
Department of Mechanical Engineering

4SC020 - Embedded Motion Control

Information architecture design document

Group 7

Guus Bauwens 0958439
Ruben Beumer 0967254
Ainse Kokkelmans 0957735
Johan Kon 0959920
Koen de Vos 0955647

Tutor: Y.G.M. Douven

Eindhoven, May 6, 2019



1 Requirements and specifications

To successfully navigate a hospital through multiple rooms with different subsequent waypoints, PICO

• should have a sense of where it is located with respect to its target (e.g. by means of an orientation
and a 2D distance),

• should autonomously be able to decide what actions to carry out to reach its targets (e.g. how to
move, when to stop, playing an audio fragment) in a partially observable environment,

• and should have some sense of its progress towards its current target, e.g. the distance to go.

While doing so, PICO

• must stay clear of static objects (walls) with a safety margin of 50 mm,

• and safely interact with its environment (i.e. do not hit humans),

• preferably completing its targets as fast and efficiently as possible,

• while communicating its intents with its surroundings, e.g. a certain stage in a roadmap by speaking.

2 Information Architecture

Figure 2.1 depicts the proposed information architecture, from incoming information resources (LRF,
odometry, control effort, map) to outgoing actuation capabilities. It illustrates the multiple components,
grouped into five relevant containers and the interfaces between these components. The functionality and
specifications of each component are explained in Figure 2.1 and the text below serves as a motivation for
the different components.

2.1 Planning

The planning component is responsible for defining the current target of the robot. This component
consists of a finite state machine, a path planning algorithm and a trajectory planner. The world model
provides the planner with the current position of the robot and the world map. The component returns a
reference position and velocity for the robot to follow.

The finite state machine switches between the different discrete behavioural states of the robot. When
the software is started, it will first wait for initialisation of the sensors. Then it will explore to ensure
convergence of localisation by the Monte Carlo particle filter (MCPF). Afterwards, it can use this
localisation to visit the different cabinets. In each state, the finite state machine will provide the path
planning algorithm with a target position based on the available monitors. In addition, the finite state
machine will generate audio to make its intentions clear to bystanders.

The path planning algorithm will be based on the A* algorithm: a grid based planning technique for
navigating occupancy maps. The world model provides the algorithm with the current position and a grid
map of the world. Note that although grids scale badly, only finite precision is required for generating
a path so also a coarse grid suffices. The path planning algorithm will then generate a path which the
robot needs to follow. The trajectory planner takes this path information and converts it into a reference
position and velocity. This reference velocity needs to be within the constraints as posed in the problem
description.

2.2 Control

The control component is responsible for converting the reference positions and velocities of the planning
algorithm to an actual velocity control signal. This is done in two ways. Firstly, the velocity setpoint can
be applied as an open loop feed forward signal. Secondly, the position setpoint is applied in a feedback
situation, in which actuation is performed on the basis of the error between desired (planned) and actual
(MCPF pose) movement along the trajectory and steering angle. To fully utilise the LRF in the driving
direction, it is beneficial to drive forward. However, this does not exploit PICO’s holonomicity. To combine
the two, the provided path in (x,y) is mapped into local references using the current orientation while
the orientation is simultaneously controlled into the driving direction. This ensures that its holonomicity
is exploited for small distances in narrow environments, and also that PICO will converge to driving
forward.

A deadzone can be added to the feedback controller to incorporate the concept of guarded motion, such
that the controller will only react outside a tube around the reference.

Design document: Embedded Motion Control Page 1 of 3



Static map of environment

Base reference

Obstacle positions

World model

Obstacle positions and velocities

* 2D gridmap which indicates the position of obstacles
* Velocity estimate of dynamic obstacles

Specifications:
* Information initialized using the map provided
* Information updated by means of the MCPF

Pico pose and velocity

* PICO position (2D) and orientation estimate
* PICO translational (2D) and rotational velocity

Specifications:
* Position and orientation estimate updated by means of a
MCPF, which incorporates the odometry data

Monitoring flags

* Flags that indicate the situation, that can be used in the
planning to determine the next state/action

Specification:
* Flags for: too close to an obstacle, bumped into an
obstacle, target reached

Monitoring flags

Monitor

Avoid obstacles

* Extra low-level safety check by distance to
obstacles
* Stop driving in the direction of an obstacle when
a collision is detected by comparing the control
effort to an expected control effort based on the
base reference

Specifications:
* Stop driving towards obstacles within 50 mm
from the robot according to the LRF data
* An apt margin for the control effort will be
determined by means of testing

Progress indicator

* Indicate when target is reached

Specification:
* Target is reached when PICO is within 150 mm of
the target position

PICO pose (x,y,o)

