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Architecture: hardware, software, information
Hardware:

I CPUs, memory

I communication lines (Ethernet, device IO,. . . )

Software:

I processes + threads in processes

I communication between processes

I shared data between threads

Information:

I data structures + functions that change them

I activities: own data + exchange data +
schedule functions

I tasks that must be realised

Do:

I information architecture first,
software architecture later

I hardware architecture: is a
given in this course

Don’t assume information is:

I available all the time,

I available instantaneously,

I fresh,

I consistent,

I accurate
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Design driver: what activities are needed for each task?
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Design = identify and integrate:

I capabilities: what does the application offer?

I resources: what does it rely on?

I plan: discrete set of “behavioural” states

I control: continuous-time feedback/feedforward

I monitoring: system dynamics trigger events

I perception: continuous-time sensor processing

I world model: state of “everything” that
“everyone” must know about

The “world model” is a key activity in your architecture:
it is the memory for all the other activities
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Example task: escape from room

Plan:

1. initialize sensors and motors

2. move forward till wall is detected

3. follow wall on the right

4. turn right at first “hole”

5. stop
L1

L2
L3

Resources:

I laser range finder: series of rays indicating
free space, within minimal & maximum
measurement range.

I encoders: actual velocity of robot.

I velocity control: instantaneously desired
velocity of robot.

I effort value: percentage of “full available
power” used for robot motion.

I keyboard button: events from keyboard
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Design driver: abstraction & resolution of world model

Abstraction:

I is there a map?

I separate topology and geometry

I which primitives?

I polygonal?

I 1D? 2D? 3D?

Resolution:

I no more/less spatial detail than your
task requires

I no more/less temporal detail than
your task requires

Do:

I throw data away when you know what
information you’re looking for

I remember the past
→ don’t repeat yourself

I predict the future
→ only way to monitor progress

I use local references, all the time

Don’t:

I use one global reference frame

I use grids (use polygons!)
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Relation between sensing, planning, and control

I you don’t do planning, but you
select which plan to use at which time!

I you hardcode all plans that your robot
could need → explainability!

I each phase in a plan:
I corresponds to a particular expected

situation in the task → explicit intent!
I selects (i) map, (ii) sensor processing

activity to update map, (iii) control
activity to generate motion, (iv)
monitor activity to generate
phase-switching events.

I needs a measure of progress

Do introduce a Finite State Machine:

I there are always different behavioural
states in the execution of a task.

I monitor the assumptions in each state

I monitor the progress of the task

I separate monitoring from decision
making

Don’t rely on instantaneous behaviour:

I Sense-Plan-Act architecture

I potential fields

I feedback/feedforward with time
window of one sample
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Pattern: Life Cycle State Machine

creating

Life Cycle State Machine

config-
uring

resources

configuring
capabilities

running

pausingdeleting

ready
deplo

ying active

I every activity needs one

I every task needs one

I every resource needs one

I m-to-n relation monitor ↔ transition + dependency on context

→ nesting is needed. . . !
→ separate activity is needed for FSM(s). . . ! (called “Coordinator”)
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Sensing, monitoring, control, plan execution,
world model updating: are all activities

Do:

I assign ownership of each data
structure to one, and only one, of
those activities

I allow an activity to read data owned
elsewhere

I allow an activity to advice other
activities to update data

I allow an activity to transfer ownership
to another activity

Don’t:

I expect all activities to execute
instantaneously

I send around all data all the time, to all
activities

I connect sensing and control without
world model in between
(Only there is the context needed to
interpret information and to configure
activities)
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Event Loop: software pattern for an Activity

when triggered // by operating system

do {

communicate() // get data from other activities

coordinate() // decide what phase of plan to switch to

configure() // set all parameters and select functions

compute() // execute control, perception, monitoring, plan

// functions synchronously, one after the other

coordinate() //

communicate() // send data to other activities

sleep() // the loop deactivates itself, until next deadline

}
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Next slides:
relevant snippets of a design
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Initial world model: parameterized room with a hole

world
model

L1

L2
L3

At initialization, this is assumed:

I the robot is inside a room

I the room has a rectangular shape as in
the figure

I the room has one door, with a width
enough to let the robot pass through

I the position and orientation of the
robot in the room are not known

I the size of the room is not known

→ enough to encode world model + relevant plans!
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Perception (sensor processing) during “Follow wall”

perception

world
model

plan

artificial,
task-centric
boundaries
on sensing

knowledge
about

the world,
thus far

The sensor provides more data than
strictly necessary to do the job:

I select a region of interest (grey box)
that fits to the plan (= only interested
in right-hand side)

I fit a line through a large enough
cluster of measurements

I do this over a time window of
measurements

I monitor whether nothing is closer than
the line

So, perception ⇔ least-squares fitting of a line of limited length through a clever,
plan-directed selection of current and previous “hits”
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Monitoring to decide to add next wall to control scope

perception

world
model

plan

monitoring

cluster_2

cl
u
st
e
r_
1

Monitoring has four hypotheses to follow:

1. local horizon to fit wall, on the right, as expected
by the task context, to configure the control.

