
Multi-Threading/Multi-Processing
and its Inter-Process Communication

Herman Bruyninckx
Eindhoven University of Technology

KU Leuven
http://people.mech.kuleuven.be/~bruyninc/

May 18, 2016

Inter-Process Communication
Herman Bruyninckx
May 18, 2016

1

Overview of this lecture
I objectives: to explain

I when (not) to use multiple processes

I how to deal with their data flows and event flows

I some best practices

I use cases in project:
I get data from laser scanner
I process it for (i) world model update, (ii) motion planning, and

(iii) motion control
I feed GUI with status information about execution
I get commands from GUI
I log data for later inspection

I key reference: “Multithreading with ZeroMQ”.
http://zguide.zeromq.org/page:all#toc45

Also contains code examples in many programming languages.

Inter-Process Communication
Herman Bruyninckx
May 18, 2016

2

Multiple processes: why?

Good reasons:

I some activities must run asynchronously: sensors &
actuators with their own computers; activities share a
resource that has its own computer;. . .

I deployment must be on physically separated machines.
(= special case of previous one)

Bad reasons:

I because you think it is more modular

I because you think publish-subscribe is the only way to get
data from one algorithm into the next.

I because you do not (want to) know how to make your system
behave deterministically; i.e., at each moment of its activity,
it is clear what it is doing, why, and how well.

Inter-Process Communication
Herman Bruyninckx
May 18, 2016

3



Inter-Process Communication: how & why?
How?
I message passing interface: send(message,channel,
read(message,channel

I streams interface: like message passing, but caller is ready
for the case there is no data yet, no data anymore, or multiple
answers at the same time.

Why?
I data streams between identified data processors
I coordination events between all processes
I while making sure that

I no data is lost (unless application wants it!)
I no data is corrupted
I access to data is efficient

⇒ all of these reasons have a performance that (should) depend
on the application!

Inter-Process Communication
Herman Bruyninckx
May 18, 2016

4

Multiple processes: bad practices

I avoid mutexes or locks

→ these are OS-facing programming primitives, that can be
misused in way too many ways. . .

→ use library that (i) provides abstraction of access to shared
resources, and (ii) with configurable application-facing
performance.
Example: ZeroMQ.

I avoid priorities to determine “which process goes first”

→ use events-with-meaning!

I avoid share state, where “state” is all the data that
determines the behaviour of this process

→ use information about other processes’ state instead!

Inter-Process Communication
Herman Bruyninckx
May 18, 2016

5

Multiple processes: best practices
I one event queue in each process, hence:

I one Coordinator:
I takes decisions on what to do
I based on interpretation of incoming events
I decisions are provided in the form of outgoing events

I one Scheduler: defines in what order to call functionalities
I one Configurator: defines all “magic numbers”

Note: time is just another event
I multiple data queues

I configured via events
I available as fully accessible “streams”

I multiple Computations
I configured via events
I take data/event flows in, put data/event flows out
I “control”, “monitoring”, “world modelling”, “trajectory

selection”,. . .

Inter-Process Communication
Herman Bruyninckx
May 18, 2016

6



Multiple processes: best practices (2)

Pattern: event loop in C
when triggered % by OS
do {

communicate() // get latest events & data
coordinate() // handle the events
configure() // possibly requiring reconfiguration
schedule() // run functions on new data
coordinate() // functions could trigger

// new events or data
communicate() // that others might have to know about
log() // memory of what happened when

}

Inter-Process Communication
Herman Bruyninckx
May 18, 2016

7

Pattern: event loop for “control”
when scheduled do { act(); prepare(); }
with
act() {
sense(); // get sensing data out of “process message”
control(); // get continuous part in “process message”
communicate(); // to get control out as fast as possible

}
prepare() {

world-model-update(); // process sense results further
plan(); // compute feedforward for next loop
...

if monitor() then {
coordinate();

configure();

}
}

Specific design force: get control signal out as fast as possible

Inter-Process Communication
Herman Bruyninckx
May 18, 2016

8

Suggestion: discovery & communication in ZeroMQ

Streams with ZeroMQ:

“ZeroMQ sockets provide an abstraction of
asynchronous message streams, multiple messaging
patterns, message filtering, seamless access to multiple
transport protocols and more.”

http://www.zeromq.org/

Discovery & group communication with Zyre:
https://github.com/zeromq/zyre

I whisper to identified peer in a group

I shout to all peers in a group

I one peer can take part in several group communications.

Inter-Process Communication
Herman Bruyninckx
May 18, 2016

9


