

Final design Group 6

R. Beenders <u>M.P. Bos</u> M. Cornelis S.J.M. Koopmans

Where innovation starts

Ue Technische Universiteit Eindhoven University of Technology

Table of contents

- Corridor challenge
- Overall structure
 - Differences with the old model
- Multithreading
 - Choice of threads
 - Interaction between threads
- In-depth explanation
 - World model
 - Detection
 - Strategy
 - Movement

Corridor challenge

- What went wrong?
- How did we fix it?
- Result

Corridor challenge

- What went wrong?
- How did we fix it?
- Result

Overall Structure

C Structures

- Point: x,y (double)
- Pose: x,y,angle (double)
- Corner: x,y (double), type (enum), id (int), [CC (array of ints)]
- Node: x,y (double), NWSE (array of enum), situation (enum)

Differences with old model:

- Multithreading
- Main only used for initialization

Multithreading

- Choice for three threads:
 - Detection
 - Strategy
 - Movement
- Interaction between threads
 - Via world model
 - Via communication channels

In-depth explanation: World model

- Accessibility of variables
 - Robot pose, landmark positions, near-range laser data, robot state
- Advantages:
 - Faster (especially with large variables)
 - Easier to code and comprehend
- Disadvantages:
 - Less 'neat'
 - No idea how recent information is
 - Solved by extra communication

In-depth explanation: Detection

- Main idea: use edges as landmarks
- SLAM using Kalman Filter
 - Movement prediction by odometry
 - Correction by landmarks (laserdata)

TU/e Technische Universiteit Eindhoven University of Technology

In-depth explanation: Strategy

- Keep track of past nodes with NWSE system
- Depth-first search
- State machine (discrete)
- Create reference (relative coordinates) for movement module
- Monitor distance to reference

In-depth explanation: Movement

- Handles all inputs to PICO
- Potential Field (PF) for collision avoidance

Questions ?