
Embedded Motion Control
——

Do’s and Don’ts in the design
of a robotic software architecture

Herman Bruyninckx
Eindhoven University of Technology

KU Leuven
http://people.mech.kuleuven.be/~bruyninc/

May 1, 2019

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

1

http://people.mech.kuleuven.be/~bruyninc/


Architecture: hardware, software, information
Hardware:

I CPUs, memory

I communication lines (Ethernet, device IO,. . . )

Software:

I processes + threads in processes

I communication between processes

I shared data between threads

Information:

I data structures + functions that change them

I activities: own data + exchange data +
schedule functions

I tasks that must be realised

Do:

I information architecture first,
software architecture later

I hardware architecture: is a
given in this course

Don’t assume information is:

I available all the time,

I available instantaneously,

I fresh,

I consistent,

I accurate

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

2



Architecture: hardware, software, information
Hardware:

I CPUs, memory

I communication lines (Ethernet, device IO,. . . )

Software:

I processes + threads in processes

I communication between processes

I shared data between threads

Information:

I data structures + functions that change them

I activities: own data + exchange data +
schedule functions

I tasks that must be realised

Do:

I information architecture first,
software architecture later

I hardware architecture: is a
given in this course

Don’t assume information is:

I available all the time,

I available instantaneously,

I fresh,

I consistent,

I accurate

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

2



Design driver: what activities are needed for each task?

world
model

(past, 
actual,
desired,
possible,

...)

plan
(discrete control)

control
(continuous)

perception
(continuous)

control
task

resources

capabilities

monitoring
(discrete perception)

from
world model

to
desired world

from
actual world

to
world model

d
a
ta

e
v
e
n
t

q
u
e
ry

d
a
ta

e
v
e
n
t

q
u
e
ry

Design = identify and integrate:

I capabilities: what does the application offer?

I resources: what does it rely on?

I plan: discrete set of “behavioural” states

I control: continuous-time feedback/feedforward

I monitoring: system dynamics trigger events

I perception: continuous-time sensor processing

I world model: state of “everything” that
“everyone” must know about

The “world model” is a key activity in your architecture:
it is the memory for all the other activities

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

3



Example task: escape from room

Plan:

1. initialize sensors and motors

2. move forward till wall is detected

3. follow wall on the right

4. turn right at first “hole”

5. stop
L1

L2
L3

Resources:

I laser range finder: series of rays indicating
free space, within minimal & maximum
measurement range.

I encoders: actual velocity of robot.

I velocity control: instantaneously desired
velocity of robot.

I effort value: percentage of “full available
power” used for robot motion.

I keyboard button: events from keyboard

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

4



Design driver: abstraction & resolution of world model

Abstraction:

I is there a map?

I separate topology and geometry

I which primitives?

I polygonal?

I 1D? 2D? 3D?

Resolution:

I no more/less spatial detail than your
task requires

I no more/less temporal detail than
your task requires

Do:

I throw data away when you know what
information you’re looking for

I remember the past
→ don’t repeat yourself

I predict the future
→ only way to monitor progress

I use local references, all the time

Don’t:

I use one global reference frame

I use grids (use polygons!)

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

5



Design driver: abstraction & resolution of world model

Abstraction:

I is there a map?

I separate topology and geometry

I which primitives?

I polygonal?

I 1D? 2D? 3D?

Resolution:

I no more/less spatial detail than your
task requires

I no more/less temporal detail than
your task requires

Do:

I throw data away when you know what
information you’re looking for

I remember the past
→ don’t repeat yourself

I predict the future
→ only way to monitor progress

I use local references, all the time

Don’t:

I use one global reference frame

I use grids (use polygons!)

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

5



Relation between sensing, planning, and control

I you don’t do planning, but you
select which plan to use at which time!

I you hardcode all plans that your robot
could need → explainability!

I each phase in a plan:
I corresponds to a particular expected

situation in the task → explicit intent!
I selects (i) map, (ii) sensor processing

activity to update map, (iii) control
activity to generate motion, (iv)
monitor activity to generate
phase-switching events.

I needs a measure of progress

Do introduce a Finite State Machine:

I there are always different behavioural
states in the execution of a task.

I monitor the assumptions in each state

I monitor the progress of the task

I separate monitoring from decision
making

Don’t rely on instantaneous behaviour:

I Sense-Plan-Act architecture

I potential fields

I feedback/feedforward with time
window of one sample

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

6



Relation between sensing, planning, and control

I you don’t do planning, but you
select which plan to use at which time!

