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a b s t r a c t

This paper presents a survey on multi-robot search inspired by swarm intelligence by further classifying
and discussing the theoretical advantages and disadvantages of the existing studies. Subsequently, the
most attractive techniques are evaluated and compared by highlighting their most relevant features.
This is motivated by the gradual growth of swarm robotics solutions in situations where conventional
search cannot find a satisfactory solution. For instance, exhaustive multi-robot search techniques,
such as sweeping the environment, allow for a better avoidance of local solutions but require too
much time to find the optimal one. Moreover, such techniques tend to fail in finding targets within
dynamic and unstructured environments. This paper presents experiments conducted to benchmark five
state-of-the-art algorithms for cooperative exploration tasks. The simulated experimental results show
the superiority of the previously presented Robotic Darwinian Particle Swarm Optimization (RDPSO),
evidencing that sociobiological inspiration is useful to meet the challenges of robotic applications that
can be described as optimization problems (e.g., search and rescue). Moreover, the RDPSO is further
compared with the best performing algorithms within a population of 14 e-pucks. It is observed that
the RDPSO algorithm converges to the optimal solution faster and more accurately than the other
approaches without significantly increasing the computational demand, memory and communication
complexity.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Search applications have been well studied in the past [1].
However, the use of multi-robot systems (MRS) to fulfill such
missions has not yet received the proper attention. Nonetheless,
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MRS offer several advantages over single solutions, or even human
rescuers, within search applications. Besides providing a natural
fault-tolerance mechanism, the use of multiple robots is especially
preferable when the area is either hazardous or inaccessible
to humans, e.g., search-and-rescue (SaR) victims in catastrophic
scenarios [2].

Similar to optimization problems in which one can distinguish
exhaustive methods from biologically-inspired ones, MRS within
search applications face the same dilemma: either decide on an
exhaustive technique in which robots sweep the entire area [3],
or mimic simple local control rules of several biological societies
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(e.g., ants, bees, birds) to stochastically search the scenario [4].
This last one is a typical feature from most swarm robotics algo-
rithms [5]. Swarm robotics applied in search tasks can offer sev-
eral major benefits over the conventional search techniques, such
as: the robustness of the swarm to failure of individual units or
run-time addition of new units, the scalability of emergent behav-
iors to swarms of different sizes, the leveraging of self-organization
principles of environmental noise and individual differences, and
the synergetic effect whereby the work of the swarm is greater
than the sum of the work by the individual units, known as super-
linearity [4]—a concept shared with other fields such as complex
systems.

Although many different swarm robotics algorithms have been
recently proposed in the literature, this work will focus on the
ones that benefit from explicit over implicit communication, such
as the work recently proposed by Kernbach et al. [6]. In algo-
rithms under explicit communication, robots need to be able
to explicitly exchange information within a network path us-
ing some sort of medium (e.g., wireless communication). De-
spite such a requirement, the choice of explicit communication
over implicit or through-the-world interactions, also known as
stigmergy, relies on the application domain of realistic search
applications such as search-and-rescue (SaR). According to the
current state-of-the-art in this field, robotic technology is used,
almost exclusively, to assist and not substitute human respon-
ders. Hence, multiple mobile robots can take advantage of par-
allelism to reduce the time required to fulfill the mission while
explicitly providing important data about the site (e.g., contex-
tual information), whether accessible or inaccessible for human
agents.

Moreover, this work will focus on distributed solutions. This
is obvious within swarm robotics context in which tasks are in-
herently distributed in space, time, or functionality. Nevertheless,
it should be noted that some works still emphasize on central-
ized architectures [7], thusmoving away from the fully distributed
nature inherent to the principles of collective intelligence. In prac-
tice, centralized swarm architectures are computationally expen-
sive and unsuitable as a large number of robots usually generate
very dynamic behaviors that a centralized controller cannot han-
dle [8]. Also, centralized architectures lack robustness as the failure
of the centralized entity may compromise the performance of the
wholeMRS [9].

Bearing these ideas in mind, this work presents an overview of
distributed swarm robotics techniques under explicit communi-
cation constraints, applied to search applications, thus comparing
them in both simulated environment and real experiments.

2. Swarm robotics in search applications

In nature, some complex group behaviors arise in biological
systems composed of swarms that are observed in a variety of sim-
ple social organisms (e.g., ants, bees) [10]. One of the most rele-
vant topics in MRS is the modeling and control of the population.
Hence, the design of such bio-inspired swarm MRS requires the
analysis of the social characteristics and behaviors of insects and
animals.

To that end, Suarez and Murphy [2] recently presented a brief
description of more than 50 papers on animal foraging making
the analogy to SaR applications. Most works presented in this
survey suggested that robots should divide thewhole environment
into patches, as many animals do, and then search within such
patches. Nevertheless, and even as stated by the authors, victims
can appear anywhere. Hence, the difficulty in subdividing a search
environment and defining patches within unknown scenarios still
remains. The authors also claim that SaR robotics should focus
on exhaustive search as the motivation is different from animal
foraging—while animals attempt to maximize their net energy
level to stay alive, robots must find victims in a search area or
determine that there are none to be found. However, although
optimization may seem unsuitable for SaR robotics at first, there
are some specific applications in which one can foresee its use
like, for instance, in urban fires. Urban fires are probably the most
frequent catastrophic incidents in urban areas, requiring a prompt
response because of life endangerment in highly populated zones
and the high risk of fire propagation to buildings and parked cars
in the vicinity. An urban fire in a large basement garage often
frequented by people and containing inflammable materials, like
in a basement garage of a shopping mall with many cars, drivers
and people passing by, is a particularly challenging SaR application
because of the confined nature of the environment. As the fire
evolves, the space becomes rapidly full of smoke, with very poor
visibility and an unbreathable and toxic atmosphere, which is
dangerous for both victims and first responders. Moreover, victims
prone to such atmospherewould beunable to survivemore than10
to 20min. Therefore, the use of exhaustive search strategieswithin
this context would be unfeasible.

