Embedded Motion Control

Best Practices in System Design for Robot Control

Nico Huebel & Herman Bruyninckx

Mechanical Engineering KU Leuven & TU Eindhoven

Objectives of this lecture

Today's focus is on perception and software design for systems-of-systems.

Task: navigate maze till you reach the exit

Skills: go straight, turn left , open door, sense exit, ...

Actions: Motion/Sensing actions like get laser scan, move motor, move platform, ...

 \Rightarrow representation and level of abstraction is your choice!

World Model brings perception, control, knowledge (task, objects, environment, robot) together.

A World Model for the maze challenge

Representation: type of tiles:

- left junction
- right junction
- door
- ...

How can these **semantic primitives** be used to improve perception?

- attach template
- specific algorithm (or configuration)
- ...

How are these semantic primitives connected to the **skills**:

- T-junction: turn left, turn right
- straight corridor: go straight, turn left (?)
- ...

How are these semantic primitives connected to **control**:

- drive straight until I am at a junction
- ...

A *semantic world model* connects and configures the layers using semantic representations (knowledge)!

Today's focus will be on the representation and estimation of the robot and environment state. I want you to understand the *concepts* not only the equations.

I will represent *one* particular view on it based on the inclusion of semantic knowledge.

Questions so far?

Kalman Filter gives you an estimate of your system state *and* about the uncerteinty of this estimate.

Maze challenge: Pico has encoders and laser scanner

- Encoders: fast, accumulates errors (digitalization, slip, ...)
- Laser scanner: slow, exteroceptive

How can we use the measurements of both sensors to improve our state estimate?

ent	

Process Model:

$$x_k = Ax_{k-1} + Bu_{k-1} + w_{k-1}$$

Measurement Model:

$$z_k = Hx_k + v_k$$

$$p(w) \sim N(0, Q),$$
$$p(v) \sim N(0, R).$$

Taken from *An Introduction to the Kalman Filter* by Greg Welch and Gary Bishop

Shortcomings of the Kalman Filter

The Kalman Filter is widely used but has several limitations:

- Linear system
- Gaussian noise
- How to get the covariance matrices?
- Unimodal probability distribution

Where are the semantics?

Particle Filters (1/2)

Particle Filter algorithms are also widely used and

- work with non-linear processes,
- approximate arbitrary distribution with samples,
- follow a similar (recursive) structure.

How do they work?

- Every particle represents a hypothesis for the state.
- Prediction: Put every particle through process equations.
- Update: Score particle.
- Resampling: Remove "bad" particles and add more in "good" regions.

Dieter Fox, University of Washington

Recap: A World Model for the maze challenge

Representation: type of tiles:

- left junction
- right junction
- door
- ...

How can these **semantic primitives** be used to improve perception?

- attach template
- specific algorithm (or configuration)
- ...

How are these semantic primitives connected to the **skills**:

- T-junction: turn left, turn right
- straight corridor: go straight, turn left (?)
- ...

How are these semantic primitives connected to **control**:

- drive straight until I am at a junction
- ...

Particle Filters (2/2)

Where is the semantic knowledge?

- Particles can represent a hybrid state.
- Combine knowledge about the environment...
- ... while obtaining the parametrization of skills/actions.

What we really care about in the maze challange is what kind of semantic primitive is in front of us and how far is it away.

- Type of primitive gives us available skills.
- We only care about our relative distance to the primitive, not our absolute position in the maze!
- This distance can be used to parametrize skills and monitor their execution.
- Particle represents a hypothesis about the type of primitive (discrete) and its relative position (continous).

Conclusions

- Choosing good representations is key for a successful application.
- Always estimate what is useful for your application. That often requires some transformation/pre-processing.
- World Model brings everything together. So designing it should be a key effort.
- Kalman Filter gives you an optimal estimate *plus* uncertainty of that estimate. Use that.
- The prediction-update structure is common and very powerful.
- A particle filter can represent hybrid states and we can incorporate semantics.