I you hardcode all plans that your robot
could need → explainability!

I each phase in a plan:
I corresponds to a particular expected

situation in the task → explicit intent!
I selects (i) map, (ii) sensor processing

activity to update map, (iii) control
activity to generate motion, (iv)
monitor activity to generate
phase-switching events.

I needs a measure of progress

Do introduce a Finite State Machine:

I there are always different behavioural
states in the execution of a task.

I monitor the assumptions in each state

I monitor the progress of the task

I separate monitoring from decision
making

Don’t rely on instantaneous behaviour:

I Sense-Plan-Act architecture

I potential fields

I feedback/feedforward with time
window of one sample

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

6



Pattern: Life Cycle State Machine

creating

Life Cycle State Machine

config-
uring

resources

configuring
capabilities

running

pausingdeleting

ready
deplo

ying active

I every activity needs one

I every task needs one

I every resource needs one

I m-to-n relation monitor ↔ transition + dependency on context

→ nesting is needed. . . !
→ separate activity is needed for FSM(s). . . ! (called “Coordinator”)

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

7



Sensing, monitoring, control, plan execution,
world model updating: are all activities

Do:

I assign ownership of each data
structure to one, and only one, of
those activities

I allow an activity to read data owned
elsewhere

I allow an activity to advice other
activities to update data

I allow an activity to transfer ownership
to another activity

Don’t:

I expect all activities to execute
instantaneously

I send around all data all the time, to all
activities

I connect sensing and control without
world model in between
(Only there is the context needed to
interpret information and to configure
activities)

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

8



Event Loop: software pattern for an Activity

when triggered // by operating system

do {

communicate() // get data from other activities

coordinate() // decide what phase of plan to switch to

configure() // set all parameters and select functions

compute() // execute control, perception, monitoring, plan

// functions synchronously, one after the other

coordinate() //

communicate() // send data to other activities

sleep() // the loop deactivates itself, until next deadline

}

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

9



Next slides:
relevant snippets of a design

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

10



Initial world model: parameterized room with a hole

world
model

L1

L2
L3

At initialization, this is assumed:

I the robot is inside a room

I the room has a rectangular shape as in
the figure

I the room has one door, with a width
enough to let the robot pass through

I the position and orientation of the
robot in the room are not known

I the size of the room is not known

→ enough to encode world model + relevant plans!

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

11



Perception (sensor processing) during “Follow wall”

perception

world
model

plan

artificial,
task-centric
boundaries
on sensing

knowledge
about

the world,
thus far

The sensor provides more data than
strictly necessary to do the job:

I select a region of interest (grey box)
that fits to the plan (= only interested
in right-hand side)

I fit a line through a large enough
cluster of measurements

I do this over a time window of
measurements

I monitor whether nothing is closer than
the line

So, perception ⇔ least-squares fitting of a line of limited length through a clever,
plan-directed selection of current and previous “hits”

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

12



Monitoring to decide to add next wall to control scope

perception

world
model

plan

monitoring

cluster_2

cl
u
st
e
r_
1

Monitoring has four hypotheses to follow:

1. local horizon to fit wall, on the right, as expected
by the task context, to configure the control.

2. further horizon in forward direction:

2.1 to monitor whether there is “something”, to react
to in plan;

2.2 to find another line cluster, orthogonal to first one,
to update the world model with a new corner.

3. the leftmost rays can be discarded
→ reduces the computational load.
→ improves interpretation of the data

4. all measurements could be neglected until needed
again, based on planned speed of motion.

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

13



Lazy control: “power + steer” motions

plan
world
model control

One easy possibility for “control”:

I apply a set of constant speeds to each wheel
→ set of known trajectories of the robot in the
near future, to choose from

I sparsity/density of trajectories can be chosen,
in a plan-directed way

I time/space horizon of trajectories can be
chosen, in a plan-directed way

I control can be as simple as selecting the
“best” trajectory and apply the corresponding
wheel velocities during a long period

I Do: separate control of (i) path (“steer”), and
(ii) velocity along path (“power”)

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

14



Motion specification paradigm of “Guarded motion”
Combines open loop motion with monitoring

Compares to mainstream paradigm of:
I motion specification via trajectories
I motion control via trajectory tracking

Advantages of guarded motion approach:
I motion need not be specified in full configuration space of control
→ avoids bringing in artificial constraints for task
→ allows to comply to physical constraints of hardware

I sensing and control are decoupled via world model + plan
→ decision about behaviour is owned by plan activity
→ present/past/future can be taken into account differently
→ dependence on context of task becomes easier!

