
Assignment localization
0. Assignment introduction
In the lectures, you have learned about the localization problem and why it is relevant for mobile robots. This assignment is an
opportunity to implement a localization algorithm to get an even better understanding. Furthermore, the code that is developed during
this assignment can be used for the final challenge of the course.

You will implement a particle filter as introduced in the lectures. A base for the code is provided so that you only have to add the core
functionality of the particle filter, and not be distracted by tedious practicalities. Furthermore, tests are provided so that you can easily
verify your implementation.

Before starting the assignments, make sure to:

0.1 Explore the code framework

Open the code framework and see how it is structured. The comments in the header files ( ParticleFilter.h , ParticleFilterBase.h ,
etc.) are often a great way to help your understanding of what each method implements.

0.2 Compile and run the code

To check if everything works as intended, you must first compile the code (for a full explanation, see the introduction excercises from
week 1). Open a terminal in the assignment folder \3_localization\  and enter the following:

Afterward, run the tests you just compiled:

install the MRC exercise tools and complete the C++ tutorials (see the exercises of week 1)
have a basic understanding of the particle filters from watching the lectures
Pull the exercise code framework from your group's git repo

Assignment 0.1 ​

Explain in a few concise sentences per item:

How is the code is structured?
What is the difference between the ParticleFilter  and ParticleFilterBase  classes, and how are they related to each
other?
How are the ParticleFilter  and Particle  class related to eachother?
Both the ParticleFilterBase  and Particle  classes implement a propagation method. What is the difference between the
methods?

mkdir build

cd build

cmake ..

make

1. In the terminal, navigate to \3_localization\bin\
2. Run the the binary of the test you want to run (e.g. ./assignment1_1  for the first assignment)

Assignment 0.2 ​

Without changing anything in the code base, compile the code, make sure there are no errors.
Make sure you can run the tests. Do not worry when all of them return "test fails".

Note ​

Throughout this assignment we will use tests to make sure that your intermediate results are implemented correctly. A correct result
indicates that your implementation is likely correct, but does not guarantee it. There is a possibility that you've introduced
unforeseen bugs into your implementation.



1. Assignments for the first week
1.1 Initialize the Particle Filter
Having obtained a bit of insight into the core working of the code-base, let's start with the implementation of the core functionality of the
particle filter. As you know, the particle filter estimates the pose of the robot through a set of weighted particles, each particle represents
an hypothesis of the current robot pose. The set of all particles approximates the probability distribution over all possible robot poses.

Within assignment 1.1 we will implement the methods which construct this set of particles. A particle can be constructed with either of
the following methods:

In the Particle.cpp  file you received, both of these methods initializes the particles with pose (x, y, theta) = (0, 0, 0). This does not
fulfill the desired behavior as described in Particle.h . You should adapt both constructor methods to sample from either a Gaussian or
uniform distribution.

Next, we want to initialize many particles. As you might have discovered, the ParticleFilterBase  class contains a vector _particles
storing all its particles. These vectors are initialized when either one of their constructors are called:

These constructor methods should be adapted such that the particle vector gets populated.

Particle::Particle(&world, &weight, *generatorPtr);

Particle::Particle(&world, mean[3], sigma[3],  &weight, *generatorPtr);

ParticleFilterBase::ParticleFilterBase(const World &world, const int &N);

ParticleFilterBase::ParticleFilterBase(const World &world, const double mean[3], const double sigma[3], const int

&N);

Assignment 1.1 ​

Implementation

Wiki documentation

Take a look at Particle.h  to read the description of how the constructor methods should work
Complete both Particle()  constructors
Complete both ParticleFilterBase()  constructors
Run the tests assignment1_1  to validate that your methods function correctly.
Run main  (while also running mrc-sim  and sim-rviz ) to check whether you see particles colored in red. You should see
something similar like in the image below.

Explain in a few concise sentences per item:
What are the advantages/disadvantages of using the first constructor, what are the advantages/disadvantages of the
second one?
In which cases would we use either of them?



1.2 Calculate the pose estimate

Having initialized the filter, we are interested in extracting the pose estimate from the filter. As stated in the lectures, the filter
approximates the probability distribution of the robot pose by a cloud of particles. The filter estimate is then the expected value of this
distribution.
Within our code-base, the expected value (or the average pose), is calculated in the following method.

