @
Best Practices in System Design for Robot Control

Event loop for one-dimensional position controller (4)

Notes

implementations of control loops typically require no “real” communication, but just reading and writing from data in the memory of the computer.
The core technology here is memory-mapped IO.

more and more control systems (and even components) use field busses, with Ethernet-based protocols being the most popular ones. Such
architectures require at least two asynchronously running activities: the field bus device driver takes care of the communication over the network,
and writes/reads messages into the data blocks that the controllers use in the their event loops.

interrupts are another very important source of events in control systems; many modern interface devices can be configured to generate events to
which the operating system will react. The application can configure the operating system to schedule a specific interrupt handler function as soon
as the interrupt arrives. (The above-mentioned communications most often work in such an interrupt-driven way.)

the software offered in the course to do software projects is using the event loop pattern everwhere, but almost never in its full form but always with
context-specific simplifications.
Your extensions and improvements should do the same.

Embedded Motion Control, TU/e T U / @
Best Practices in System Design for Robot Control

ZeroMQ library for asynchronous programming,

takes care of “discovery” & “communication”

Key reference: “Multithreading with ZeroMQ”
(http://zguide.zeromgq.org/page:all#toc45)
Also contains code examples in many programming languages.

Data streams: ZeroMQ sockets provide an abstraction of asynchronous message streams, multiple messaging patterns, message filtering, seamless access to
multiple transport protocols and more.

That abstraction is good enough for this course :-)

Discovery & group communication with Zyre sub-library:

e whisper to identified peer in a group.
e shout to all peers in a group,
e one peer can take part in several group communications.

Embedded Motion Control, TU/e T U / @
Best Practices in System Design for Robot Control

Image references

All images in this presentation are taken from Wikimedia Commons, except the ones made by the author. Zhang Lin is the author of the “Four Levels”
figure.

Embedded Motion Control, TU/e T U / @
Best Practices in System Design for Robot Control

