

Autopilot project

Marzieh Dolatabadi 30-05-2018

About me:

- 2008-2012 Bachelor of Science Aerospace Engineering, Iran.
- 2012-2014 Master of Science Aerospace Engineering, Iran.
- 15/04/2017 PhD, TU/e. Eindhoven, Netherlands.

Robotic challenge:

• Unmanned systems:

https://robobees.seas.harvard.edu

• Player robot:

• Surgery robot:

• Space robot:

https://www.razorrobotics.com

• Agricultural robot:

CROPS EU-project. http://www.crops-robots.eu

Autonomous vehicles:

• Environmental sense:

http://www.autoguide.com/author/jason-siu.html

• Sensors' role:

https://www.itf-oecd.org/cpb/pdf/autonomous-driving.pdf

• Feeling relax:

Autonomous vehicles:

- Self-Driving accident:
- Tesla crash that killed a driver

www.CNN.com

• Google Car Collides with Bus

www.noweevil.com

Introducing AUTOPILOT:

- Enhance the driving environment.
- Innovation.
- Technologies.
- IoT.

Introducing challenges:

• Occlusions:

• Environment noise:

Vision limitation

• No online bird view:

Introducing IoT:

• Devices:

Objective:

- Driving autonomously (driver less) through TU\e campus.
- Predict VRU's behavior to enable decisions in complex situations.

google.map.com

- Internal representation of environment.
- Bridge between behavior generation and sensory processing.

• A semantic environmental description (World Model) for autonomous cars.

- Contains two main parts:
 - Define multiple hypotheses for each object.
 - Make connection between measured attributes to semantically annotated objects.

- Individual and predicate symbols:
 - Image segmentation.
 - Object classification.
 - Orientation , size , color.

- Behavior model:
 - Uniform distribution.
 - Gaussian distribution.
 - Kalman filter (constant speed)
 - Mixture distribution

- Generating multiple hypotheses :
 - Represent a new object not yet present in the world model.
 - Originate from a previously observed (existing) object.
 - Be a false detection (clutter).

sche Universiteit

14

Achieved result

- Object's position.
- Amount f evidence.

r	TNEOL		Descived world state with 2 shists
L	INFO	[1521656503.410103/4/]:	Received world state with 2 objects
[INF0]	[1521656503.410183735]:	Object:
I	INF0]	[1521656503.410227660]:	- position:
I	INF0]	[1521656503.410268558]:	- position: (2.143292,-0.094352,0.000000)
I	INF0]	[1521656503.410308929]:	- diagonal position cov: (0.001000,0.001000,0.001000)
I	INF0]	[1521656503.410357611]:	- color: red
I	INF0]	[1521656503.410411444]:	- class pedestrain with probability 1.000000
I	INF0]	[1521656503.410461836]:	Object:
I	INF0]	[1521656503.410495980]:	- position:
I	INF0]	[1521656503.410534889]:	- position: (1.756917,1.680836,0.000000)
I	INF0]	[1521656503.410573154]:	- diagonal position cov: (0.001000,0.001000,0.001000)
I	INF0]	[1521656503.410615807]:	- color: red
]	INF0]	[1521656503.410660581]:	- class pedestrain with probability 1.000000

Question

- How would you use hypothesis in the challenge?
- How many hypothesis do you need?

