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Objectives of this lecture

Today's focus is on perception and software design for systems-of-systems.

Task: navigate maze till you reach the exit Ta S k

Skills: go straight, turn left , open door, sense exit, ...

Actions: Motion/Sensing actions like get laser scan, move motor, move

platform, ...

= representation and level of abstraction is your choice! WO rI d S k . I |
-« |

World Model brings perception, control, knowledge (task, objects, M Od EI

environment, robot) together.

Action
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A World Model for the maze challenge

Representation: type of tiles: Bl ][] | I |
e left junction

e right junction — — | ] | |
e door

([

How can these semantic primitives be used to improve perception? — -

e attach template
e specific algorithm (or configuration)

How are these semantic primitives connected to the skills:

e T-junction: turn left, turn right

e straight corridor: go straight, turn left (?) How are these semantic primitives connected to control:
. e

e drive straight until I am at a junction
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A semantic world model connects and configures the layers using semantic representations
(knowledge)!

Today's focus will be on the representation and estimation of the robot and environment state.
I want you to understand the concepts not only the equations.

I will represent one particular view on it based on the inclusion of semantic knowledge.

Questions so far?
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Kalman Filter for Sensor Fusion (1/3)

Kalman Filter gives you an estimate of your system state and about the uncerteinty of this estimate.

Maze challenge: Pico has encoders and laser scanner

e Encoders: fast, accumulates errors (digitalization, slip, ...)
e Laser scanner: slow, exteroceptive

How can we use the measurements of both sensors to improve our state estimate?
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Kalman Filter for Sensor Fusion (2/3)
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Kalman Filter for Sensor Fusion (2/3)
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Kalman Filter for Sensor Fusion (2/3)
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Kalman Filter for Sensor Fusion (2/3)
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Kalman Filter for Sensor Fusion (2/3)
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Kalman Filter for Sensor Fusion (2/3)
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Kalman Filter for Sensor Fusion (2/3)
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Kalman Filter for Sensor Fusion (2/3)

... Prediction,.-’
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Kalman Filter for Sensor Fusion (2/3)
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Kalman Filter for Sensor Fusion (3/3)

Process Model:

Measurement Update (“Correct™)

3 (13 10t??
Time Update (*Predict™) (1) Compute the Kalman gain

(1) Project the state ahead T - 1T -1
" ) K, = PH' (HP H" +R)
xk = Axk_1+Buk_1

Measurement Model:

(2) Update estimate with measurement z;

p(w)~N(0, Q), (2) Project the error covariance ahead %, = &, + K, (2, - Hx)

p(v) ~N(O R). P;< = APk_ 1AT + Q (3) Update the error covariance
P, = (I-K,H)P,

Initial estimates for X, , and P, _,

Taken from An Introduction to the Kalman Filter by Greg Welch and Gary Bishop
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The Kalman Filter is widely used but has
several limitations:

e Linear system

e (Gaussian noise

e How to get the covariance matrices?
e Unimodal probability distribution

Where are the semantics?

Shortcomings of the Kalman Filter

y & N
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Particle Filter algorithms are also widely
used and

e work with non-linear processes,

e approximate arbitrary distribution with
samples,

e follow a similar (recursive) structure.

How do they work?

e Every particle represents a hypothesis for
the state.

e Prediction: Put every particle through
process equations.

e Update: Score particle.

e Resampling: Remove "bad" particles and
add more in "good" regions.

Particle Filters (1/2)

Dieter Fox, University of Washington
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Recap: A World Model for the maze challenge

Representation: type of tiles: Bl ][] | I |
e left junction

e right junction — — | ] | |
e door

([

How can these semantic primitives be used to improve perception? — -

e attach template
e specific algorithm (or configuration)

How are these semantic primitives connected to the skills:

e T-junction: turn left, turn right

e straight corridor: go straight, turn left (?) How are these semantic primitives connected to control:
. e

e drive straight until I am at a junction
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Particle Filters (2/2)

Where is the semantic knowledge?

e Particles can represent a hybrid state. I |
e Combine knowledge about the environment... 7
e ... while obtaining the parametrization of skills/actions. .
What we really care about in the maze challange is what kind of semantic | l ]

primitive is in front of us and how far is it away.

e Type of primitive gives us available skills.

e We only care about our relative distance to the primitive, not our
absolute position in the maze!

e This distance can be used to parametrize skills and monitor their
execution. L

e Particle represents a hypothesis about the type of primitive (discrete) —
and its relative position (continous).

Embedded Motion Control, TU/e T U / @
Best Practices in System Design for Robot Control




Conclusions

e Choosing good representations is key for a successful application.

e Always estimate what is useful for your application. That often requires some transformation/pre-processing.
e World Model brings everything together. So designing it should be a key effort.

e Kalman Filter gives you an optimal estimate plus uncertainty of that estimate. Use that.

e The prediction-update structure is common and very powerful.

e A particle filter can represent hybrid states and we can incorporate semantics.
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