2. further horizon in forward direction:

2.1 to monitor whether there is “something”, to react
to in plan;

2.2 to find another line cluster, orthogonal to first one,
to update the world model with a new corner.

3. the leftmost rays can be discarded
→ reduces the computational load.
→ improves interpretation of the data

4. all measurements could be neglected until needed
again, based on planned speed of motion.
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Lazy control: “power + steer” motions

plan
world
model control

One easy possibility for “control”:

I apply a set of constant speeds to each wheel
→ set of known trajectories of the robot in the
near future, to choose from

I sparsity/density of trajectories can be chosen,
in a plan-directed way

I time/space horizon of trajectories can be
chosen, in a plan-directed way

I control can be as simple as selecting the
“best” trajectory and apply the corresponding
wheel velocities during a long period

I Do: separate control of (i) path (“steer”), and
(ii) velocity along path (“power”)
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Motion specification paradigm of “Guarded motion”
Combines open loop motion with monitoring

Compares to mainstream paradigm of:
I motion specification via trajectories
I motion control via trajectory tracking

Advantages of guarded motion approach:
I motion need not be specified in full configuration space of control
→ avoids bringing in artificial constraints for task
→ allows to comply to physical constraints of hardware

I sensing and control are decoupled via world model + plan
→ decision about behaviour is owned by plan activity
→ present/past/future can be taken into account differently
→ dependence on context of task becomes easier!
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Motion specification for control
First simple example

plan
world
model control

ideal
motion
at fixed
distance
from wall

I plan places reference trajectory
(grey line) in world model

I at fixed offset with respect to the best
fitting wall line

I and with goodness of fit function for
the actual robot motion

→ the controller need not change when
representation and/or location of
reference trajectory change
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Control
Simple solution: best fitting open loop trajectory

plan
world
model control

monitoring

Control is simple:

I generate the “spray” of feedforward
trajectories

I select a “good enough” fit

I apply corresponding open loop motor
values

I until monitoring tells us that
deviation becomes “too large”
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Motion specification for control
Second simple example

plan
world
model control

unconstrained
motion area
on left hand
side of wall

Another easy possibility:

I the robot is allowed to move
“anywhere” left of the wall.
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Motion specification for control
Third simple example

plan
world
model control

tube constraint
for motion

on left hand
side of wall

Another easy possibility:

I the robot is allowed to move
“anywhere” inside a “tube” at some
distance from the wall.
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Control
Other simple solution: best fitting open loop trajectory

plan
world
model control

monitoring

"best fitting"
open loop motion
for tube constraint

is different
from "line" or
"half space"

cases

The tube approach has

I other optimal trajectories

I other tolerances

I but same monitoring
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Slides before: modelling
Now we need to go to software

I models must be turned into data structures in a programming language.

I functions on these data structures must be written, everywhere where the
previous slides used verbs like “fit”, “place”, “select”,. . .

I the order of the computations (“schedule”) must be determined

I each state in the plan corresponds to one set of all of the above

I the timing of the computations (“sampling”) must be determined

I the execution of the computations (“dispatching”) must be done

I the communication with sensors, motors, keyboard,. . . must be realised

The resource usage of all of the above must be mediated!
(mediation = monitoring for saturation + reaction in plan)
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“Component”: formalisation of the software
And a guideline to implement robot applications
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Mediation
(of Computations)

Component model integrates the following:

I Computations: all data + functions to execute

I Communication: read/write I/O data

I Coordination: decide to switch plan state

I Configuration: set right parameters

I Mediation: make trade-offs for scarce resources

I Monitoring: of CPU, BUS, RAM, IO resources

“Component”: can be a process, but also a thread inside a process.

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

22



Software pattern of threads in a process
Typical activity has three types of threads

hardwareo
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main()
(mediator of OS resources)

buffer

buffer
 sync

thread
async
thread

asynchronous
I/O channels

synchronous
I/O channels

I one main: configures threads, memory
and communication

I one synchronous thread: event loop
for “realtime” control, never blocking

I one or more asynchronous threads:
each communicating with a resource
or other activity, possibly blocking
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Do’s and Don’ts
in mapping activities to processes/threads

Do:

I separate synchronous and
asynchronous parts in each activity

I couple them via buffers

I separate OS configuration of threads
from implementation
(priorities, memory reservation, IO
reservation, timing,. . . )

Don’t:

I run just one activity in each thread,
without knowing exactly why you
don’t run more

I use priorities on threads to influence
scheduling order of activities
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Exchanging data between threads and processes

Inter-Processes Communication:

I Publisher-Subscribe, via individual
data topics spread over different
processes (Don’t!)

I Producer-Consumer stream, via
ringbuffer between one Producer
activity and one Consumer activity
(Do!)

A

C

B

Threads:

I shared data, protected via mutexes
(Don’t!)

I Producer-Consumer streams, via
ringbuffers (Do!)
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Next lecture . . . (?)

C reference implementations for:

I process/thread architecture: with mutex and without

I Producer/Consumer ringbuffer

I sensor fusion (same sensor over multiple times)

Bring your information architecture:

I and walk away with your software architecture. . .
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