1.3 Propagate the particles with odometry

The particles in our filter represent hypothesis of our current robot pose. So far we've initialized these particles given some prior
knowledge of our robot pose, either uniformly across our map or spread around our initial estimate. However, as you may know, robots
are not meant to be stationary objects in our world, most robots tend to move around. In the prediction step we incorporate the sensor
information that corresponds to this movement in our filter estimates.

Our odometry information consists of three values, two translational x and y components and a rotational component θ. These values
represent the distance driven or angle rotated since the previous step, and are thus defined with respect to the odometry reference
frame. These measurements are corrupted by noise, wheel slip, and other phenomena which were not modeled however. The actual
distance and angle driven is thus the sum of the received sensor information and an unknown noise component.

To update the poses of our set of particles, we run the following method:

Add a screenshot of rviz to show that the code is working

Pose ParticleFilterBase::get_average_state();
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Tip: Consider how you can find the circular mean. For example, what is the average of −π and π when considering rotations?

Complete the get_average_state()  method
Run the tests assignment1_2  to validate that your methods function correctly.
Run main  (while also running mrc-sim  and sim-rviz ) to check whether you see the weighted pose (a thin green arrow) at
the center of the red particles. You should see something similar like in the image below.

Explain in a few concise sentences per item:
Interpret the resulting filter average. What does it resemble? Is the estimated robot pose correct? Why?
Imagine a case in which the filter average is inadequate for determining the robot position.

Add a screenshot of rviz to show that the code is working



in which dPose, is the distance and angle traveled since the last propagation step, proc_noise is the standard deviation of the zero-
mean noise we inject during the propagation, and offset_angle is the current rotation between the odometry frame and the robot frame.

2. Assignment for the second week
2.1 Correct the particles with LiDAR

In the previous assignments we have implemented the initialization, estimation and propagation of the particle filter. An observant
programmer would however have noticed that we, so far, are not doing any better than simply integrating the odometry. One could even
argue that we have implemented an inferior approach, due to the higher computational complexity and the inclusion of an even larger
amount of uncertainty due to the injection noise in the propagation step.

The power of the particle filter approach starts to become apparent once we include multiple types of sensor information. As we have
seen, odometry information is a valuable source of localization information, but as we will see in this assignment the inclusion of visual
information, in the form of LRF scan, makes the prediction more reliable over the longer term. In order to incorporate these LRF
measurements we will assign a weight to each particle.

To assign a weight to a particle that represents a pose, you can first predict what measurements you expect at that pose. This prediction
can be compared with the actual measurement based on a sensor model to compute the likelihood of the measurement. You can then
use likelihood as the weight of the particle.

In this assignment, you must implement the measurement model. Furthermore, you must use this to find the likelihood of the
measurement.

void Particle::propagateSample(const Pose &dPose, const double proc_noise[2], const double offset_angle);

Assignment 1.3 ​

Implementation

Tip: Note that the odometry data is collected in the robot frame, whereas the pose of the particles is stored in map frame. In
order to perform an accurate propagation, first transform dPose  into the map frame.

Wiki documentation

Tip: You can start a recording your ubuntu screen with Ctrl + Alt + Shift + R . Pressing the same keys again will stop the
recording. The video is saved in the videos folder.

Complete the propagateSample()  method
Run the tests assignment1_3  to validate that your methods function correctly.
Run main  (while also running mrc-sim  and sim-rviz ). Also run mrc-teleop  so that you can move the robot. The particles
and the weighted average should move as the robot drives around. It is expected that the particles will slowly diverge from the
actual pose.

Explain in a few concise sentences per item:
Why do we need to inject noise into the propagation when the received odometry infromation already has an unkown
noise component?
What happens when we stop here, and do not incorporate a correction step?

Add a screenrecodring of rviz while driving to show that the code is working

Likelihood Particle::computeLikelihood(const measurementList &data,

World &world, const MeasModelParams &lm)

double Particle::measurementmodel(const measurement &prediction,

const measurement &data, const MeasModelParams &lm)

The Assignment 2.1 ​
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Complete the measurementmodel()  method
Complete the computeLikelihood()  method
Run the tests assignment2_1  to validate that your methods function correctly.



