AMIGO's software architecture: performing a RoboCup Challenge

J.J.M. Lunenburg

Technische Universiteit **Eindhoven** University of Technology

May 19, 2014

Where innovation starts

TU

Booting the robot

roscore

Booting the robot

- roscore
- Robot state publisher
 - Subscribes to joint angles
 - Uses URDF model
 - Publishes transformation between frames

Booting the robot

- roscore
- Robot state publisher
 - Subscribes to joint angles
 - Uses URDF model
 - Publishes transformation between frames

Diagnostics

- Battery voltage
- Timing offsets
- Emergency button states
- Graphical user interface

- Open RObot COntrol Software (Orocos) realtime toolkit (rtt)
 - Modular realtime software components
 - Launched in a rosnode
 - Configuration defined in deployment scripts
 - rtt component library

- Open RObot COntrol Software (Orocos) realtime toolkit (rtt)
 - Modular realtime software components
 - Launched in a rosnode
 - Configuration defined in deployment scripts
 - rtt component library
- Deployment structure
 - Hardware communication (SOEM library)
 - Controller architecture

- Open RObot COntrol Software (Orocos) realtime toolkit (rtt)
 - Modular realtime software components
 - · Launched in a rosnode
 - Configuration defined in deployment scripts
 - rtt component library
- Deployment structure
 - Hardware communication (SOEM library)
 - Controller architecture
- Safety

- Open RObot COntrol Software (Orocos) realtime toolkit (rtt)
 - Modular realtime software components
 - Launched in a rosnode
 - Configuration defined in deployment scripts
 - rtt component library
- Deployment structure
 - Hardware communication (SOEM library)
 - Controller architecture
- Safety
- Supervisor

3/24

Low-level software: sensors

- Laser range finders
- (Kinect) cameras

Low-level software: sensors

- Laser range finders
- (Kinect) cameras

Low-level software: sensors

- Laser range finders
- (Kinect) cameras
- Similar to PICO
- How to design a system architecture?
 - Reuseability

Navigate to party room

5/24

- Navigate to party room
- Ask for name and desired drink

- Navigate to party room
- Ask for name and desired drink
- Learn faces

5/24

- Navigate to party room
- Ask for name and desired drink
- Learn faces
- Get the drinks

- Navigate to party room
- Ask for name and desired drink
- Learn faces
- Get the drinks
- Deliver the drinks

- Navigate to party room
- Ask for name and desired drink
- Learn faces
- Get the drinks
- Deliver the drinks
- Leave the arena

Navigate to party room: navigation

- Ask for name and desired drink
- Learn faces
- Get the drinks
- Deliver the drinks
- Leave the arena

Localization

- AMCL
- GMapping

TU

Localization

- AMCL
- GMapping

6/24

Localization

- AMCL
- GMapping

Localization

- AMCL
- GMapping
- Odometry
- Features such as corners, lines and crossings

- Localization
 - AMCL
 - GMapping
 - Odometry
 - Features such as corners, lines and crossings
- Path planning

- Localization
 - AMCL
 - GMapping
 - Odometry
 - Features such as corners, lines and crossings
- Path planning
 - Local (reactive) planning

- Localization
 - AMCL
 - GMapping
 - Odometry
 - Features such as corners, lines and crossings
- Path planning
 - Local (reactive) planning
- Navigation pipeline
 - move base

- Localization
 - AMCL
 - GMapping
 - Odometry
 - Features such as corners, lines and crossings
- Path planning
 - Local (reactive) planning
- Navigation pipeline
 - move base
- Where are we going?

Navigation goals

- Reasoning interface
 - Expressive, semantic interface
 - waypoint (rwc2013, cocktailparty, partyroom, pose2d(3.712, -2.506, -1.348)).

Navigation goals

- Reasoning interface
 - Expressive, semantic interface
 - waypoint (rwc2013, cocktailparty, partyroom, pose2d(3.712, -2.506, -1.348)).
- Robustness
 - Multiple goals

Navigation goals

- Reasoning interface
 - Expressive, semantic interface
 - waypoint (rwc2013, cocktailparty, partyroom, pose2d(3.712, -2.506, -1.348)).
- Robustness
 - Multiple goals
 - Goal area

Current structure

Navigation goals (2)

- Current structure
- Separate node?

