AMIGO's software architecture: performing a RoboCup Challenge

J.J.M. Lunenburg

roscore

Booting AMIGO

- roscore
- Robot state publisher
 - Subscribes to joint angles
 - Uses URDF model
 - Publishes poses of robot links
 - Used by rviz

Booting AMIGO

- roscore
- Robot state publisher
 - Subscribes to joint angles
 - Uses URDF model
 - Publishes poses of robot links
 - Used by rviz
- Diagnostics
 - Battery voltage
 - Timing offsets
 - Emergency button states
 - Graphical user interface

- Open RObot COntrol Software (Orocos) realtime toolkit (rtt)
 - Modular realtime software components
 - Launched in a rosnode
 - Configuration defined in deployment scripts
 - rtt component library

- Open RObot COntrol Software (Orocos) realtime toolkit (rtt)
 - Modular realtime software components
 - · Launched in a rosnode
 - Configuration defined in deployment scripts
 - · rtt component library
- Deployment structure
 - Hardware communication (SOEM library)
 - · Controller architecture

Low-level software: actuators

- Open RObot COntrol Software (Orocos) realtime toolkit (rtt)
 - Modular realtime software components
 - · Launched in a rosnode
 - Configuration defined in deployment scripts
 - rtt component library
- Deployment structure
 - Hardware communication (SOEM library)
 - Controller architecture
- Safety

Low-level software: actuators

- Open RObot COntrol Software (Orocos) realtime toolkit (rtt)
 - Modular realtime software components
 - · Launched in a rosnode
 - Configuration defined in deployment scripts
 - rtt component library
- Deployment structure
 - Hardware communication (SOEM library)
 - Controller architecture
- Safety
- Supervisor

Low-level software: sensors

- Laser range finders
- (Kinect) cameras

Low-level software: sensors

- Laser range finders
- (Kinect) cameras

Navigate to party room

- Navigate to party room
- Ask for name and desired drink

- Navigate to party room
- Ask for name and desired drink
- Learn faces

- Navigate to party room
- Ask for name and desired drink
- Learn faces
- Get the drinks

- Navigate to party room
- Ask for name and desired drink
- Learn faces
- Get the drinks
- Deliver the drinks

- Navigate to party room
- Ask for name and desired drink
- Learn faces
- Get the drinks
- Deliver the drinks
- Leave the arena

- Navigate to party room: navigation
- Ask for name and desired drink
- Learn faces
- Get the drinks
- Deliver the drinks
- Leave the arena

- Localization
 - AMCL
 - GMapping

- Localization
 - AMCL
 - GMapping

- Localization
 - AMCL
 - GMapping

- Localization
- Path planning

- Localization
- Path planning
- Navigation pipeline
 - move base

- Localization
- Path planning
- Navigation pipeline
 - move base
- Where are we going?

- Reasoning interface
 - Expressive, semantic interface
 - waypoint (rwc2013, cocktailparty, partyroom, pose2d(3.712, -2.506, -1.348)).

- Reasoning interface
 - Expressive, semantic interface
 - waypoint (rwc2013, cocktailparty, partyroom, pose2d(3.712, -2.506, -1.348)).
- Robustness
 - Multiple goals

- Reasoning interface
 - Expressive, semantic interface
 - waypoint (rwc2013, cocktailparty, partyroom, pose2d(3.712, -2.506, -1.348)).
- Robustness
 - Multiple goals
 - · Goal area

- Reasoning interface
 - Expressive, semantic interface
 - waypoint (rwc2013, cocktailparty, partyroom, pose2d(3.712, -2.506, -1.348)).
- Robustness
 - Multiple goals
 - Goal area

- Navigate to party room: navigation
- Ask for name and desired drink: human-robot interaction
- Learn faces
- Get the drinks
- Deliver the drinks
- Leave the arena

- Speech synthesis
 - Festival/eSpeak
 - Google
 - Philips
- Speech recognition
 - (Pocket)Sphinx

- Speech synthesis
- Speech recognition
- Issues
 - Multiple dictionaries
 - · Advanced commands
 - Confirmations
 - Talking and not listening

- Speech synthesis
- Speech recognition
- Issues
 - Multiple dictionaries
 - Advanced commands
 - Confirmations
 - Talking and not listening
- Speech interpreter
 - Parameterized request
 - Knowledge from reasoner
 - Active required dictionary

- Speech synthesis
- Speech recognition
- Issues
 - Multiple dictionaries
 - Advanced commands
 - Confirmations
 - Talking and not listening
- Speech interpreter
 - Parameterized request
 - Knowledge from reasoner
 - Active required dictionary
- LED bar

- Navigate to party room: navigation
- Ask for name and desired drink: human-robot interaction
- Learn faces: perception
- Get the drinks
- Deliver the drinks
- Leave the arena