Actually, some works have recently focused on such scenarios,
such as Cooperation between Human and rObotic teams in catas-
troPhic Incidents (CHOPIN) R&D Project [11]. The CHOPIN project
aims at exploiting the human–robot symbiosis in the develop-
ment of human rescuers’ support systems for SaRmissions in urban
catastrophic incidents. One of the main catastrophic scenarios be-
ing used for proof of concept is the occurrence of fire outbreaks in
large basement garages. In this case, the project focuses on using a
fleet of cooperative groundmobile robots to cooperatively explore
a basement garage where the fire is progressing, thus identifying
the localization of fire outbreaks and victims.

One of the first approaches to fulfilling the objectives of
this project was in dividing that kind of application into two
operations: (i) reconnaissance; and (ii) rescuing [12]. In both phases,
this kind of scenario usually poses radio propagation difficulties
to the response teams, whose members usually wear a radio
emitter/transmitter to communicate by voice. Often under these
noisy scenarios, communication is only possible with teammates
located in line-of-sight. Moreover, since awireless communication
computer network may be absent or damaged, robotic agents
may have to deploy and maintain a mobile ad hoc wireless
network (MANET ) in order to support the interaction between
the human team and the robotic team. In the reconnaissance
phase, the mission consisted of a team of robots that arrived at
the scenario via a common entry and spread out to explore and
map the unknown area, signalizing possible points of interests
such as victims and fire outbreaks. After a certain degree of
confidence in the built representation of the scenario, the rescuing
phase consisted of having the team of robots inspecting the
area in a coordinated way, visiting all points of interest, looking
for remaining victims, possible changes in the scenario and the
evolution of fire outbreaks. The first approach was handled using
a complete solution based on the well-knownParticle Swarm
Optimization (PSO) [13] to real mobile robots, denoted as Robotic
Darwinian PSO (RDPSO), that was previously presented in [14] and
further extended in [15,16].

Due to the successive improvements of the RDPSO and its
positive outcome on several search tasks, now comes the time
to benchmark it with state-of-the-art alternatives. Over the past
few years, some algorithms initially designed to solve tasks such
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as optimization problems have been adapted to embrace the
principles associated to real robots. Within that list, and including
the aforementioned RDPSO, the following ones were found as the
most promising for realistic search task applications:

(1) Robotic Darwinian Particle Swarm Optimization (RDPSO)
[14,15].

(2) Extended Particle Swarm Optimization (EPSO) [17,18].
(3) Physically-embedded Particle Swarm Optimization (PPSO)

[19,20].
(4) Glowworm Swarm Optimization (GSO) [21,22].
(5) Aggregations of Foraging Swarm (AFS) [23,24].

Note that three-out-of-five algorithms gain inspiration from
the PSO, proposed for the first time by Kennedy and Eberhart in
1995 [13]. This socio-inspired algorithm takes advantage of the
swarm intelligence concept defining the properties of a system of
unsophisticated agents, locally interactingwith their environment,
whose behavior creates coherent global functional patterns [25].
Given its simplicity in terms of implementation, and reduced
computational and memory complexities, the PSO has been
successfully used in many applications such as robotics [26–29],
computer vision [30], electric systems [31] and social sciences [32].
Although the PSO has been mainly used on optimization and
estimation problems, many recent studies have been adapting it to
follow swarm robotics principles. As such, this work presents and
compares three of the most significant studies around PSO-based
swarm robotic algorithms.

The next section briefly describes the RDPSO algorithm previ-
ously presented by the authors. Afterwards, the RDPSOwill be sys-
tematically compared and discussed over the alternative swarm
robotics algorithms.

2.1. Robotic Darwinian Particle Swarm Optimization (RDPSO)

The RDPSO initially proposed by Couceiro, Rocha and Fer-
reira [14,15], just like the PSO, basically consists of a population of
robots that collectively move in the search space (e.g., catastrophic
scenario, city) in search of the optimal solution (e.g., number of
victims, number of passengers); each robot is characterized by its
pose (i.e., position and heading) and performance. For instance,
if we have a group of mobile olfactory robots that are trying to
find a gas leak in an indoor environment (cf., [33,34]), each robot’s
state comprises of its pose and the corresponding value of gas
density.

TheRDPSO summarized inAlgorithm1allowsmultiple dynamic
swarms, thus enabling a distributed approach, because the
network that might have been comprised of the whole swarm
of robots is divided into multiple smaller networks (one for each
group/swarm). This makes it possible to decrease the number of
nodes (i.e., robots) and the information exchanged between robots
of the same network. In otherwords, robots’ interactionwith other
robots through communication is confined to local interactions
inside the same group (swarm), thus making RDPSO scalable to
large populations of robots. More details about this work will be
highlighted throughout this paper for comparison purposes with
the other strategies.

Although this is not the first work extending the PSO to MRS, a
more recent work by Couceiro et al. has shown that the RDPSO can
overcome problems related to obstacle avoidance, robot dynam-
ics, sub-optimal solutions and communication constraints (e.g.,
[35–37]).
Algorithm 1. RDPSO algorithm for robot n.
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2.2. Extended Particle Swarm Optimization (EPSO)

In fact, one of the first adapted versions of the PSO to handle
real world constraints, such as obstacles, was presented by Pugh
and Martinoli [17,18] (Algorithm 2). The main difference between
the algorithm presented by those authors, denoted hereafter as
Extended PSO (EPSO), and the classical PSO is that each robot
(or particle) only takes into consideration the information of the
robots within a fixed radius rc (omnidirectional communication).
Hence, contrarily to the RDPSO [15], the EPSO algorithm does
not use multi-hop connectivity and does not constrain robots’
motion so as to ensure some degree of communication network
connectedness.

Moreover, and also contrarily to the RDPSO [14] algorithm
in which obstacle avoidance behavior is integrated in the main
equations of robots’ motion, the authors used the Braitenberg
obstacle avoidance algorithm [38]. Hence, if a robot is executing
a step of the algorithm and avoids an obstacle, it will continue
moving in its newdirection butwill notmodify its internal velocity
representation. Although such a methodology makes it possible
to decouple the high level behavior of robots from collision
avoidance routines, such a strategy may be unfeasible if one
needs to study the stability of the algorithm considering obstacles
influence over robots [36], or even define adaptive methodologies
to systematically adjust all the algorithm parameters based on
contextual information [16].

