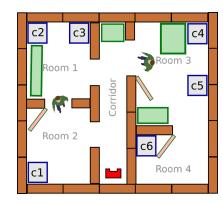
EMC 2019 Tooling and Infrastructure

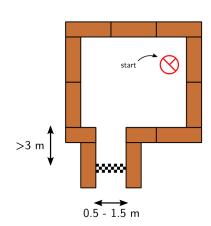
Bob Hendrikx


Eindhoven University of Technology Department of Mechanical Engineering

April 24, 2019

The Assignment

Final Competition: Bring items to cabinets in a dynamic hospital environment, of which a map is provided


- You have to:
 - visit an unknown number of cabinets as fast as possible
- You can use:
 - ► The Laser Range Finder to detect walls and doors
 - The encoder data from the wheels
 - The control effort signal to notice touches
- ► Important Dates:
 - ► Final Presentations: June 5
 - ► Competition Day: June 12

Intermediate Assignment

Escape Room Competition: let a robot escape the room through the door.

- You have to:
 - ► try to be as fast as possible
- You can use:
 - ► The Laser Range Finder to detect walls
 - The encoder data from the wheels
 - ► The control effort signal to notice touches
- ► Competition day: May 15

Simple, right?

Don't worry, we supply you with some tools to get you started!

Introducing the Robot: PICO

- PICO is the robot you have to use!
- ► Telepresence Robot from Aldebaran
 - Robot type: Jazz
- Sensors:
 - ► Laser Range Finder (LRF)
 - Wheel encoders (odometry)
 - ▶ 170° wide-angle camera
- Actuators:
 - ► Holonomic base (omni-wheels)
 - ▶ Pan-tilt unit for head
- Computer:
 - ► Intel I7
 - ► Running Ubuntu 16.04

ROS

- ► Robot Operating System
 - Open-source meta-operating system for robots

- ▶ Won't be using it!
- ► Instead, we will provide our own 'software layer'
 - ▶ It is simpler to understand, and 'cleaner' to use
- However, you are still allowed to use ROS!

Ubuntu

Development of PICO's software will be done in Ubuntu.

- Linux-based operating system
- ▶ Use version **16.04** (not 14.10, 15 or 17!)
- ▶ 32- and 64-bit (64-bit recommended)
- Easy dual boot installation with e.g.,
 Windows
- Download: see tutorial!
 - ► Any problems? → Check the wiki.
 - No info? → Send us an email.

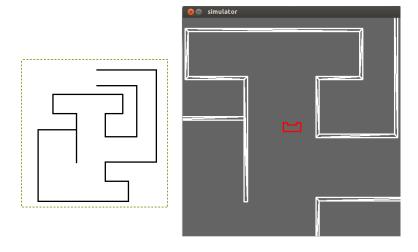
C++

- ▶ We will use C++ as programming language
- ► C++ is object-oriented C
 - ► "C with Classes"
 - Encapsulate data and functionality within objects
- ▶ It is a powerful but complex programming language.
- However, we provide you the EMC framework to get you started

Creating code: Qt Creator

- ► Integrated Development Environment
 - Advanced code editor
- Many advantages over 'simple editors':
 - Syntax highlighting
 - Code completion
 - Visual compiler feedback
 - Static code checking
 - Refactoring tools
 - Parenthesis matching
 - **.** . . .

Git Version Control


- Version Control System:
 - 'Manages files and directories, and the changes made to them, over time'
- Used to store and maintain your code on the server
 - ► (Like Dropbox)
- Maintains version history
- ► Is distributed
 - You always have the full history on your pc
 - You can always go back to a version, show differences, even when off-line
- More info on the Wiki

PICO Simulator

- You will have to work with the real robot, but we only have one. Therefore:
- ► Test time is limited and has to be scheduled, see Wiki!
- ► PICO Simulator:
 - Simulates:
 - Sensors (Laser, odometry)
 - Actuators (Base)
 - Environment (maze)
- Can easily create test environments using height maps
- Integrates well with our provided software
 - If your software runs in the simulator, it runs on the robot
 - ▶ This does not guarantee that it will also work...

You still need to test on the real system!

PICO Simulator

Example

- ► Full Example: from requirements, through Task-Skill-Motion to Software Executable.
- (far) from perfect!
- Focus on decoupling parts of functionality, explicitly in the code.

Wiki

- ► EMC Wiki:
 - http://cstwiki.wtb.tue.nl /index.php?title=Embedded_Motion_Control_2019
 - ▶ Info on practical assignment, installation, getting started
 - Frequently Asked Questions
 - Log-in: student account
- Group pages on EMC Wiki:
 - Each group gets its own page
 - Update at least weekly
- Overall use:
 - ► Everyone can edit
 - ▶ If you see a mistake: correct it
 - ▶ If you had a problem and know how to fix it: add it

Recap

► Robot: PICO

► OS: Ubuntu 16.04

▶ Programming language: C++

► Code editor: Qt Creator

Version control: git

► Simulation: PICO simulator

► Documentation: Wiki

That should get you started!

Groups

Each group will be supervised by a tutor:

- 1. Wouter Kuipers
- 2. Wouter Houtman
- 3. Jordy Senden
- 4. Bob Hendrikx
- 5. Hao Liang Chen

- 6. Marzieh Dolatabadi
- 7. Yanick Douven
- 8. René & Herman
- 9. Bob Hendrikx

It is your responsibility to get in touch with your tutor (see Wiki)

What should I do now?

- ► Make your own groups of max. 5 people
 - ▶ If complete, add your group details to the wiki.
- Send an email to your tutor:
 - to schedule the first meeting,
 - with one username for access to your Git, (tutorial)
- With your group:
 - schedule test-time with PICO starting 6th of May, see test scheme on Wiki!
- Check the Wiki & Finish the Tutorials:
 - http://cstwiki.wtb.tue.nl/index.php?title= Embedded_Motion_Control