- Navigate to party room: navigation
- Ask for name and desired drink
- Learn faces
- Get the drinks
- Deliver the drinks
- Leave the arena

- Navigate to party room: navigation
- Ask for name and desired drink: human-robot interaction
- Learn faces
- Get the drinks
- Deliver the drinks
- Leave the arena

Human-Robot Interaction

- Speech synthesis
 - Festival/eSpeak
 - Google
 - Philips
- Speech recognition
 - (Pocket)Sphinx

Human-Robot Interaction

- Speech synthesis
 - Festival/eSpeak
 - Google
 - Philips
- Speech recognition
 - (Pocket)Sphinx
- Issues
 - Multiple dictionaries
 - Advanced commands
 - Confirmations
 - Talking and not listening

Human-Robot Interaction

- Speech synthesis
 - Festival/eSpeak
 - Google
 - Philips
- Speech recognition
 - (Pocket)Sphinx
- Issues
 - Multiple dictionaries
 - Advanced commands
 - Confirmations
 - Talking and not listening
- Speech interpreter
 - Parameterized request
 - Knowledge from reasoner
 - Active required dictionary

10/24
Human-Robot Interaction

- Speech synthesis
 - Festival/eSpeak
 - Google
 - Philips
- Speech recognition
 - (Pocket)Sphinx
- Issues
 - Multiple dictionaries
 - Advanced commands
 - Confirmations
 - Talking and not listening
- Speech interpreter
 - Parameterized request
 - Knowledge from reasoner
 - Active required dictionary

Serving drinks at a cocktail party

- Navigate to party room: navigation
- Ask for name and desired drink: human-robot interaction
- Learn faces
- Get the drinks
- Deliver the drinks
- Leave the arena

11/24

Serving drinks at a cocktail party

- Navigate to party room: navigation
- Ask for name and desired drink: human-robot interaction
- Learn faces: perception
- Get the drinks
- Deliver the drinks
- Leave the arena

11/24

Perception

- Many routines for detecting and recognizing peoples and objects
 - Leg and torso detection
 - Face detection
 - Face recognition
 - Template matching
 - Blob clustering
 - Tabletop segmentation
 - VFH matching

Perception

- Many routines for detecting and recognizing peoples and objects
 - Leg and torso detection
 - Face detection
 - Face recognition
 - Template matching
 - Blob clustering
 - Tabletop segmentation
 - VFH matching
- World model
 - Consistent belief state
 - Sensor fusion
 - Probabilistic multiple hypothesis approach
 - Memory

Perception (2)

- PErception INfrastructure
 - Reuse of code
 - Nodelet: prevent needless data copying
 - Modules can be switched on or off through supervisor

Perception (2)

PErception INfrastructure

- Reuse of code
- Nodelet: prevent needless data copying
- Modules can be switched on or off through supervisor
- Arrow detection
 - Enabling/disabling

Serving drinks at a cocktail party

- Navigate to party room: navigation
- Ask for name and desired drink: human-robot interaction
- Learn faces: perception
- Get the drinks
- Deliver the drinks
- Leave the arena

14/24

Serving drinks at a cocktail party

- Navigate to party room: navigation
- Ask for name and desired drink: human-robot interaction
- Learn faces: perception
- Get the drinks: manipulation
- Deliver the drinks
- Leave the arena

14/24

- Targets in joint space: Joint trajectory action
 - Actionlib interface

- Targets in joint space: Joint trajectory action
 - Actionlib interface
- Targets in Cartesian space

- Targets in joint space: Joint trajectory action
 - Actionlib interface
- Targets in Cartesian space
- Joint space control
 - Inverse Kinematics
 - Joint space planning

- Targets in joint space: Joint trajectory action
 - Actionlib interface
- Targets in Cartesian space
- Joint space control
 - Inverse Kinematics
 - Joint space planning
 - Cartesian space planning

- Targets in joint space: Joint trajectory action
 - Actionlib interface
- Targets in Cartesian space
- Joint space control
 - Inverse Kinematics
 - Joint space planning
 - Cartesian space planning
- Cartesian space control
 - No explicit joint goals

- Targets in joint space: Joint trajectory action
 - Actionlib interface
- Targets in Cartesian space
- Joint space control
 - Inverse Kinematics
 - Joint space planning
 - Cartesian space planning
- Cartesian space control
 - No explicit joint goals
 - Local minima

