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MRC learning objectives

m Learning objectives Lecture “The Truck as a Mobile Robot”

1

Describe the problems of mobile robot
navigation

Describe with your own words and develop a
global path planning algorithm, such as A*

Describe with your own words and develop a
local path planner for obstacle avoidance.

Describe with your own words and develop a
localization algorithm, such as a patrticle filter.

Design an architecture that integrates different
algorithms to enable a mobile robot to fulfill a
given use-case

Validate your system architecture on a
physical robot.

Use tools common in robotics industry
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Use cases and requirements

High-level path planning (Hybrid A*)
Low-level path planning (CL-RRT)

Vehicle localization (feature detection, particle

filter, point cloud matching (NDT))
Control Function Architecture

Rapid Control Prototyping, Hardware-in-the-
Loop, Vehicle Testing

DAF tools (Simulink, dSPACE, Python, ROS...)
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Development process
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[ISO 26262 V-cycle Development Process. | Download Scientific Diagram (researchgate.net)]
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https://www.researchgate.net/figure/ISO-26262-V-cycle-Development-Process_fig2_290851811

Use case example

ID UCO1 (i.e. see step 2 in picture)
Name Drop off
Description | Driver stops vehicle at drop off area and
activates Yard Automation (YA) function
Initial Driver arrives at the terminal (step 1)
condition
Trigger Driver activates YA e.g. via switch.
Sequence | 1. Driver stops vehicle at drop off area
and activates park brake.
2. Driver activates YA e.g. via switch.
3. YA searches for Control Tower
wireless network.
4. YA requests driver to accept
connection with network.
5. When connected: YA takes over
vehicle control.
Final YA is enabled, vehicle and Control Tower
condition are connected.
Vehicle at standstill and from now on YA
performs driving task (i.e. step 3).
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Truck arrives from a
certain transport -

route (e.g. first/last

mile) at the terminal
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3 Level 4 autonomous
driving to the crane

Driver gets out at terminal gate
and truck switches to autonomous

operation

[Tran2020, ANITA project]
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Requirements example

REQO01-001 Description:

Mame:
Source:
Rationale:

REQO1-002 Description:

MName:
Source:
Rationale:

REQO00-001  Description:
Mame:
Source:

Rationale:

Driver shall be able to activate YA e.g. via a switch if the following conditions are
fulfilled:
=  Vehicle is standing still
=  Park brake is applied
Driver activation
DAF, UCO1
Driver shall be able to decide when YA can take over the driving task.
The vehicle shall be in a safe state to transfer the control from driver to YA

YA shall continuously inform the driver about its enabled state.

Inform while enabled
DAF, UC01
Keep driver informed about its role and about the L4 function status.

YA shall be available in the vehicle speed range from -5 km/h up to 30 km/h.
Vehicle speed range

DAF

YA shall include forward and backward driving. Maximum speed limited for safety
reasons.
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— Functional
requirements

Non-Functional
— requirements
(e.g. performance)
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Functional architecture (example Traffic Jam Assist)

Steering
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Steering
system

Steering torque req
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EE architecture (example Traffic Jam Assist)

Camera

yyy CAN
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Building blocks for automated driving

Control Tower
Driveable High-level
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Building blocks for automated driving
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Object detection (using on-board sensors)

M_

Camera Good feature detection (e.g. Bad robustness for
lanes, VRU'’S) weather conditions
- Accurate in lateral direction
[ZF]
Radar - Good robustness for - Limited feature detection
weather conditions - Limited lateral distance
- Accurate long. distance and and speed measurement
[Continental] speed measurement
Lidar | - Very accurate long. and lat. - High costs
distance measurement - Not so robust as radar
- Suitable for accurate and ultrasonic
localization
Ultrasonic - Low costs - No feature detection
- Good robustness for - Limited accuracy and
weather conditions range

[Bosch]
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Object detection (using V2X information)

[F. Schiegg. Removing blind spots: Infrastructure-assisted collective perception.
VDI ELIV conference 2021]

A PACCAR COMPANY DRIVEN BY QUALITY



Building blocks for automated driving
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Vehicle localization e e
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Vehicle localization (example 2)
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Localization using a particle filter
[Kokkelmans2022, Konings2022]
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Vehicle localization (example 2)

[Konings2022]

Pink:
Particle Filter
estimated position
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Building blocks for automated driving
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Path planning (example high level planner: Hybrid A*)

* Use the simplified model to find a global path
* Obstacle avoidance at global level
* Decide driving direction

o 9
'\O A
B B M
0 3
o ) f
o) i
o ot

Figure 2.3: Output path of A-star algorithm Figure 2.4: Output path of Hybrid A-star

with start node in red, goal node in green algorithm with start node in red, goal node
and intermediate nodes indicated with blue in green and intermediate nodes indicated
circles, obtained from [5]. with blue circles, obtained from [5]. [Nair2019, Hendrix2020]
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Path planning (example low level planner: CL-RRT)

3 2 % 3 8 5 3 3 2 g s \ ‘‘‘‘‘‘‘‘‘‘‘

* Use the detailed model (incl. path | ———- powlevel oo .
. . igh-level S

following controller) to plan the final 250 | Tractor | Eee

. | Semi-trailerm ——— @& @009 |

path around high-level path | o

* Ensure final docking accuracy el 15

[Nair2019, Hendrix2020]
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Building blocks for automated driving

—
e xev
\, .

\@'\ Location

3 Vehicle data

Sensors
camera, radar,
articulation angle, ...

A PACCAR COMPANY DRIVEN BY QUALITY

Control Tower

Driveable High-level

Map space . path
planning
| |
E.g. point Pathyes 1L
cloud map ’
— | ow-level

Vehicle localisation

path
Pos,., | planning

—)
Object detection &
prediction Obj. list
—)

Pathges
—_—

Velges

Path
following

Ades -

Steering
system

Powertrain

X

TU/e

Brake
system

D /A -




Path following (example: cascaded feedback control)

‘3 Q,

‘3 Q,
\\ )
\\\Q

* Inner control loop

— Fifth wheel (B) regarded as steerable
wheel

— Selected reference point (R)
depends on lookahead distance (L)

- Lateral (d) and heading (&) error

- Desired articulation angle (6,.,)
determined

e Quter control loop

— Desired steering angle (dy.)
determined based on actual (0) and
desired articulation angle (6,.)

B

Reference path /

[Hendrix2021]
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Supervisor(s) & Safety Manager
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Figure 9. Example function behaviour specification of the SSF
(i.e. state chart showing the SSF enable and disable logic).
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Verification & Validation

MAP

0 0.5 1 1.5 2 25 3 3.5 4 4.5

Functional and failure tests
e Model-based simulations

o Software-In-the-Loop

e Hardware-In-the-Loop

e Rapid Controller Prototyping

e \ehicle tests
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Concluding suggestions

The “what”:
— Use cases

- Requirements

The “how”:

— First high-level architecture

— Then detailed design

Start simple

Integrate & test regularly

(try to avoid “big-bang”)
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