Algorithm 2. EPSO algorithm for robot n.

Pugh and Martinoli [17,18] evaluated the performance of their
learning technique for a simple task for robot groups of various
sizes. The authors analyzed how the performance of the standard
PSO neighborhood structure was affected by adapting it to a more
realistic model, which considers limited communication abilities.
Experimental results obtained using the Webots simulator [39]
showed that the adapted version of the PSO maintained good
performance for groups of robots of various sizes when compared
to other bio-inspired methods such as Genetic Algorithms.
However, contrarily to the presented RDPSO algorithm [14], all bio-
inspired methods used in this work, including the adapted PSO,
tend to get trapped in sub-optimal solutions, i.e., the authors do
not present any strategy to avoid sub-optimal solutions.
2.3. Physically-embedded Particle Swarm Optimization (PPSO)

Similarly, Hereford and Siebold [19,20] presented a Physically-
embedded PSO (PPSO) in swarm platforms (Algorithm 3). As in
RDPSO [14], there is no central agent to coordinate the robots
movements or actions. The authors constrained the movement
of particles within a limited cone to avoid the omnidirectionality
inherent to the common PSO. Although this strategy seems
practical, this could be achieved by considering the dynamical
characteristics of robots. For instance, the RDPSO [37] benefits from
fractional calculus of order α to avoid drastic changes in a robot’s
direction.

Algorithm 3. PPSO algorithm for robot n.

The algorithm presented by Hereford and Siebold [19,20] also
assumed the synchronization of robots, such that robots would
only compute a novel position after all other robots exchange
the necessary information (e.g., individual solutions). Also, robots
would only share their position if their own solution is the best
solution in the whole swarm. This makes it possible to reduce
the amount of communication traffic, however, it also requires
that robots would stop after each iteration in order to handle all
relevant information. This is an interesting strategy when using
broadcasting mechanisms since robots can share information
among themselves without requiring lots of communication
traffic. Nevertheless, such a strategy would not significantly
improve the algorithmperformance if the teamwould benefit from
ad hoc communication with multi-hop properties.

Despite the potentialities of the physically-embedded PSO
presented by Hereford and Siebold [19,20], experimental results
were carried out using a population of only three robots,
performing a distributed search in a scenario without sub-optimal
solutions. Also, although the authors present experimental results
with one and two obstacles, the collision avoidance behavior was
not considered within the algorithm’s equation. Instead, once a
robot got stuck or collided, it was programmed to go back and turn
right.

2.4. Glowworm swarm optimization

A distributed biologically algorithm inspired by glowworm
behavior was presented and applied in MRS by Krishnanand and
Ghose [21,22] (Algorithm 4). Similarly to the RDPSO, theGlowworm
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Swarm Optimization (GSO) algorithm features an adaptive decision
domain which enables the formation of subgroups in the
populationwhere the goal is to partition the population of robots to
track multiple sources concurrently. Nevertheless, and contrarily
to the RDPSO that uses a set of fuzzy rules and performance
evaluation of both robots and swarms of robots [14], the GSO
acts more like a PSOwith best neighborhood solution information.
In fact, to begin a search, a robot chooses a neighbor to be
its leader and moves towards it. The most probable choice for
the leader is the one with the highest luciferin value, i.e., the
luminescence quantity that represents the individual solution,
thus corresponding to the most probable direction of the source.
As a result of this leader selection, subgroups form within the
population and begin searching for nearby solutions. In other
words, as no evolutionary techniques are used, it is shown that all
members of a single cluster will converge to the leader at some
finite time, and members of overlapping clusters will converge to
one of the leaders asymptotically.

Similarly to Pugh and Martinoli [17,18] and Hereford and
Siebold [19,20], the authors also incorporated a low-level obstacle
avoidancemodel, thus allowing robots to turn away from detected
obstacles to prevent collisions.

Unfortunately, and despite the algorithm potentialities, the
experiments were carried out using only four wheeled physical
robots and a target location using a single sound source.

2.5. Aggregations of foraging swarm

Another interesting approach was presented by Gazi and
Passino [23,24] in which the swarm is modeled based on
attractant/repellent profiles as aggregations of foraging swarm
(AFS) (Algorithm 5). These kinds of attractant/repellent profiles
are consistent with biological observations [40], where the inter-
individual attraction/repulsion is based on an interplay between
attraction and repulsion forces with the attraction dominating on
large distances, and the repulsion dominating on short distances.
As in the RDPSO [36], the authors presented a stability and
convergence analysis of their algorithm. To that end, the authors
carried out a behavioral analysis followed by several simulation
experiments so as to define themost adequate values of the system
parameters.

Algorithm 4. GSO algorithm for robot n.
This is worth mentioning since most of the works define the
parameters using a trial-and-error mechanism. Hence, some sort
of mathematical formalism, such as stability analysis, is required
to enable the obtaining of such a comparable performance.

Despite this, the authors did not present any mechanism
for sub-optimal solutions avoidance. Therefore, the convergence
of the swarm cannot be proved in the general case, thus
demonstrating the difficulty of obtaining general guarantees for
progress properties.

In this approach, the authors consider obstacles as a part of the
objective function of the swarm. In other words, if robots need to
maximize a givenmeasure (e.g., find the larger density of victims in
a catastrophic incident), obstacles are considered as global minima
of their objective function. This is not too different from the RDPSO
case that benefits from another component to define obstacles,
i.e., a monotonic and positive sensing function that depends on the
sensing information [14]. Nevertheless, the approach presented by
Gazi and Passino [23,24] does notmake it possible to adjust robots’
behavior depending on the presence or absence of obstacles. Put
differently, the swarm behavior is limited to convergence in the
vicinity of a solution or divergence from the neighborhood of a
sensed obstacle, being unable to adapt to the adequate contextual
information.
Algorithm 5. AFS algorithm for robot n.

Although the work of Gazi and Passino [23,24] does not assume
any specifications about communication constraints, their model
controls agents individually but each agent needs to know the
positions of all other agents in the swarm. Therefore, we will
consider that this approach requires multi-hop communication
and the same principles assumed for the RDPSOwill be considered.