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

15



Motion specification for control
First simple example

plan
world
model control

ideal
motion
at fixed
distance
from wall

I plan places reference trajectory
(grey line) in world model

I at fixed offset with respect to the best
fitting wall line

I and with goodness of fit function for
the actual robot motion

→ the controller need not change when
representation and/or location of
reference trajectory change

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

16



Control
Simple solution: best fitting open loop trajectory

plan
world
model control

monitoring

Control is simple:

I generate the “spray” of feedforward
trajectories

I select a “good enough” fit

I apply corresponding open loop motor
values

I until monitoring tells us that
deviation becomes “too large”

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

17



Motion specification for control
Second simple example

plan
world
model control

unconstrained
motion area
on left hand
side of wall

Another easy possibility:

I the robot is allowed to move
“anywhere” left of the wall.

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

18



Motion specification for control
Third simple example

plan
world
model control

tube constraint
for motion

on left hand
side of wall

Another easy possibility:

I the robot is allowed to move
“anywhere” inside a “tube” at some
distance from the wall.

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

19



Control
Other simple solution: best fitting open loop trajectory

plan
world
model control

monitoring

"best fitting"
open loop motion
for tube constraint

is different
from "line" or
"half space"

cases

The tube approach has

I other optimal trajectories

I other tolerances

I but same monitoring

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

20



Slides before: modelling
Now we need to go to software

I models must be turned into data structures in a programming language.

I functions on these data structures must be written, everywhere where the
previous slides used verbs like “fit”, “place”, “select”,. . .

I the order of the computations (“schedule”) must be determined

I each state in the plan corresponds to one set of all of the above

I the timing of the computations (“sampling”) must be determined

I the execution of the computations (“dispatching”) must be done

I the communication with sensors, motors, keyboard,. . . must be realised

The resource usage of all of the above must be mediated!
(mediation = monitoring for saturation + reaction in plan)

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

21



“Component”: formalisation of the software
And a guideline to implement robot applications

C
o
m

p
u
ta

ti
o
n
s

Component

services

Coordination

Monitoring
(of Computations)

Communication

Configuration

d
a
ta

co
m

po
ne

nt
 b

us

e
v
e
n
t

q
u
e
ry

C
o
m

p
u
ta

ti
o
n
s

C
o
m

p
u
ta

ti
o
n
s

Mediation
(of Computations)

Component model integrates the following:

I Computations: all data + functions to execute

I Communication: read/write I/O data

I Coordination: decide to switch plan state

I Configuration: set right parameters

I Mediation: make trade-offs for scarce resources

I Monitoring: of CPU, BUS, RAM, IO resources

“Component”: can be a process, but also a thread inside a process.

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

22



Software pattern of threads in a process
Typical activity has three types of threads

hardwareo
p
e
ra

ti
n
g

sy
st

e
m

ke
rn

e
l

p
ro

ce
ss

main()
(mediator of OS resources)

buffer

buffer
 sync

thread
async
thread

asynchronous
I/O channels

synchronous
I/O channels

I one main: configures threads, memory
and communication

I one synchronous thread: event loop
for “realtime” control, never blocking

I one or more asynchronous threads:
each communicating with a resource
or other activity, possibly blocking

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

23



Do’s and Don’ts
in mapping activities to processes/threads

Do:

I separate synchronous and
asynchronous parts in each activity

I couple them via buffers

I separate OS configuration of threads
from implementation
(priorities, memory reservation, IO
reservation, timing,. . . )

Don’t:

I run just one activity in each thread,
without knowing exactly why you
don’t run more

I use priorities on threads to influence
scheduling order of activities

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

24



Exchanging data between threads and processes

Inter-Processes Communication:

I Publisher-Subscribe, via individual
data topics spread over different
processes (Don’t!)

I Producer-Consumer stream, via
ringbuffer between one Producer
activity and one Consumer activity
(Do!)

A

C

B

Threads:

I shared data, protected via mutexes
(Don’t!)

I Producer-Consumer streams, via
ringbuffers (Do!)

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

25



Next lecture . . . (?)

C reference implementations for:

I process/thread architecture: with mutex and without

I Producer/Consumer ringbuffer

I sensor fusion (same sensor over multiple times)

Bring your information architecture:

I and walk away with your software architecture. . .

Embedded Motion Control — Do’s and Don’ts in the design of a robotic software architecture
Herman Bruyninckx
May 1, 2019

26