- Many routines for detecting and recognizing peoples and objects
 - Leg and torso detection
 - Face detection
 - · Face recognition
 - Template matching
 - · Blob clustering
 - Tabletop segmentation
 - Viewpoint Feature Histogram matching

- Many routines for detecting and recognizing peoples and objects
- World model
 - · Consistent belief state
 - Sensor fusion
 - Probabilistic multiple-hypothesis approach
 - Memory
 - Reasoner provides interface between executive and world model

- Many routines for detecting and recognizing peoples and objects
- World model
- PErception INfrastructure
 - · Reuse of code
 - Nodelet: prevent needless data copying
 - Modules can be switched on or off through supervisor

Serving drinks at a cocktail party

- Navigate to party room: navigation
- Ask for name and desired drink: human-robot interaction
- Learn faces: perception
- Get the drinks: manipulation
- Deliver the drinks
- Leave the arena

- Targets in joint space: Joint trajectory action
 - Actionlib interface

- Targets in joint space: Joint trajectory action
 - Actionlib interface
- Targets in Cartesian space

- Targets in joint space: Joint trajectory action
 - Actionlib interface
- Targets in Cartesian space
- Joint space control
 - Inverse Kinematics
 - Joint space planning

- Targets in joint space: Joint trajectory action
 - Actionlib interface
- Targets in Cartesian space
- Joint space control
 - Inverse Kinematics
 - Joint space planning
 - Cartesian space planning

- Targets in joint space: Joint trajectory action
 - Actionlib interface
- Targets in Cartesian space
- Joint space control
 - Inverse Kinematics
 - · Joint space planning
 - Cartesian space planning
- Cartesian space control
 - No explicit joint goals

- Targets in joint space: Joint trajectory action
 - Actionlib interface
- Targets in Cartesian space
- Joint space control
 - Inverse Kinematics
 - Joint space planning
 - Cartesian space planning
- Cartesian space control
 - No explicit joint goals
 - Local minima

- Targets in joint space: Joint trajectory action
 - Actionlib interface
- Targets in Cartesian space
- Joint space control
 - Inverse Kinematics
 - Joint space planning
 - Cartesian space planning
- Cartesian space control
 - No explicit joint goals
 - · Local minima
- Visual feedback

Serving drinks at a cocktail party

- Navigate to party room: navigation
- Ask for name and desired drink: human-robot interaction
- Learn faces: perception
- Get the drinks: manipulation
- Deliver the drinks: composing hierarchical state machines
- Leave the arena: failure handling

- SMACH state machine
 - Fast prototyping, complex state machines
 - SMACH states (Generic, CB)
 - SMACH containers (StateMachine, Iterator, Concurrence)
- Robot abstraction layer

- SMACH state machine
 - Fast prototyping, complex state machines
 - SMACH states (Generic, CB)
 - SMACH containers (StateMachine, Iterator, Concurrence)
- Robot abstraction layer
- Hierarchical states

- SMACH state machine
 - Fast prototyping, complex state machines
 - SMACH states (Generic, CB)
 - SMACH containers (StateMachine, Iterator, Concurrence)
- Robot abstraction layer
- Hierarchical states
 - Scaling
 - · Reuse of code

- Grasping
 - Open gripper
 - Move gripper to object
 - · Multiple steps
 - Visual servo update
 - Close gripper
 - · Retract arm

- Grasping
- Getting a drink
 - Navigate to possible storage locations
 - Get waypoints from reasoner
 - Look for objects
 - Perception algorithms
 - Reposition
 - Inverse reachability
 - Get target location from reasoner
 - Grasp

- Grasping
- Getting a drink
- Cocktailparty
 - · Robot has the drink
 - Delivery

- Grasping
- Getting a drink
- Cocktailparty
- AMIGO does not work in a perfect world!

Serving drinks at a cocktail party

- Navigate to party room: navigation
- Ask for name and desired drink: human-robot interaction
- Learn faces: perception
- Get the drinks: manipulation
- Deliver the drinks: composing hierarchical state machines
- Leave the arena: failure handling

- Many sources of failures
 - Location unreachableCannot detect people
 - Cannot find object
 - Object out of reach
 - Hardware failure
 - ..

- Many sources of failures
- What should the robot do when something does not work?

- Many sources of failures
- What should the robot do when something does not work?
- Building an application
 - State outcomes
 - Don't postpone developing fallback scenarios
 - · Test all transitions

- Many sources of failures
- What should the robot do when something does not work?
- Building an application
- Time-outs
 - Blocking calls

- Many sources of failures
- What should the robot do when something does not work?
- Building an application
- Time-outs
- Testing!
 - Sensor noise
 - Servo errors
 - People
 - Startup situations
 - Test settings
 - ...

- Many sources of failures
- What should the robot do when something does not work?
- Building an application
- Time-outs
- Testing
- Task planning
 - Mission statemachine is not hardcoded
 - Useful for more tasks: General Purpose Service Robot

Questions

19/19

Questions?