2.6. Summary

For theoretical comparison purposes, a summary of the previ-
ously presented algorithms is presented in Table 1, thus highlight-
ing themost pertinent features forMRS applications. An empty cell
in the table indicates that the algorithm does not benefit from that
feature or there is no pertinent information in the literature to sup-
port it.

Robot dynamics consists of constraining agents’ dynamics to
fulfill the requirements inherent to the limited mobility of robots.
From the previously presented works, only two consider this
feature. The PPSO presented a simple rule to constrain robots’
movements within a limited cone, while the RDPSO uses fractional
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Table 1
Summary of swarm algorithms for search tasks.

RDPSO [14,15] EPSO [17,18] PPSO [19,20] GSO [21,22] AFS [23,24]

Robot dynamics Fractional calculus Constrained
movements

Obstacle avoidance Artificial repulsion Low-level
control

Low-level
control

Low-level
control

Artificial repulsion

Initial deployment EST approach Random Random Random Random

Communication Ad hoc multi-hop Broadcast Broadcast Broadcast Ad hoc multi-hop

Fault-tolerance Multi-connectivity

Parameterization Stability analysis Stability analysis

Avoid sub-optima Punish–reward mechanism based on natural selection

Multiple and dynamic sources Dynamic partitioning & fuzzy adaptive behavior Partitioning

Computational complexity O (2NS) O (NS) O (NS) O (NS) O (NT )

Memory complexity O (rα) O(1) O(1) O(1) O(1)

Communication complexity O (NS) O (NS) ≤ O (NS) O (NS) O (NT )
calculus to include memory properties within the kinematical
equation.

All the presented works handle obstacles avoidance with
basically two strategies: (i) low-level control (EPSO, PPSO andGSO);
and (ii) artificial repulsion mechanisms (RDPSO and AFS). Despite
using different algorithms within such strategies, the main idea
remains the same. Low-level control strategies trigger routines
whenever robots sense obstacles, thus allowing decoupling the
high level behavior of robots from collision avoidance routines.
Nevertheless, contrarily to the artificial repulsion mechanisms,
low-level control routines do not support the integration of
collision avoidance susceptibility within the algorithm behavior.

One of the common approaches in the initial deployment of
mobile robots is using a random distribution along the scenario
(EPSO, PPSO, GSO and AFS). This methodology is the simplest way
of deploying robots as, in most situations, the distribution of the
points of interest is usually random. However, in real situations,
it is necessary to ensure several constraints of the system (e.g.,
MANET connectivity), hence increasing the complexity of the
random distribution. In addition, random deployment may cause
unbalanced deployment and therefore increase the hardware cost.
Alternatively, the authors in [41] presented an Extended Spiral of
Theodorus (EST ) applied to the RDPSO algorithm. Thismethodology
secures that the robots from the same swarm (i.e., cluster) are
initially and autonomously deployed in an unknown environment,
while avoiding areas of no interest (i.e., obstacles) andmaintaining
MANET multiple connectivity.

Most of the works consider broadcast communication, with
purely local interactions over some specified range, in which
robots only cooperate with their neighbors (EPSO, PPSO and GSO).
Although this is the classical approach, recently many works
suggested some kind of global communication without any pre-
existent infrastructure, denoted as multi-hop ad hoc commu-
nication (RDPSO and AFS). This makes it possible for robots to
communicate with other robots outside their direct (i.e., one-hop)
range. It is noteworthy that such a strategy increases the commu-
nication overhead of the system. Nevertheless, if combined with
partitioning strategies, it becomes possible to reduce the number
of robotswithin each team, the advantages inherent to it are count-
less when compared to broadcast communication.

As one might expect, ensuring MANETs connectivity and ro-
bustness is much more demanding than infrastructured networks.
As a result, to prolong theMANET lifetime and prevent loss of con-
nectivity, fault-tolerance strategies are needed. A simple but effi-
cient strategy is the one presented in Couceiro et al. [42], wherein
robots’ movements within the RDPSO are controlled to allow sig-
nificant node redundancy guaranteeing amulti-connectivity strat-
egy. This means that, in the worst case, a multi-connectedMANET
requires the failure of multiple robots to become disconnected. All
remaining algorithms do not present any fault-tolerance strategy.

Algorithms’ parameterization enables the calculation of values,
or range of values, that would result in an improved performance.
Most of the works in optimization or swarm applications
present trial-and-error methodologies, not benefiting from a
formal mathematical analysis. Among the previously presented
algorithms, only the works of Couceiro et al. (cf., [36,43]) (RDPSO)
andGazi and Passino [23,24] (AFS) present a formal analysis of their
algorithms, thus restricting the parameters’ definition to a range of
values.

Bio-inspired algorithms usually benefit from evolutionary
techniques to avoid sup-optimal solutions. The RDPSO presented by
Couceiro et al. [14] handles such a problem perfectly bymimicking
natural selection emulated using the principles of social exclusion
and inclusion (i.e., adding and removing robots to swarms). In brief,
socially active robots from the same swarm cooperate in the search
task towards maximizing a given objective function (e.g., gas
leak, fire outbreak, number of victims, among others). However,
socially excluded robots randomly wander in the scenario instead
of searching for the objective function’s optimal solution like the
other robots in the active swarms. However, socially excluded
robots are always aware of their individual solution and the global
solution of the socially excluded group. This approach improves
the algorithm, making it less susceptible to becoming trapped in
sub-optimum solutions. The other algorithms do not consider any
specific technique to avoid sub-optimal solutions.

Similarly, only the works of Couceiro et al. (cf., [14,16])
(RDPSO) and Krishnanand and Ghose [21,22] (GSO) are fitted to
handle multiple and dynamic sources. They both use partitioning
techniques for that end.Moreover, the RDPSO also uses an adaptive
control system to systematically adjust its parameters based on
contextual information [16]. This kind of adaptive mechanism
is used, for instance, to control the swarm activity balancing
the exploitation and exploration levels of the group or each
individual agent [44,45]. The first one is related to the convergence
of the algorithm, thus allowing a good short-term performance.
However, if the exploitation level is too high, then the algorithm
may be stuck on sub-optimal solutions. The second one is related
to the diversification of the algorithm, which makes it possible to
explore new solutions, thus improving the long-termperformance.
However, if the exploration level is too high, then the algorithm
may take a long time to find the optimal solution.

