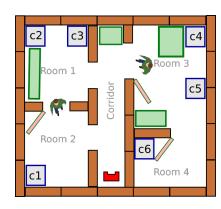
MRC 2021 Tooling and Infrastructure

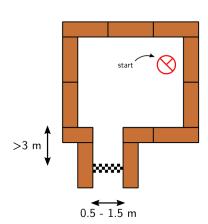
Bob Hendrikx


Eindhoven University of Technology Department of Mechanical Engineering

April 21, 2021

The Assignment

Final Competition: Bring items to cabinets in a dynamic hospital environment, of which a map is provided


- ▶ Goal:
 - visit an unknown number of cabinets as fast as possible
- You can use:
 - ► The Laser Range Finder to detect walls and doors
 - The encoder data from the wheels
 - The control effort signal to notice touches
- Important Dates:
 - ► Final Presentations: June 2
 - Competition Day: June 9

Intermediate Assignment

Escape Room Competition: let a robot escape the room through the door.

- ► Goal:
 - try to be as fast as possible
- You can use:
 - ► The Laser Range Finder to detect walls
 - The encoder data from the wheels
 - The control effort signal to notice touches
- ► Competition day: May 12

Simple, right?

Don't worry, we supply you with some tools to get you started!

Introducing the Robot: PICO

- Unfortunatly we cannot use it!
- ► Telepresence Robot from Aldebaran
 - Robot type: Jazz
- Sensors:
 - ► Laser Range Finder (LRF)
 - Wheel encoders (odometry)
 - ► 170° wide-angle camera
- Actuators:
 - Holonomic base (omni-wheels)
 - ► Pan-tilt unit for head
- Computer:
 - ► Intel I7
 - ► Running Ubuntu 16.04

ROS

- ► Robot Operating System
 - Open-source meta-operating system for robots

- ➤ Won't be using it!
- Instead, we will provide our own 'software layer'
 - It is simpler to understand, and 'cleaner' to use
- However, you are still allowed to use ROS!

Ubuntu

Development of PICO's software will be done in Ubuntu.

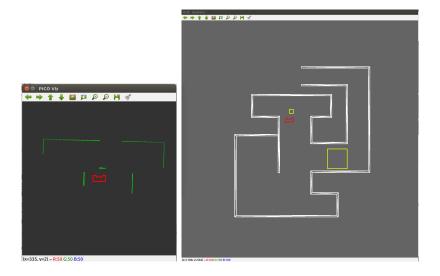
- Linux-based operating system
- ► Use version **18.04** (16.04 and 20.04 are at own risk)
- ▶ 32- and 64-bit (64-bit recommended)
- Easy dual boot installation with e.g.,
 Windows
- ▶ Download: see tutorial!
 - ► Any problems? → Check the wiki.
 - No info? → Send us an email.

C++

- ▶ We will use C++ as programming language
- ► C++ is object-oriented C
 - "C with Classes"
 - Encapsulate data and functionality within objects
- ▶ It is a powerful but complex programming language.
- However, we provide you the MRC framework to get you started

Creating code: Qt Creator

- ► Integrated Development Environment
 - Advanced code editor
- Many advantages over 'simple editors':
 - Syntax highlighting
 - Code completion
 - Visual compiler feedback
 - Static code checking
 - Refactoring tools
 - Parenthesis matching
 - **.**..
- Or your own favorite editor that supports CMake..


Git Version Control

- Version Control System:
 - ► 'Manages files and directories, and the changes made to them, over time'
- Used to store and maintain your code on the server
 - (Like Dropbox)
- Maintains version history
- ▶ Is distributed
 - You always have the full history on your pc
 - You can always go back to a version, show differences, even when off-line
- More info on the Wiki

PICO Simulator

- The simulator will be used to replace the real robot.
- ► PICO Simulator:
 - Simulates:
 - Sensors (Laser, odometry)
 - Actuators (Base)
 - Environment (walls, objects)
- Can easily create test environments using height maps
- Integrates well with our provided software
 - If your software runs in the simulator, it runs on the robot

PICO Simulator

Example

- ► Full Example: from requirements, through Task-Skill-Motion to Software Executable.
- ▶ (far) from perfect!
- Focus on decoupling parts of functionality, explicitly in the code.

Tutorial lectures will introduce robotics concepts in more detail!

Wiki

- MRC Wiki:
 - http://cstwiki.wtb.tue.nl /index.php?title=Mobile_Robot_Control
 - ▶ Info on practical assignment, installation, getting started
 - Log-in: student account
- Group pages on EMC Wiki:
 - Each group gets its own page
 - ► Update at least weekly
- Overall use:
 - ► Everyone can edit
 - ► If you see a mistake: correct it

Working together

Because working together face-to-face is not possible:

- ▶ We recommend using Microsoft Teams within your group
- Meet with your tutor once every week using video call
- Use canvas for asking general MRC questions to tutors and fellow students
- Use canvas for FAQ about problems (e.g. dual boot issues)
- If you had a problem and know how to fix it: add it
- Use canvas to discuss the video lectures

Recap

► Robot: Simulator only

► OS: Ubuntu 18.04

► Programming language: C++

Code editor: Qt Creator

Version control: git

▶ Documentation: Wiki

meetings: Microsoft Teams

General questions and discussion: Canvas

That should get you started!

Groups

Each group will be supervised by a tutor:

1.	Manuel Munoz Sanchez	7. P	eter van Dooren
2.	Peter van Dooren	8. Jo	ordy Senden
3.	Jordy Senden	9.	
4.	Hao Liang Chen	10.	
5 .	Bob Hendrikx	11	
6.	Manuel Munoz Sanchez	12.	

It is your responsibility to get in touch with your tutor (see Wiki)

What should I do now?

- ► Make your own groups of max. 6 people
 - By adding your name and contact info to one of the groups on the wiki
 - Send an email to your group members to get in touch
- Send an email to your tutor as a group:
 - to schedule the first meeting,
 - with one username for access to your Git, (tutorial)
- Check the Wiki & Finish the Tutorials:
 - http://cstwiki.wtb.tue.nl/index.php?title=Mobile_ Robot_Control