Control

Reference tracking

Functionality:
* Feed forward of given velocity reference
* Feedback controller of given position reference
with varying deadzone
* Combination achieves guarded motion

Specification:
* Velocity control signal should be within feasible
bounds

Provided map

Static map of environment

Position and, if necessary, velocity of dynamic objects

LRF

PICO Pose (x,y,o)Planning

A* path planning

Functionality:
* Find a suitable path between two arbitrary point on
map, i.e. current location and desired location

Finite State Machine

Functionality:
* Switch between discrete behavioral states
* i.e. Exploring, Stopping, Drive toward goal,
Find new target
* Provide target point
* Explain current plan and decisions by speaking

Trajectory Planning

Functionality:
* Convert sequence of points into reference for
forward position and orientation.
* Provide corresponding velocities realizing above
reference

Specification:
* Velocities should be within feasible bounds: 0.5
m/s translational, 1.2 rad/s rotational

Path

Target

Reference positions and velocities

Velocity control signal

LRF

Control effort

Perception

LRF

Odometry

Monte Carlo particle filter (MCPF)

Functionality
* Raycasting as measurement model
* Encoder data as process model
* Adaptive resampling 
* Variable amount of particles

Specifications:
* Should be able to keep up with 40 [Hz] of LRF
* Precision and accuracy of ~10 cm with respect
to local environment

Feature detection

Functionality
* Determines which part of LRF data is not part
of map given the pose estimate.
* Determines position of these objects and
tracks them over time.
* Distinguishes between moving objects and
static objects (i.e. cabinets). 

Specification:
* No false positives

Monitoring Flags

Figure 2.1: Planned software architecture for the hospital challenge

Design document: Embedded Motion Control Page 2 of 3



2.3 Monitor

Global positioning and path planning are covered by the perception and correspondingly the planning.
However, PICO’s low level software should have specific safe behaviour in case of for example a (incoming)
collision, too high control effort and cabinet detection.

As dynamic objects (i.e. humans) are present in a hospital environment, these can bump into PICO and
likewise PICO could bump into them. As PICO does not have a 360 wide view range, obstacles (static
and dynamic) cannot always be noticed. This can mostly be prevented by manoeuvring PICO only in a
direction visible by the LRF domain.

To avoid damage and injuries, PICO must stop when it has to apply too high control effort for the task
it is performing (or when an obstruction is measured by the LRF). As this control effort is not known
for specific movement speeds, normal operating values should be gathered and stored for reference. For
redundancy, the LRF data can be checked for overall changes when control effort is applied to an actuator
of PICO. In case of too high control effort, PICO should wait and check its surroundings (which also gives
passing by dynamic objects a chance to leave) and move in a safe direction. If the control effort is still too
high, PICO should try to turn and move into a (significant) other direction if the LRF data confirms this
direction is safe to travel to.

From this point on wards the path planning should compensate for the obstruction found and reroute
PICO to its target. In all cases the monitoring software should overrule the path planning to avoid the
mentioned damage to the environment and PICO itself. If for any reason PICO becomes closed in, it
should stop and make it known to its environment that it cannot manoeuvre by for example its speak
engine.

2.4 Perception

A Monte Carlo particle filter (MCPF) is the main component of the perception: given Laser Range
Finder (LRF) and odometry measurements and a map, it will keep track of a non-parametric probability
distribution representing the robots belief about its position. A particle filter is well suited for this, as it
is able to handle the complex, non-linear LRF sensor model and is able to recover the robot location on
the map from every initial position.

Furthermore, a particle filter allows for a memory in location: a lack of information will not result in a
loss of information about its position on the map. Local mismatch of distance measurements and the
provided map is tolerable due the large amount of LRF measurements, all providing information about
the robots position through other areas of the map. It also fully exploits all information provided by the
LRF: even if part of the rays is irrelevant for the current task, they still provide information about the
robots pose. Although the position is expressed with respect to the map (i.e. global), the localisation
provides local accuracy due to the nature of the LRF.

The output of the filter is a robot pose as median of the particles (in case of an approximately unimodal
non parametric distribution) or multiple robot poses (multimodal), which can then be used by the state
machine to determine a plan (e.g. explore to determine position or plan path from current, well-known
position).

Given a converged robot pose and a map, the different rays of the LRF can be associated either with
components on the static map (walls) or components that are not present on the static map (dynamic,
e.g. humans, or static, e.g. cabinets). This allows for tracking these objects and distinguishing between
static and dynamic ones, such that cabinets can be recognised.

2.5 World Model

In the world model, all relevant information is grouped. It serves as a knowledge base for all other
activities, but does not manipulate this information itself.

Design document: Embedded Motion Control Page 3 of 3


	Requirements and specifications
	Information Architecture
	Planning
	Control
	Monitor
	Perception
	World Model