The computational complexity refers to the system requirements
for algorithm computation. The total number of robots, i.e., popu-
lation, is represented by NT . If an algorithm benefits from parti-
tioning features or local interactions, then the number of robots
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Fig. 1. Multi-Robot Simulator (MRSim). Illustration of one trial with 10 robots performing the collective mapping of an unknown scenario under the influence of the RDPSO
algorithm. Differently colored robots represent robots from different groups/swarms [12].
within a subgroup or the broadcast signal is represented by NS ,
whereinNS ≤ NT . All the previouslymentioned algorithms, except
the AFS, are endowed with partitioning techniques. Nevertheless,
the RDPSO [14,46] presents twice the computational complexity
of the other algorithms that are endowed with partitioning tech-
niques. This is due to the fault-tolerance characteristics that re-
quire the computation of a sorting algorithm (e.g., [47]).

The memory complexity refers to the system requirements
in terms of data storage. Contrarily to the other algorithms
that only require information about the previous iteration, i.e.,
O(1), the RDPSO exhibits a memory complexity that depends on
the truncation of the fractional order series rα (cf., [37] for a
more detailed description). Nevertheless, this is a difference that
may be neglected since rα is usually small and depends on the
requirements of the application and the features of the robots.
For instance, for the eSwarBot (educative Swarm Robot) platforms
previously presented in [48], a rα = 4 leads to results of the same
type as for a rα > 4. Although one could consider the processing
power as the main reason to use a limited number of terms, the
kinematical features of the platformandmission requirements also
need to be considered. Hence, for eSwarBot platforms, thememory
complexity of the RDPSO algorithm would be O(4).

The communication complexity refers to the local and/or
global communication overhead. The algorithms that benefit from
partitioning or communication broadcast strategies present a
communication complexity smaller than the ones that are not
endowed with such features. From the previously presented
algorithms, only the AFS is not endowed with any of those
strategies, thus resulting in a higher communication complexity,
i.e., all robots within the population need to communicate with
each other.

The following section presents experiments with simulated
platforms so as to experimentally assess and compare the perfor-
mance of the five algorithms in a search task.

3. Computational evaluation

The Multi-Robot Simulator (MRSim)1 was used to evaluate and
compare the five previously presented swarm techniques. MRSim
is an evolution of theAutonomousmobile robotics toolbox SIMROBOT
(SIMulated ROBOTs) previously developed for an obsolete version
of MatLab [49]. The simulator was completely remodeled for the

1 http://www.mathworks.com/matlabcentral/fileexchange/38409-mrsim-
multi-robot-simulator-v1-0.
latest MatLab version and new features were included such as
mapping and inter-robot communication. Besides, MRSim also
makes it possible to add a monochromatic bitmap as a planar
scenario and adjust its properties (e.g., obstacles, size, among
others) by adding features of each swarm robotics technique
(e.g., robotic population, maximum communication range, among
others) and editing the robots’model (e.g.,maximumvelocity, type
of sensors, among others).

This simulator was first evaluated in the context of the
CHOPIN project [12], thus comparing decentralized and centralized
versions of both RDPSO for exploration purposes. Fig. 1 depicts
the MRSim interface with a simulation trial with robots using the
RDPSO algorithm to collectively explore the whole scenario of a
large basement garage environment—the Institute of Systems and
Robotics at the University of Coimbra garage. This was the scenario
used to compare the 5 swarm exploration algorithms previously
presented as it is a large area of 2000 m2 with a large density of
obstacles (e.g., pillars).

All algorithms were evaluated while changing the number of
robots within the population NT ∈ {10, 20, 30} and the maximum
communication range dmax ∈ {30, 100} m. The communication
range was based on common values presented in the literature for
both ZigBee and WiFi communication (e.g., [15]). To significantly
test and compare the different algorithms, 30 trials of 500
iterations for each (NT , dmax) combination were conducted. Also,
to perform a straightforward comparison between the algorithms,
robots were randomly deployed in the vicinities of each of the four
entrances (see Fig. 1).

Exploring and building a map of the scenario was used as
a mission objective to evaluate the five algorithms. Hence, the
objective function of the team of robots was defined as a cost
function in which robots need to minimize the map’s entropy
(cf., [50] for amore detailed description), i.e., the uncertainty about
map. Therefore, each robot n computes its best frontier cell as:

ms
i = argmax

mi∈N (xn[t],rs)


ψ (xt ,mi)

∇⃗H (mi)


, (1)

wherein N (xn [t] , rs) represents the set of frontier cells located in
the neighborhood of robot nwith sensing radius rs. The coefficient
ψ (xn [t] ,mi) ∈ [0; 1] measures if the cell mi is in line-of-sight
from a position xn [t], which also implies that cell mi is likely to
be empty. Moreover, the entropy of the cell mi is represented by
H (mi) and may be calculated as:

H (mi) = −p (mi) log [p (mi)]
− (1 − p (mi)) log2 [1 − p (mi)] , (2)

http://www.mathworks.com/matlabcentral/fileexchange/38409-mrsim-multi-robot-simulator-v1-0
http://www.mathworks.com/matlabcentral/fileexchange/38409-mrsim-multi-robot-simulator-v1-0
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Fig. 2. Median of the exploration ratioηexp[t] over the 500 iteration for eachmethod. (a) (NT , dmax) = (10, 30 m); (b) (NT , dmax) = (10, 100 m); (c) (NT , dmax) = (20, 30 m);
(d) (NT , dmax) = (20, 100 m); (e) (NT , dmax) = (30, 30 m); (f) (NT , dmax) = (30, 100 m).
wherein p (mi) represents the probability that a grid cell is occu-
pied.