- Targets in joint space: Joint trajectory action
 - Actionlib interface
- Targets in Cartesian space
- Joint space control
 - Inverse Kinematics
 - Joint space planning
 - Cartesian space planning
- Cartesian space control
 - No explicit joint goals
 - Local minima
- Visual feedback

Serving drinks at a cocktail party

- Navigate to party room: navigation
- Ask for name and desired drink: human-robot interaction
- Learn faces: perception
- Get the drinks: manipulation
- Deliver the drinks
- Leave the arena

16/24

- Navigate to party room: navigation
- Ask for name and desired drink: human-robot interaction
- Learn faces: perception
- Get the drinks: manipulation
- Deliver the drinks: composing hierarchical state machines
- Leave the arena

16/24

Executives

SMACH state machine

- Fast prototyping, complex state machines
- SMACH states (Generic, CB)
- SMACH containers (StateMachine, Iterator, Concurrence)
- Robot abstraction layer

Executives

SMACH state machine

- Fast prototyping, complex state machines
- SMACH states (Generic, CB)
- SMACH containers (StateMachine, Iterator, Concurrence)
- Robot abstraction layer
- Hierarchical states

17/24

Executives

SMACH state machine

- Fast prototyping, complex state machines
- SMACH states (Generic, CB)
- SMACH containers (StateMachine, Iterator, Concurrence)
- Robot abstraction layer
- Hierarchical states
 - Scaling
 - Reuse of code

Getting a drink

Grasping

- Open gripper
- Move gripper to object
 - Multiple steps
 - Visual servo update
- Close gripper
- Retract arm

Getting a drink (2)

- Getting a drink
 - Navigate to possible storage locations
 - Get waypoints from reasoner
 - Look for objects
 - Perception algorithms
 - Reposition
 - Inverse reachability
 - Get target location from reasoner
 - Grasp

Getting a drink (3)

- Cocktailparty
 - Robot has the drink
 - Delivery

Getting a drink (3)

- Cocktailparty
 - Robot has the drink
 - Delivery
- Example: navigation modes
 - Straight, left, right, back
 - Executive 'selects' based on 'map' and detected arrows
 - Motion planner performs motion

Getting a drink (3)

- Cocktailparty
 - Robot has the drink
 - Delivery
- Example: navigation modes
 - Straight, left, right, back
 - Executive 'selects' based on 'map' and detected arrows
 - Motion planner performs motion

Robots don't work in a perfect world!

- Navigate to party room: navigation
- Ask for name and desired drink: human-robot interaction
- Learn faces: perception
- Get the drinks: manipulation
- Deliver the drinks: composing hierarchical state machines
- Leave the arena

21/24

- Navigate to party room: navigation
- Ask for name and desired drink: human-robot interaction
- Learn faces: perception
- Get the drinks: manipulation
- Deliver the drinks: composing hierarchical state machines
- Leave the arena: failure handling

21/24

Failure handling

- Many sources of failures
 - Location unreachable
 - Cannot detect people
 - Cannot find object
 - Object out of reach
 - Hardware failure

• ...

22/24

Failure handling

- Many sources of failures
 - Location unreachable
 - Cannot detect people
 - Cannot find object
 - Object out of reach
 - Hardware failure
 - ...
- What should the robot do when something does not work?

Failure handling

- Many sources of failures
 - Location unreachable
 - Cannot detect people
 - Cannot find object
 - Object out of reach
 - Hardware failure
 - ...
- What should the robot do when something does not work?
- Building an application
 - State outcomes
 - Don't postpone developing fallback scenarios
 - Test all transitions

- Time-outs
 - Blocking calls

23/24

- Time-outs
 - Blocking calls
- Testing!
 - Sensor noise
 - Servo errors
 - People
 - Startup situations
 - Test settings
 - ...

23/24

- Time-outs
 - Blocking calls
- Testing!
 - Sensor noise
 - Servo errors
 - People
 - Startup situations
 - Test settings
 - ...
- Task planning
 - Mission statemachine is not hardcoded
 - Useful for multiple tasks: General Purpose Service Robot

- Time-outs
 - Blocking calls
- Testing!
 - Sensor noise
 - Servo errors
 - People
 - Startup situations
 - Test settings
 - ...
- Task planning
 - Mission statemachine is not hardcoded
 - Useful for multiple tasks: General Purpose Service Robot
- Recovery behavior
 - Navigation safety

23/24

Questions

Questions?