2.2 Re-sample the particles
So far we've implemented the main parts of the particle filter. We are able to generate particles, take their average, propagate the
samples and compute their likelihoods. However, as you might have guessed from the section title, a last step is to resample the
particles periodically, to quote Probabilistic Robotics:

"The resampling step has the important function to force particles back to the posterior bel(xt). In fact, an alternative (and usually
inferior) version of the particle filter would never resample, but instead would maintain for each particle an importance that is
initialized by 1 and updated multiplicatively (...) Such a particle filter algorithm would still approximate the posterior, but many of its
particles would end up in regions of low posterior probability. As a result, it would require many more particles; how many depends
on the shape of the posterior."

In other words, if we do not resample, a lot of particles will end up in regions of the environment which are very unlikely to be the
accurate robot pose. When we resample, we redraw our samples randomly but make sure that regions with high likelihood are
represented heavily in the new particle set, regions with low likelihood are represented less. Or as Probabilistic Robotics puts it:

" The resampling step is a probabilistic implementation of the Darwinian idea of survival of the fittest: It refocuses the particle set to
regions in state space with high posterior probability. By doing so, it focuses the computational resources of the filter algorithm to
regions in the state space where they matter the most"

A wide variety of resampling algorithms exist, however many of them rely on largely the same insights. In the assignment you will be
implementing the stratified and multinomial resampling schemes as they are outlined in the pseudo code below (based on here and
here).

Wiki documentation

(Running main  should not show any major difference, since the likelihood is not directly visualized. You might see a slight
improvement in the weighted average pose, however.)

Explain in a few concise sentences per item:
What does each of the component of the measurement model represent, and why is each necessary.
With each particle having N >> 1 rays, and each likelihood being ∈ [0, 1], where could you see an issue given our
current implementation of the likelihood computation.

STRATIFIED RESAMPLING

GIVEN: Particles x and size N

-------------------------------

n = 0

m = 1

Q_0:N = cummulative_sum(particle_weights)

while n <= N:

u_0 ~ U(0,1/N]

u = u0 + n/N

while Q_m < u

m = m + 1

n = n + 1

y_n = x_m

-------------------------------

RETURN Particles y

MULTINOMIAL RESAMPLING

GIVEN: Particles x and size N

-------------------------------

n = 0

Q_0:N = cummulative_sum(particle_weights)

while n <= N:

m = 1

u ~ U(0,1]

while Q_m < u

m = m + 1

n = n + 1

y_n = x_m

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7079001
https://www.mdpi.com/1424-8220/21/2/438


The methods you need to implement are

and

2.3 Test on the physical setup
By now, you have created a localization algorithm and validated it in simulation. Let's find out it if we can use it on a real robot.

-------------------------------

RETURN Particles y

void Resampler::_multinomial(ParticleList &Particles, const int N)

void Resampler::_stratified(ParticleList &Particles, const int N)

Assignment 2.2 ​
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Complete the _multinomial()  method
Complete the _stratified()  method.
(you can select which sampling algorithm to use in params.json )
Run main  (while also running mrc-sim  and sim-rviz ) to check whether the particles converge to the actual pose, even
when driving around with mrc-teleop .

Explain in a few concise sentences per item:
What are the benefits and disadvantages of both the multinomial resampling and the stratified resampling?
With each particle having N >> 1 rays, and each likelihood being ∈ [0, 1], where could you see an issue given our
current implementation of the likelihood computation?

The Assignment ​
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Run your localization code on the real robot setup. See if you can load a map that reflects the real scenario.
Tune the parameters of the algorithm (see params.json ). It is recomended you test this in simulation first.
(optional:) compare your localization algorithm with the ground truth given by the opti-track system.

Explain in a few concise sentences per item:



How you tuned the parameters.
How accurate your localization is, and whether this will be sufficient for the final challenge.
How your algorithm responds to unmodeled obstacles.
Whether your algorithm is sufficiently fast and accurate for the final challenge.

Include a video that shows your algorithm working on the real robot
When finished with the assignments, push the code to your group's git repo