The performance metric used is the exploration ratio of the
scenario over time (number of iterations). The exploration ratio
may be obtained by normalizing the mapped scenario as follows:

ηexp[t] =


Aexp[t]
Areal

, (3)

wherein Areal is the matrix representing the scenario in which 0
corresponds to obstacles and 1 to free cells. Similarly, Aexp[t] is
represented by amatrix of the same size asAreal being the collective
explored map at time, or iteration, t . Note that


returns the sum

of all matrix elements. At the beginning (step = 0) the collective
exploredmap is a zeromatrix, i.e., Aexp[0] = 0, thus resulting in an
explored ratio of ηexp[0] = 0.

As Fig. 2 depicts, the median of the best solution over the 500
trialswas taken as the final output for each (NT , dmax) combination.

As it is possible to observe, the RDPSO outperforms the other
methods for all (NT , dmax) configurations tested. Nevertheless,
such a difference decreases especially as the population of robots
increases when compared to the AFS and the GSO. For instance,
for the configuration of (NT , dmax) = (30, 30 m), i.e., Fig. 2(e), the
GSO presents a better performance than the RDPSO during the first
iterations while the AFS closely follows the same performance as
the RDPSO.

To facilitate a straightforward comparison and since someof the
algorithms present a similar performance, the area under the curve
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Fig. 3. AUC of the exploration ratio ηexp[t] over the 500 iterations for each method. (a) (NT , dmax) = (10, 30 m); (b) (NT , dmax) = (10, 100 m); (c) (NT , dmax) = (20, 30 m);
(d) (NT , dmax) = (20, 100 m); (e) (NT , dmax) = (30, 30 m); (f) (NT , dmax) = (30, 100 m).
(AUC) may be used. This is a common measure used to analyze
the accuracy of receiver operating characteristic (ROC) curves that
represent the performance of classifiers.

As the exploration ratio ηexp [t] is a discrete function with t ∈

N0, the AUC may be calculated by the sum of each value over the
500 iterations. Moreover, one can normalize the AUC by dividing
it by 500, thus resulting in a representation of the probability that
a team of robots under a given algorithm has to explore the whole
scenario. Hence, the normalized AUC may be calculated as:

AUC =
1

500

500
k=0

ηexp[k]. (4)

The AUC of each set of trials is represented using boxplot charts,
which is a quick way of examining the algorithms’ performances
graphically. The ends of the blue boxes and the horizontal red
line in between correspond to the first and third quartiles and the
median values, respectively.

As one may observe in Fig. 3, the influence of the population
is more significant than the communication range. This should be
expected as swarm intelligent algorithms perform well for larger
population of robots, i.e., it is possible to observe a higher degree
of emergent collective behaviors as the population grows (cf., [51]).
Nevertheless, it is still possible to observe that, in most methods,
an increase in the maximum communication range results in
a minor improvement in the exploration ratio accuracy and a
significant one in its precision, i.e., smaller interquartile range. In
other words, the outcome becomes more predictable and regular
as the maximum communication range increases. Regarding the
comparison between algorithms, it is possible to observe that both



M.S. Couceiro et al. / Robotics and Autonomous Systems 62 (2014) 200–213 209
Fig. 4. Experimental setup. (a) arena of 2.0 × 1.8 m; (b) Virtual representation of the sound distribution.
PPSO and EPSO present a similar performance with a probability
of successfully exploring the whole scenario of almost 70% for a
population of 30 robots.

The same may be observed for both AFS and GSO algorithms,
in which a superior performance of almost 75% may be observed
for such a population. Finally, the RDPSO outperforms the
other methods depicting a probability of successfully exploring
the whole scenario of approximately 80% for the maximum
population. This 5% difference may be generalized for all other
(NT , dmax) configurations tested. Nevertheless, such a difference
is not linear and although the GSO presents a slightly better
performance than theAFS for smaller populations, it seems that the
AFS is able to overcome the GSO as the number of robots increases.
Also, and as Fig. 2 depicts, the AFS presents a similar performance
to the RDPSO for larger populations of robots.

Hence, for further evaluation, the next section compares the
three best performing algorithms, namely RDPSO [14,15], AFS
[23,24] and GSO [21,22], using 14 physical robots.

4. Real experiments

In this section, the effectiveness of using the three best
performing algorithms from the previous simulation experiments
on swarms of e-pucks [52], equipped with a Gumstix Overo COM
turret to benefit from inter-robotWiFi communication,2 b is further

2 http://www.gctronic.com/doc/index.php/Overo_Extension.
explored. Due to the limitations of those turrets, all communication
was centralized into a single server by means of TCP/IP sockets.
To that end, an e-puck network manager was created on the
server side to forward the data between the e-pucks and to
store the necessary information to evaluate the RDPSO, AFS and
GSO algorithms. Although this does not enable the comparison of
the algorithms under different communication ranges and even
paradigms (e.g., single-hop vs multi-hop communication), the
previous experiments already considered this variable. Moreover,
by not considering theMANET constraints, here we will only focus
on evaluating the behavioral aspect of the algorithms.

With the purpose of maintaining the scope around SaR
applications, these experiments consisted of collectively finding 2
‘‘victims’’ emulated by e-pucks on a 2.0×1.8m scenario (Fig. 4(a)).
The e-pucks are equippedwith three omnidirectional microphones
that acquire data at a maximum acquisition speed of 33 kHz
(A/D frequency of 100 kHz divided by three) [52]. They are also
equipped with a speaker on top of them connected to an audio
codec. Combined with the microphones, the speaker can create
a communication network for peers’ location. Unfortunately,
the lack of sensitivity regarding e-pucks’ microphones makes
it difficult to use them for sound source localization purposes.
For instance, Fig. 4(b) depicts the intensity values F(x, y), with
a maximum amplitude of one byte, obtained by sweeping the
whole scenario with a single e-puck using the standard SiSonic
microphones.3 As one may see, the e-pucks are only able to

3 http://projects.gctronic.com/E-Puck/docs/Audio/SP0103NC3.pdf.

