
Embedded Motion Control
——

Suggestions for the design of robotic tasks
and of their software architectures

Herman Bruyninckx
Eindhoven University of Technology

KU Leuven
http://people.mech.kuleuven.be/~bruyninc/

May 4, 2018

Embedded Motion Control — Suggestions for the design of robotic tasks and of their software architectures
Herman Bruyninckx
May 4, 2018

1

http://people.mech.kuleuven.be/~bruyninc/


Introduction: affordances
Objects come with a “plan” for how to use them

Affordance is a term from psychology

James J. Gibson, 1966.
https://en.wikipedia.org/wiki/Affordance

that reflects the fact that humans don’t just see
objects in the world, but also, inherently
connected to that perception, they know how
to manipulate them.

→ plan comes for free with the object!

pick up, push, turn, shove, fill,
order, clean, throw, break,. . .

Discuss plan for: push; pick up

Embedded Motion Control — Suggestions for the design of robotic tasks and of their software architectures
Herman Bruyninckx
May 4, 2018

2

https://en.wikipedia.org/wiki/Affordance


“Task”: formalisation of the “Affordance” concept
And a guideline to design robot applications

world
model

(past, 
actual,
desired,
possible,

...)

plan
(discrete control)

control
(continuous)

perception
(continuous)

Task

resources

capabilities

monitoring
(discrete perception)

from
world model

to
desired world

from
actual world

to
world model

d
a
ta

e
v
e
n
t

q
u
e
ry

d
a
ta

e
v
e
n
t

q
u
e
ry

A robot application designer must integrate:

I capabilities: what does the application offer?

I resources: what does it rely on?

I world model: state of “everything” that
“everyone” must know about

I plan: discrete set of “behavioural” states

I control: continuous-time feedback/feedforward

I monitoring: system dynamics trigger events

I perception: continuous-time sensor processing

The “world model” plays a key role in your design!

Embedded Motion Control — Suggestions for the design of robotic tasks and of their software architectures
Herman Bruyninckx
May 4, 2018

3



Expected capabilities — Available resources

Capability: escape from the room.

Plan (at geometric level):

1. initialize sensors and motors

2. move forward till wall is detected

3. move while following wall on the right

4. turn right at first large enough hole

5. stop

Resources:

I laser range finder: series of rays
indicating free space, within minimal
& maximum measurement range.

I encoders: instantaneous actual
velocity of platform.

I velocity control: instantaneous desired
velocity of platform.

I effort value: percentage of “full”
available power used for robot motion.

I keyboard button: event from keyboard

Embedded Motion Control — Suggestions for the design of robotic tasks and of their software architectures
Herman Bruyninckx
May 4, 2018

4



Initial world model: parameterized room with a hole

world
model

L1

L2
L3

At initialization, this is assumed:

I the robot is inside a room

I the room has a rectangular shape as in
the figure

I the room has one door, with a width
enough to let the robot pass through

I the position and orientation of the
robot in the room are not known

I the size of the room is not known

Embedded Motion Control — Suggestions for the design of robotic tasks and of their software architectures
Herman Bruyninckx
May 4, 2018

5



Perception (“sensor processing”)

perception

world
model

plan

artificial,
task-centric
boundaries
on sensing

knowledge
about

the world,
thus far

The sensor provides way more data than
strictly necessary to do the job:

I select a region of interest (grey box)
that fits to the plan (= only interested
in right-hand side)

I fit a line through a large enough
cluster of measurements

I do this over a time window of
measurements

So, perception ⇔ least-squares fitting of a line of limited length through a clever,
plan-directed selection of current and previous “hits”

Embedded Motion Control — Suggestions for the design of robotic tasks and of their software architectures
Herman Bruyninckx
May 4, 2018

6



Plan/control: motion trajectories

plan
world
model control One easy possibility for “control”:

I apply a set of constant speeds to each wheel
→ set of known trajectories of the robot in the
near future, to choose from

I sparsity/density of trajectories can be chosen,
in a plan-directed way

I time/space horizon of trajectories can be
chosen, in a plan-directed way

I control can be as simple as selecting the
“best” trajectory and apply the corresponding
wheel velocities during a long period

Embedded Motion Control — Suggestions for the design of robotic tasks and of their software architectures
Herman Bruyninckx
May 4, 2018

7



Monitoring to decide to add next wall to control scope

perception

world
model

plan

monitoring

cluster_2

cl
u
st
e
r_
1

Monitoring has four hypotheses to follow:

1. local horizon to fit wall, on the right, as expected
by the task context, to configure the control.

2. further horizon in forward direction:

2.1 to monitor whether there is “something”, to react
to in plan;

2.2 to find another line cluster, orthogonal to first one,
to update the world model with a new corner.

3. the leftmost rays can be discarded
→ reduces the computational load.

4. all measurements could be neglected until needed
again, based on planned speed of motion.

Embedded Motion Control — Suggestions for the design of robotic tasks and of their software architectures
Herman Bruyninckx
May 4, 2018

8



Task model — Revisited

world
model

(past, 
actual,
desired,
possible,

...)

plan
(discrete control)

control
(continuous)

perception
(continuous)

Task

resources

capabilities

monitoring
(discrete perception)

The task of the robot relies on:

I plan, control, perception and monitoring
models.