http://www.gctronic.com/doc/index.php/Overo_Extension
http://projects.gctronic.com/E-Puck/docs/Audio/SP0103NC3.pdf
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distinguish sound from noise at a distance to the sound source
(i.e., ‘‘victims’’ e-pucks) of approximately 30 cm. However, such a
limitation favors the realistic applicability of the herein evaluated
algorithms to SaR applications. For instance, to the similarity as
the scenario used to evaluate the algorithms on simulation (Fig. 1),
if one would consider a large basement garage (e.g., parking of a
shopping mall), the laboratorial scenario from Fig. 4 could easily
be on a scale of 1:100. As a consequence, robot rescuers would be
able to ‘‘hear’’ victims (receiver sensitivity) at a distance of 30 m
from them. Several sources would confirm that a human call for
help may achieve a level between 72 and 78 dB at approximately
1m away from the source, i.e., from a very loud voice to a shouting
voice [53]. Moreover, as a rule of thumb, for every doubling of
the distance from the source, the sound pressure level is reduced
by 6 dB. According to [53], one may expect average ambient
sound levels between 40 and 55 dB in underground structures
and a medium density urban environment. This significantly
reduces the ability to identify a call for help to distances between
approximately 7 and 58 m, depending on the source and the
ambient noise level, thus making the 30 m sensitivity of robot
rescuers a realistic constraint.

The ‘‘victims’’ e-pucks were programmed to periodically play
the same sound while the ‘‘rescuers’’ e-pucks were programmed
with the RDPSO, AFS and GSO algorithms with the main objective
of collectivelymaximizing the input retrieved by themicrophones.

Contrarily to the previous experiments inwhich sub-optimality
should be avoided to navigate towards the direction of maximum
entropy at each iteration (Eq. (1)), the objective here is to find both
‘‘victims’’. Hence, as both RDPSO and GSO have the particularity of
avoiding sub-optimality, this featurewas ignored by using a simple
heuristic rule to stop when retrieving a sound amplitude of 100,
i.e., in the vicinities of the victims (Fig. 4(b)). This also intends to
emulate the rescuing phase in which robots that found a victim
should now either monitor or save it, thus being unavailable to
search for other victims.

Since the 3 algorithms are stochastic, they may lead to a
different trajectory convergence whenever they are executed.
Therefore, test groups of 10 trials of 300 s each were considered
for 14 e-pucks, i.e., NT = 14, placed in an initial configuration as
presented in Fig. 4(a).

In the case of the RDPSO, two swarms were initially defined
dividing the whole population into two equal parts of 7 e-pucks
each. Note that due to RDPSO properties, both the number of
swarms and e-pucks within each swarm would vary during the
mission based on their individual and collective performance (cf.,
Section 2.1). In the case of both AFS and GSO, all robots belong
to the same swarm. However, in the GSO the local-decision range
varies according to the luciferin level, thus mimicking the same
sub-division effect as the RDPSO.

All results from the 10 trials of each algorithm are summarized
in Fig. 5. The outcome from each algorithm is represented by a
different color and marker explained on the legend of the figure.
Each axis corresponds to the required time to save each victim.
Markers located at the borders corresponding to the 300 s depict
the unsaved victims. For instance, in any of the trials the rescuers
failed at finding, at least, one victim, as there is no marker on
position (300, 300) s. In other words, the performance of the
algorithm increases the closer to the origin (0, 0) the markers are.

As one may observe, the 3 algorithms fail at finding the 2
victims at some point over the 10 trials of 300 s in which
they were each evaluated. The RDPSO is able to find only one
victim in 2 trials, followed by the GSO in 4 trials and, lastly,
the AFS in 7 trials. The outperforming of both RDPSO and GSO
over the AFS regarding the partition of the population to multiple
optimal solutions was expected due to their dynamic principles
(cf., Table 1). Despite not being able to always find the 2 victims,
time to rescue victim 1 [seconds]
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Fig. 5. Representation of the rescue success of the RDPSO, AFS and GSO algorithms.
Each marker corresponds to a different trial under a different algorithm. The closer
the markers were from the origin (0, 0), the faster the robots were able to find the
victims. Markers located on the border lines of the 300 s means that only 1 victim
was found during that trial.

the AFS presents a faster convergence, as rescuers are able to
find the victim(s) in the first half of the mission time (.150 s).
Nevertheless, this early convergence may also be the reason why
rescuers may be unable to find the second victim since the AFS
does not provide any partitioning or adaptive mechanism that
could balance the already existing exploitation level of agents with
higher exploration capabilities.

The performance of the RDPSO algorithm is closely followed
by the GSOalgorithm. The average and standard deviation times
necessary to find both victims for the RDPSO, AFS and GSO were
205 ± 64, 259 ± 63 and 225 ± 70 s, respectively. Although both
RDPSO and GSO would find all victims within a finite time due
to their evolutionary mechanism to avoid stagnation, the GSO
fails more often. As previously explained in Section 2.4, the GSO
benefits from a luciferin mechanism that, contrarily to all other
algorithms, does not only depend on the sensed solution (e.g.,
amplitude of the emitted sound by the victim). In fact, the luciferin
value of a given robot decreases over time, thus avoiding its
stagnation within a given region. We could make the analogy with
nature by defining a limited quantity of oxygen in each discrete
position the glowworm is in. In other words, to produce light the
glowworm requires oxygen (or water) for the enzymatic oxidation
of the luciferin to occur. If the glowworm has a limited amount of
oxygen in a certain position (represented by the sound amplitude
in these experiments), then it needs tomove to another position to
maintain, or even increase, its emitted light. This is a particularly
interestingmechanism applied on swarm intelligence that ensures
the convergence of robots to multiple solutions in an enclosed
environment within a limited amount of time. However, this also
plays the role of a ‘‘double-edged sword’’. If the robot is unable
to converge quickly enough within the vicinities of a solution
to maintain or increase its current luciferin level, then it may
decide upon the wrong direction. This is likely to happen under
noisy and nonlinear measures such as sound propagation with an
increased complexity added by the lack of sensitivity of e-pucks’
microphones. This phenomenon was observed on some occasions
during the experiments in which clusters of robots within the
GSO got close enough to listen to the victim but still depicted a
poor convergence when converging at all. It is noteworthy that
this could possibly be overcome by tuning parameters ρ and γ
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from Algorithm 4 though little insights are introduced in [21,22]
regarding those.