I all share information via world model.

The resources provide constraints on how fast,
good, accurate,. . . the capabilities can be
realised.

The capabilities provide tolerances on how well
control & perception must be.

Use this task template to structure your design discussions!

Embedded Motion Control — Suggestions for the design of robotic tasks and of their software architectures
Herman Bruyninckx
May 4, 2018

9



Motion specification for control
First simple example

plan
world
model control

ideal
motion
at fixed
distance
from wall

I plan places reference trajectory
(grey line) in world model

I at fixed offset with respect to the best
fitting wall line

I and with goodness of fit function for
the actual robot motion

→ the controller need not change when
representation and/or location of
reference trajectory change

Embedded Motion Control — Suggestions for the design of robotic tasks and of their software architectures
Herman Bruyninckx
May 4, 2018

10



Motion specification for control
Second simple example

plan
world
model control

unconstrained
motion area
on left hand
side of wall

Another easy possibility:

I the robot is allowed to move
“anywhere” left of the wall.

Embedded Motion Control — Suggestions for the design of robotic tasks and of their software architectures
Herman Bruyninckx
May 4, 2018

11



Motion specification for control
Third simple example

plan
world
model control

tube constraint
for motion

on left hand
side of wall

Another easy possibility:

I the robot is allowed to move
“anywhere” inside a “tube” at some
distance from the wall.

Embedded Motion Control — Suggestions for the design of robotic tasks and of their software architectures
Herman Bruyninckx
May 4, 2018

12



Control
Simple solution: best fitting open loop trajectory

plan
world
model control

monitoring

Control is simple:

I generate the “spray” of feedforward
trajectories

I select a “good enough” fit

I apply corresponding open loop motor
values

I until monitoring tells us that
deviation becomes “too large”

Embedded Motion Control — Suggestions for the design of robotic tasks and of their software architectures
Herman Bruyninckx
May 4, 2018

13



Control
Other simple solution: best fitting open loop trajectory

plan
world
model control

monitoring

"best fitting"
open loop motion
for tube constraint

is different
from "line" or
"half space"

cases

The tube approach has

I other optimal trajectories

I other tolerances

I but same monitoring

Embedded Motion Control — Suggestions for the design of robotic tasks and of their software architectures
Herman Bruyninckx
May 4, 2018

14



Slides before: modelling
Now we need to go to software

I models must be turned into data structures in a programming language.

I functions on these data structures must be written, everywhere where the
previous slides used verbs like “fit”, “place”, “select”,. . .

I the order of the computations (“schedule”) must be determined

I each state in the plan corresponds to one set of all of the above

I the timing of the computations (“sampling”) must be determined

I the execution of the computations (“dispatching”) must be done

I the communication with sensors, motors, keyboard,. . . must be realised, via the
operating system and/or middleware libraries

The resource usage of all of the above must be mediated!
Embedded Motion Control — Suggestions for the design of robotic tasks and of their software architectures
Herman Bruyninckx
May 4, 2018

15



“Component”: formalisation of the software
And a guideline to implement robot applications

C
o
m

p
u
ta

ti
o
n
s

Component

services

Coordination

Monitoring
(of Computations)

Communication

Configuration

d
a
ta

co
m

po
ne

nt
 b

us

e
v
e
n
t

q
u
e
ry

C
o
m

p
u
ta

ti
o
n
s

C
o
m

p
u
ta

ti
o
n
s

Mediation
(of Computations)

Component model integrates the following:

I Computations: all data + functions to execute

I Communication: read/write I/O data

I Coordination: decide to switch plan state

I Configuration: set right parameters

I Mediation: make trade-offs for scarce resources

I Monitoring: of CPU, BUS, RAM, IO resources

Local “component bus” = read/write access to all shared data.

Embedded Motion Control — Suggestions for the design of robotic tasks and of their software architectures
Herman Bruyninckx
May 4, 2018

16



Software pattern of the “Process”
Structures interactions between asynchronous programs

Your application typically has three types of threads:

hardware

operating
system
kernel

processthread
(mediator)

message
queue

message
queue

thread
(event loop)

thread
(worker)

component

asynchronous
I/O channels

I one main: runs an event loop every
“sample time”. (See next slide.)

I one or more workers: each run an
algorithm that can take longer than
one sample time, or that can block
indefinitely.

I one mediator: checks resource usage,
and decides about reconfiguration of
main thread, when needed.

Embedded Motion Control — Suggestions for the design of robotic tasks and of their software architectures
Herman Bruyninckx
May 4, 2018

17



Software pattern of the “Event Loop”
Recipe for each time one thread is triggered

when triggered // by operating system

do {

communicate() // get asynchronous data from workers, OS,...

coordinate() // decide what functions to run this time around

configure() // set all parameters for the selected functions

compute() // execute control, perception, monitoring, plan

// functions synchronously, one after the other

mediate()

configure()

communicate() // set data to be sent asynchronously

sleep() // the loop deactivates itself, until next deadline

}

Embedded Motion Control — Suggestions for the design of robotic tasks and of their software architectures
Herman Bruyninckx
May 4, 2018

18