A video of the experiments is provided to better understand
the typical behavior of the 3 algorithms under these experiments.4
Supplementary material related to this article can be found online
at http://dx.doi.org/10.1016/j.robot.2013.10.004.

5. Discussion

The authors would like to discuss the take-home message this
paper brings forth.

The primary motivation for this work was to find a group of
swarm robotics algorithms with the potential of fulfilling realistic
search tasks such as SaR operations. From that initial theoretical
survey, five algorithms were chosen, namely: the RDPSO (recently
proposed by the authors) [14,15], the EPSO [17,18], the PPSO
[19,20], the GSO [21,22] and the AFS [23,24]. Table 1 was the
leading step towards a detailed comparison of the five algorithms,
thus describing the most relevant features one should expect
under such tasks. From that table it was possible to conclude
that the RDPSO touches upon all desired features for a higher
computational and memory cost. The main features separating
the RDPSO from the alternatives were its ability to avoid sub-
optimality by benefitting from a punish–rewardmechanism based
on natural selection [14] and the fault-tolerance assessment using
a multi-connectivity strategy [42]. Such an outcome promotes the
use of the RDPSO algorithm in applications affected by multiple
sub-optimal and dynamic solutions in which the communication
may be susceptible to failures. However, both CPU power and the
memory of the robotic platforms need to be well-weighted due to
the requirements of the RDPSO.

Going deeper into the ‘‘rabbit hole’’, a large number of
simulation experiments were conducted to study the effect of
the number of robots and the communication constraints of
the five algorithms. The mission consisted of exploring and
mapping a 2000 m2 scenario in which robots needed to minimize
the map’s entropy [50]. More than to just state the obvious
phenomenon that a larger population of robots improves the
overall performance, those experimentswere useful to understand
the influence of a more constrained communication network on
the five swarmalgorithms. Through Fig. 3 itwas possible to observe
a lower variability of the exploration ratio for a larger maximum
communication distance feasible between robots, i.e., the outcome
became more consistent for a less constrained communication
network. Such a phenomenonwasmore perceptible using the EPSO
and PPSO algorithms, thus suggesting their higher susceptibility
over the communication constraints. Associating this aspect to
the fact that both algorithms work on a broadcast communication
basis (cf., Table 1), the authors dissuade the use of those algorithms
on applications that may require a larger number of robots (above
20 in the experiments in Section 3) or too limited communication
constraints (below an inter-robot distance of 100 m in the
experiments in Section 3).

Those results paved the way to an insightful evaluation of the
three best performing algorithms, namely, the RDPSO, the GSO and
the AFS. This new evaluation was carried out using real platforms:
the well-known e-puck robots equipped with WiFi technology for
inter-robot communication [52]. Instead of a mapping mission
that would be typical of a reconnaissance phase (cf., Section 2
and Couceiro et al. work [12]), those experiments were consistent
with the next phase of the firefighting operation, the rescuing.
In brief, these experiments consisted of collectively finding 2

4 http://www2.isr.uc.pt/~micaelcouceiro/media/RDPSO_AFS_GSO.mp4.
‘‘victims’’ by benefiting from e-pucks’ speakers and microphones.
To complement the previous experiments in which the size of the
population and the communication constraintswere studied, these
experiments were conducted to evaluate the behavioral aspect,
and even evolutionary features, of the algorithms. The results
fostered even more the use of the RDPSO for such tasks with a 80%
success of finding both victims over the 300 s. Nevertheless, the
GSO was able to closely follow the RDPSO due to its evolutionary
luciferinmechanism for stagnation avoidance. Such a result proves
to be crucial since the GSO presents itself as a ‘‘low cost’’
alternative to the RDPSO in terms of computational and memory
requirements. Although, in general, the RDPSO presented better
results than the GSO, it is noteworthy that the GSO would achieve
a similar final outcome if one could benefit from a larger mission
time.

All that being said, one may state that it is still difficult at
this point to find a simple answer to the question ‘‘which is the
best swarm robotics algorithm for my application?’’. However, the
authors argue that this paper provides a preliminary rationale on
the most fitted swarm robotics algorithm for search applications.
Such a choice should consider some predefined assumptions,
such as the number of available robots, the existing wireless
communication and other mission-related features (e.g., existence
of dynamic sources, number of sub-optimal solutions, among
others).

6. Conclusion and future work

One of themain questions regarding swarm robotics algorithms
is whether the full-scale deployment of these systems in real-
world application environments would fit the necessary mission
requirements. Despite the outstanding accomplishment of such
algorithms in optimization or any other task unconstrained by real
world features, such as robot dynamics, obstacles interference or
communication failures, the reality gap still needs to be crossed
for most of them. To address this issue, this paper outlined
an initial benchmark regarding the outcome from five swarm
robotics algorithms under different configurations (e.g., number
of robots) and search tasks. Such results can be used to apply
swarm robotics concepts to real world applications such as
search-and-rescue.

The list of swarm robotics algorithms compared in this paper
is by no means exhaustive and a deeper research should be
conducted based on the insights provided in this paper. It is,
however, possible to make a proper selection of the most desired
algorithm based on the requirements of the application and
hardware limitations (e.g., wireless technology).

The experimental results essentially show the advantages
of using evolutionary algorithms over non-evolutionary ones,
starting with simulation experiments in which robots need to
cooperatively map an unknown environment, and all the way to
real experiments in which a group of e-pucks needs to find the
location of victims through sound. With a small increase in the
computational complexity, the Robotic Darwinian Particle Swarm
Optimization (RDPSO) algorithm depicts an improved convergence
which is also better fitted to handling multiple and dynamic
sources.

Given the advantages of the RDPSO algorithm, a deeper analysis
and comparison should be conducted as a future work. Moreover,
a macroscopic model of the RDPSO should be developed in order
to predict teams’ performance for a given task. By doing this, one
may be able to choose themost correct configuration (e.g., number
of robots within each team) without resorting to exhaustive
experimentation.

http://dx.doi.org/10.1016/j.robot.2013.10.004
http://www2.isr.uc.pt/~micaelcouceiro/media/RDPSO_AFS_GSO.mp4
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